
Signal Processing for Communications EPFL Winter Semester 2007/2008
Prof. Suhas Diggavi Handout # 37, Friday, December 21, 2007

Solutions: Homework Set # 8

Problem 1 (Order of Up- and Downsampling)

(a) The magnitudes of X1(e
jω) and Y1(e

jω) are given on Figures 1a and 1b, respectively.

(b) The magnitudes of X2(e
jω) and Y2(e

jω) are given on Figures 1c and 1d, respectively.

(c) From Figures 1b and 1d, we can see that Y1(e
jω) = Y2(e

jω).

(d) For the first system, we have

X1(e
jω) = X(ej3ω)

Y1(e
jω) =

1

2

[

X1(e
jω/2) + X1(e

j(ω/2+π))
]

=
1

2

[

X(ej3ω/2) + X(ej(3ω/2+π))
]

.

For the second system, we have

X2(e
jω) =

1

2

[

X(ejω/2) + X(ej(ω/2+π))
]

Y2(e
jω) = X2(e

j3ω)

=
1

2

[

X(ej3ω/2) + X(ej(3ω/2)+π)
]

.

(e) From the results of (e), we see that for general x[n], Y1(e
jω) = Y2(e

jω).

(f) 1. Suppose L and M have a common factor Q, i.e., L = L′Q and M = M ′Q. Then for
k = M ′ we have kL = M ′L′Q = L′M , and so W kL

M = W 0
M = 1.

But we already have W k
M = 1 for k = 0, so a 1 occurs twice in the sequence

{W kL
M }M−1

k=0 , and therefore this sequence cannot be a permutation. It follows that
Y1(z) 6= Y2(z).

2. Suppose that L and M are coprime. By Bezout’s identity there exist m and n
such that mL + nM = 1, i.e., mL mod M = 1. Then, mlL mod M = l for l ∈
{0, . . . ,M − 1}. Thus, for any l, if we set k = ml mod M then kL mod M = l.

3. From the above it follows that {W kL
M }M−1

k=0 and {W k
M}M−1

k=0 are permutations, and so
Y1(z) = Y2(z), if and only if L and M are coprime.

1



X1(e
jω)

−π π

(a) The DTFT X1(e
jω) for Problem 1(a).

Y1(e
jω)

−π π

(b) The DTFT Y1(e
jω) for Problem 1(a).

X2(e
jω)

−π π

(c) The DTFT X2(e
jω) for Problem 1(b).

Y2(e
jω)

−π π

(d) The DTFT Y2(e
jω) for Problem 1(b).

Figure 1: Illustrations for Problems 1(a) and 1(b).

2



Problem 2

(a) Using the properties of the z-transform of up-sampling and down-sampling, we can easily
write

U(z) = X(zL)

V (z) = z−NU(z) = z−NX(zL)

Y (z) =
1

M

M−1
∑

k=0

V (e
2πj

M
kz

1

M ) =
1

M

M−1
∑

k=0

e−
2πj

M
kNz−

N
M X(e

2πj

M
kLz

L
M ) (1)

(b) By assuming M = M ′d and L = L′d, and replacing them in (1), we have

Y (z) =
1

M ′d

M ′d−1
∑

k=0

e−
2πj

M′d
kNz−

N

M′d X(e
2πj

M′d
kL′dz

L′d

M′d )

=
1

M ′d
z−

N

M′d

M ′
−1

∑

q=0

d−1
∑

p=0

e−
2πj

M′d
(pM ′+q)NX(e

2πj

M′
(pM ′+q)L′

z
L′

M′ )

=
1

M ′d
z−

N

M′d

M ′
−1

∑

q=0

d−1
∑

p=0

e−
2πj

d
pNe−

2πj

M′d
qNX(e

2πj

M′
qL′

z
L′

M′ )

=
1

M ′d
z−

N

M′d

M ′
−1

∑

q=0



e−
2πj

M′d
qNX(e

2πj

M′
qL′

z
L′

M′ )

d−1
∑

p=0

e−
2πj

d
pN



 . (2)

Now if N = N ′d, we have e−
2πj

d
pN = e−2πjN ′p = 1, and

Y (z) =
1

M ′d
z−

N′d

M′d

M ′
−1

∑

q=0

[

e−
2πj

M′d
qN ′dX(e

2πj

M′
qL′

z
L′

M′ )d

]

=
1

M ′

M ′
−1

∑

q=0

e−
2πj

M′
qN ′

z−
N′

M′ X(e
2πj

M′
qL′

z
L′

M′ )

Clearly the z-transform of the system shown in Fig. 5 is similar to (1), where M , L, N are
relpaced by M ′d, L′d, and N ′d, respectively. The resulting z-transform is exactly equal
to (3). Therefore, the systems are equivalent.

