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Solutions to Evaluation Test

Problem 1 (ComPLEX NUMBERS)

(a) The polar representation of a complex number z = x + jy is given by the following
equations:
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Therefore we have:
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(b) We know that w can be written as:

w = p(cos(p) + jsin(p))
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(c) We can see that
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(d) Take
r+iy = \/—-1+jV3

Squaring on both side we get
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We therefore have the following set of equations:
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We replace this in the first equation:
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This can be written as:

(222 +3)(222 —1) = 0

We can solve this to get the following values for z2:
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Now, if x = ij\/g
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Now, if z = :t\/g
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We therefore realize that the solution to our initial equation is
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(f) We can write j as:
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Problem 2 (PovynowmiaLs)
(a) We can write 2% + 64 as:
(2 +64) = (z+4)(2* — 4z + 16)

Solving the binomial equation we get:

r = 2+j2V3



Therefore the solutions are:
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(b) Let us first substitute 3 by y. We have:
v —3y—4 = 0
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We now solve 22 = 4:
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We solve the other equation:
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Problem 3 (Serigs)

(a) €3 does not depend on k, hence:
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does not converge. This means that the sum that we are trying to calculate does not
converge.

(c) We have the following:
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(d) Use the following formulae:
i 12— n(n+1)(2n+1)
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and we get:

(e) We remark that:

Therefore:




(f) The idea is to split it into two sums:
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Problem 4 (LiNEAR ALGEBRA)

(a) We can calculate B*B + C as:

e B* being the conjugate transpose of B, it is of size 3X2. This means that B*B can
be performed and it results in a 3X3 matrix.

e Both B*B and C are 3X3 matrices and hence the addition is possible.

(b) To multiply two matrices F and G, if F is a mXn matrix, then G has to be a nXp matrix
for some positive integers m,n and p. Here this is clearly not the case.

(c) ‘DDT’ is well defined.
(d) DD* is a 2X2 matrix whereas B is a 2X3 matrix, hence addition is not possible.

(e) Iis a 2X2 matrix whereas C' is a 3X 3 matrix, hence this is not possible.

Problem 5 (INTEGRrALS)
(a) The idea is to use the following formula and replace in the integral:
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Therefore the integral becomes:
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(b) Using the hint we have:
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