(c) If d ∤ N , the inner summation in (2) can be written as

d−1
∑

p=0

e−
2πj

d
pN =

e−
2πj

d
dN − 1

e−
2πj

d
N − 1

= 0.

Thus Y (z) = 0.

Problem 3

(a) We call the signals produced in the system as shown in Fig. 2. Using these notations, and
properties of the spectrum of the downsampled signal, we have the spectrum shown on
Figure 3, where X ′(ejω) is in fact the input of the second layered of the tree.

Similarly, we can draw the spectrum of the other signals as shown in Figure 4.

3



2 ↓

2 ↓

2 ↓

2 ↓

x[n] xL[n]

xH [n] x′[n] x′

L[n]

x′

H [n]

H1(e
jω)

H0(e
jω)

H1(e
jω)

H0(e
jω)

y0[n]

y1[n]

y2[n]

Figure 2: Tree-structured Analysis filter bank

−π −π

−π −π

−π
2 −π

2
π
2

π
2

π π

π π

1 1

1
2 1

2

XL(ejω) XH(ejω)

Y0(e
jω) X ′(ejω)

ω ω

ω ω

Figure 3: Spectrums

−π −π

−π −π

−π
2 −π

2
π
2

π
2

π π

π π

1
4

1
21
4

1
8

1
4
1
8

X ′

L(ejω) X ′

H(ejω)

Y1(e
jω) Y2(e

jω)

ω ω

ω ω

Figure 4: Spectrums

4



2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

x[n]

H1(e
jω)

H0(e
jω)

H1(e
jω) H1(e

jω)

H0(e
jω)

y0[n]

y1[n]

y2[n]

Figure 5: Equivalent system to tree-structured analysis filter bank (1)

(b) Clearly the system shown in Fig. 6 is equivalent to the one in Fig. 5.

Using the Nobel identity, the part of the system in dashed lines can be converted as shown
in Figure 6, where

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

x[n]

H1(e
jω)

H0(e
jω)

H1(e
jω) H ′

1(e
jω)

H ′

0(e
jω)

y0[n]

y1[n]

y2[n]

Figure 6: Equivalent system to tree-structured analysis filter bank (2)

H ′

0(e
jω) = H0(e

2jω) =







1 |ω| ≤ π
4

0 π
4 < |ω| ≤ 3π

4
1 3π

2 < |ω| ≤ π,
(3)

and

H ′

1(e
jω) = H1(e

2jω) =







0 |ω| ≤ π
4

1 π
4 < |ω| ≤ 3π

4
0 3π

2 < |ω| ≤ π.
(4)

Finally the system can be rewritten as in Figure 7, where G0(e
jω) = H0(e

jω),

G1(e
jω) = H1(e

jω)H ′

0(e
jω) =

{

0 |ω| ≤ π
4

1 3π
4 < |ω| ≤ π,

and

G2(e
jω) = H1(e

jω)H ′

1(e
jω) =







0 |ω| ≤ π
2

1 π
2 < |ω| ≤ 3π

4 ,
0 3π

4 < |ω| ≤ π.

Finally, you can easily see that M0 = 2, M1 = 4, and M2 = 4.

5



4 ↓

2 ↓

4 ↓

x[n]

G1(e
jω)

G0(e
jω)

G2(e
jω)

y0[n]

y1[n]

y2[n]

Figure 7: Equivalent system to tree-structured analysis filter bank (3)

(c) Recall the sufficient conditions for exact reconstruction, you have in the course. It is easy
to see that the analysis filters in this problem are orthogonal. However, they are not
normalized and have not unit energy. Therefore, we can get the reconstruction filters,
by just scaling the original constructing filters, to compensate the loss of energy. Let
Fi(e

jω) = 2Hi(e
−jω), for i = 0, 1. Since Hi(e

jω)’s are symmetric with respect to the
vertical axis, these filters can be explicitly rewritten as

F0(e
jω) =

{

2 |ω| ≤ π
2

0 π
2 < |ω| ≤ π,

F1(e
jω) =

{

0 |ω| ≤ π
2

2 π
2 < |ω| ≤ π.

You can easily check that the output of the synthesis filter would be exactly the same as
x[n].

Problem 4 (Block DFT)

(a) First note that by definition of x(i)[n], we have

x[n] =

Q−1
∑

i=0

x(i)[n].

Let Ii = {iN, iN + 1, . . . , (i + 1)N − 1}. The sequence x(i)[n] is nonzero only for n ∈ Ii.
Therefore, if we write the reconstruction of block N as

x(i)[n] =
N−1
∑

k=0

X(i)[k]ϕ
(i)
k [n], (5)

we see that ϕ
(i)
k [n] must be equal to zero for n /∈ Ii. For n ∈ Ii, ϕ

(i)
k [n] must be the kth

DFT basis vector. Hence,

ϕ
(i)
k [n] =

{

1
N ej 2πkn

N , n ∈ Ii

0 otherwise.
(6)

(b) Consider 〈ϕ(i)
k , ϕ

(j)
l 〉 =

∑

n

(

ϕ
(i)
k [n]

)

∗

ϕ
(j)
l [n]. If i 6= j, the two basis functions have disjoint

support sets and hence their scalar product is zero. If i = j and k 6= l, orthogonality follows
from the orthogonality of the DFT basis.

6



(c) For N = 2, the basis functions are

ϕ
(i)
0 [n] =

1

2

{

1 n = 2i, 2i + 1

0 otherwise

ϕ
(i)
1 [n] =

1

2











1 n = 2i

−1 n = 2i + 1

0 otherwise

These are equal to the Haar basis functions, up to the different scaling factor; for the
Haar basis functions the scaling factor is 1/

√
2. This in fact makes the Haar basis an

orthonormal basis.

(d) We want to find hk[n] such that vk[n] = X(n)[k]. The signal on branch k after downsam-
pling is

vk[n] = xk[Nn]

=
∑

l

hk[l]x[Nn − l]

=
∑

l

hk[−l]x[Nn + l], (7)

where in the last equality we have substituted l by −l. Note that the sum goes over all
l ∈ Z, as we don’t know a-priori the length of the filter.

On the other hand, the kth coefficient of the DFT of block n is

X(n)[k] =

N−1
∑

l=0

x[nN + l]e−j 2π
N

kl.

Comparing the right hand side with the right hand side of (7), we see that for vk[n] =
X(n)[k], we need

hk[l] =

{

ej 2π
N

kl l = −(N − 1), . . . ,−1, 0

0 otherwise.

It is important to note that here the basis is orthogonal but not orthonormal, therefore

we don’t have hk[n] = ϕ
(0)
k [−n] as we would have in the orthonormal case.

Next, we want to determine gk[n] such that x̂[n] = x[n]. This is true if and only if the
two sequences are equal in every block, i.e., for all i,

x̂[iN + l] = x(i)[iN + l], i = 0, . . . ,N − 1. (8)

Writing explicitly the expression for x̂[iN + l] as the sum of the filter outputs, we get

x̂[iN + l] =

N−1
∑

k=0

(gk ∗ yk)[iN + l]

=
N−1
∑

k=0

∑

j

gk[j]yk[iN + l − j]. (9)

7



Again, the convolution sum is over all j ∈ Z. Because yk[n] is the result of upsampling
vk[n] by N we have (using the formula for upsampling seen in class)

yk[n] =
∑

m

vk[m]δ[n − mN ]

=
∑

m

X(m)[k]δ[n − mN ].

Replacing this for yk[n] in (9), we obtain

x̂[iN + l] =

N−1
∑

k=0

∑

j

gk[j]
∑

m

X(m)[k]δ[(i − m)N + l − j].

For j 6= (i − m)N + l this is zero, so we can remove the sum over j to get

x̂[iN + l] =

N−1
∑

k=0

∑

m

gk[(i − m)N + l]X(m)[k].

Now, if we compare this to the block reconstruction formula (5), we see that if we set

gk[n] = ϕ
(0)
k [n], then we have

x̂[iN + l] =

N−1
∑

k=0

∑

m

ϕ
(0)
k [(i − m)N + l]X(m)[k]

=
N−1
∑

k=0

ϕ
(0)
k [l]X(i)[k]

= x(i)[iN + l],

where the second equality follows from the finite support of ϕ
(0)
k [n] (cf. (6)). Therefore,

the condition for perfect reconstruction (8) is satisfied for gk[n] = ϕ
(0)
k [n].

Problem 5

(Sampling Rate Change and Aliasing)

(a) In Matlab, we type:

>> [vista,fs] = wavread(’vista.wav’);

>> soundsc(vista,fs)

>> fs

The sampling frequency is fs = 22050[Hz].

(b) Note that 13230
22050 = 3

5 . Hence, we can first upsample by a factor 3 and then downsample by
a factor 5. Note that to minimize aliasing effects, it is better to first do the upsampling
and then the downsampling.

>> vista_u3 = upsample(vista,3);

>> vista_u3d5 = downsample(vista_u3,5);

>> plot(linspace(-pi,pi,length(vista_u3d5)),abs(fftshift(fft(vista_u3d5))))

8



The spectrum of “vista u3d5” has 3 copies of the original spectrum. See Figure 9. As a
comparison, we plot the spectrum of the original sequence in Figure 8.

>> plot(linspace(-pi,pi,length(vista)),abs(fftshift(fft(vista))))

The 2 high-frequency copies of the spectrum of “vista u3d5” are due to aliasing. If one
listens to the audio-sequence, one can hear the high-frequency sounds corresponding to
the 2 additional copies (like a wistling background noice).

−4 −3 −2 −1 0 1 2 3 4
0

200

400

600

800

1000

1200

Figure 8: Magnitude of the DFT of the original sequence at a sampling rate of 22050.

(c) To combat this severe aliasing effect, we use antialiasing filters. After upsampling, we
apply a low-pass filter with a cut-off at π

3 :

>> [hpm1,err] = firpm(40,[0 0.31 0.35 1], [1 1 0 0], [1 10]);

>> vista_u3f = conv(vista_u3,hpm1);

Then, before doing the downsampling, we apply another low-pass filter with a cut-off at
π
5 :

>> [hpm2,err] = firpm(40,[0 0.18 0.22 1], [1 1 0 0], [1 10]);

>> vista_u3ff = conv(vista_u3f,hpm2);

>> vista_u3ffd5 = downsample(vista_u3ff,5);

>> plot(linspace(-pi,pi,length(vista_u3ffd5)),abs(fftshift(fft(vista_u3ffd5))))

The plot of “vista u3ffd5” in Figure 10 is now quite similar to the original spectrum,
except that it is wider (exactly by a factor of 5

3 wider).

>> soundsc(vista_u3ffd5,fs*3/5)

Also the sound is much nicer now. It is not too different from the original.

9



−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

Figure 9: Magnitude of the DFT of the sequence at a sampling rate of 13230 (no antialiasing).

(d) In Figures 11 to 15, we explain what is going on. In any case, the sequence “vista” is first
upsampled by a factor 3 (Figure 12). If we do not immediately apply a low-pass filter
with cutoff π

3 , there will be very serious aliasing problems. After applying such a filter,
we obtain the spectrum shown in Figure 13, corresponding to the sequence “vista u3f”.
Now, assume that we do not apply the low-pass filter with cutoff π

5 , but that we directly
downsample the sequence “vista u3f”. In this case, we obtain the spectrum in Figure
14, which again suffers from aliasing. If, however, we apply the antialiasing filter before
downsampling, then we cut the spectrum in Figure 13 to have only support [−π

5 , π
5 ].

After downsampling, we then obtain the sequence “vista u3ffd5”, which corresponds, in
the interval [−π, π], to a stretched version of the original spectrum (stretching-factor 5

3).

We can see that both aliasing effects increase the power in the high frequencies (ω close
to −π or π). We can hear these frequencies as noise in “vista u3d5”. If the antialiasing
is done correctly, there is no increase of high frequencies, and hence no noise. However,
very high frequencies (above 0.6π in the original sequence) are cut off. But it is hard to
detect this by listening to the audio signal.

(e) By reading the help output, we can see that interp combines upsampling with the correct
(perfect) antialiasing filter. Decimate does the same for downsampling.

>> help interp

>> help decimate

Hence, applying the two functions should have the same effect as what we did in part (c).

>> soundsc(decimate(interp(vista,3),5),fs*3/5)

The result sounds the same as the result in (c).

10



−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

Figure 10: Magnitude of the DFT of the sequence at a sampling rate of 13230 (with antialiasing
filters).

ω
π 2π−π−2π −

9π

10

9π

10

Figure 11: Spectrum of the original sequence “vista”.

ω
π 2π−π−2π −2π

3
2π
3

. . .. . .

Figure 12: Spectrum of the upsampled sequence “vista u3”.

ω
π 2π−π−2π

Figure 13: Spectrum of the upsampled sequence after the antialiasing filter (“vista u3f”).

11



ω
π 2π−π−2π

Figure 14: Spectrum of the sequence after upsampling (with antialiasing), followed by
downsampling without antialiasing.

ω
π 2π−π−2π

Figure 15: Spectrum of the sequence after upsampling (with antialiasing), followed by
downsampling with antialiasing (“vista u3ffd5”).

12


