Signal Processing for Communications EPFL Winter Semester 2007/2008
Prof. Suhas Diggavi Handout # 30, Tuesday, December 4, 2007

Homework Set # 8

Problem 1 (OrpER OF UP- AND DOWNSAMPLING)

We consider the two systems given in Figure 1.
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Figure 1: Systems for Problems 1 (a)—(e)

(a) For X (e’*) as given in Figure 2, sketch X; (e/*) and Y7 (e/%).
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Figure 2: X (ej“’) for Exercise 1

(b) Again for X (ej“’) as given in Figure 2, sketch Xo (ej‘”) and Y, (ej“’).

(c) What is the relationship between Y7 (¢/¢) and Y5 (e/%)?

For parts (d), (e) we consider a general spectrum X (e/*) and not specific to Figure 2.
Therefore, the answers would be in terms of a general spectrum X (69“’).

(d) For general X (&), write both Y; (¢/) and Y3 (¢/%) in terms of X (e/*). (Hint: Use
the properties of the Fourier transform of upsampled and downsampled signals as done in
class.)



Figure 3: Systems for Problem 1 (f).

(e) Using the expressions you have obtained in part (d) prove the relationship between Y7 (/)
and Yy (ej“’).

Hint: Generalize the relationship discovered in part (c) to an arbitrary X (ej“’).
(f) Consider now the two general up-/downsampling systems in Figure 3, with upsampling

factor L and downsampling factor M. In class you have seen that the Z-Transforms of
y1[n] and ys[n| are given by
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In this last part you will show that the above two Z-Transforms Y3 (z) and Y3(z) are equal
if and only if L and M are coprime, i.e., if they do not have any prime factors in common.

First note that the sums for Y;(z) and Y3(z) differ only in the terms WF, and Wit
Therefore Y1 (z) and Yg( ) are equal if and only if the sequence {IWW ,JCV‘[ 01 is a permutation
of the sequence {WM}k 0 , i.e., it contains exactly the same elements but possibly in a

different order.

1. Show that if L and M have a common factor @, then there exists k € {1,...,M —1}
such that WXE = 1, and conclude that in this case Y (z) # Ya(z).
Hint: Wk, = e7127k/M — yykmod M for o]l | € 7.

2. Assume now that L and M are coprime. Using Bezout’s identity (given below),
show that for every [ € {0,..., M — 1} there exists a k € {0,..., M — 1} such that
kL mod M = 1.

Bezout’s identity: If a and b are nonzero integers with greatest common divisor d,
then there exist integers « and y such that axz+by = d. (If a and b are coprime, then
d=1.)

3. Conclude that the operations of upsampling and downsampling commute if and only
if L and M are coprime.

Problem 2

Consider the system shown in Fig. 4, where uln] = Uy, (z[n]), v[n] = u[n — NJ, and y[n] =
Dy (v[n]).
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Figure 5: equivalent system in Problem. 2.

(a) Write the z transform of each of the sequences u[n], v[n], and y[n] in terms of X (z), the
z-transform of the input sequence.

(b) Let d = g.c.d(L, M) be the largest common divisor of L and M. Assume d | N (i.e., there
exist some integer N’ such that N = N'd), and L = L'd and M = M’'d. Show that the
above system is equivalent to the system shown in Fig. 5 (i.e., Y(2) = Y'(2))

Hint: The following two summations are equal

M'd—1 d—1 M'—1
Dtk =>2>" foM +q).
k=0 p=0 ¢q=0

(c) Show that if dt N (i.e., d is not a divisor of N), then Y (z) = 0.

Problem 3 (HIERARCHICAL FILTERBANKS WITH INFINITE LENGTH FILTERS)

Consider the tree-structured analysis filter bank shown in Fig. 6. Assume that Hy(e/“) and
H1(e’%) are the ideal low-pass and high-pass filters, respectively, i.e.,

Jwy — 2 Jwy — =2
Hole™) {0 5 <|w] <, Hi(e™) {1 T < || <

(a) Draw the DTFT of each of the sequences yg[n], y1[n], and ys[n], for a given input x[n],
for which the DTFT is given as in Fig. 7.

[n]
Hi(e?*) @ ~
Hy(e/) @ Ho(el?) @ ol
x[n] Ho(e) @ Yoln]

Figure 6: Tree-structured Analysis filter bank
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Figure 8: Equivalent Analysis filter bank

(b) Find the filters Go(e’*), G1(e’*), G2(e/*), and the down-sampling factors M, Ma, and
M3, such that the system shown in Fig. 8 be equivalent to the system in Fig. 6 (i.e., for
arbitrary input z[n], they give y[n] = y;[n], for i = 1,2, 3).
Hint: Use the properties of down-sampling and in particular the Nobel identity.

(¢) Consider the corresponding synthesis filter bank given in Fig. 9. Find the corresponding
filters Fy(e’*) and Fy(e’“) such that this filter bank can reconstruct the original signal,

i.e., x[n] = a'[n].
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Figure 9: Tree-structured synthesis filter bank



Problem 4 (BLock DiSCRETE-TIME FOURIER TRANSFORM)

Consider the following method to represent a length-L sequence z[n]. We segment x[n] into @
subsequences z(* [n] of length N such that

i=0,...

2 n] =

zn] n=iN+1l, 1=0,1,...,N—1,
0 otherwise,

, @ — 1, and take the DFT of each subsequence independently,

N-1
X(Z) [k] = Z x(z) [ZN + l]e_j27rkl/N k= 07 17 cee aN - L
=0

This is called a block discrete-time Fourier Transform or block DFT, since the signal is divided
into blocks of size N, which are then Fourier transformed. You have already encountered this
transform in class as the spectrogram.

(a)

(b)

()

Find gp,(:) [n] such that we have the reconstruction formula

Q-1N-1 ' '
zln] = > 3" XOklpl [n].
=0 k=0

Show that the sequences gol(f) [n] form an orthogonal set. These sequences are the basis

functions of the block discrete-time Fourier Transform.

Show that for N = 2, the basis functions cpl(j) [n] are scaled versions of the Haar basis
functions seen in class.

Note also that for Q = 1, N = L, the block DFT is equivalent to the DFT. Therefore,
the Haar decomposition and the DFT can be seen as special cases of a more general
transform. In the Haar decomposition, the basis functions have very short support in
time, and therefore large support in frequency. In the DFT, the basis functions have
infinite support in time and a single point of support in frequency (every DFT basis
vector represents a single frequency).

The block DFT is an instance of a wider class of transforms, called wavelet transforms.
Wavelet transforms are characterized by the projection of a signal onto a set of linearly
independent vectors; the linear independence of the vectors guarantees the invertibility of
the transform. Thus, any set of linearly independent vectors can be chosen as a basis for
a wavelet transform, the choice of the basis depending on the particular properties of the
signal that one wants to study.

Consider the filterbank shown on Figure 10. This filterbank implements the block discrete-
time Fourier Transform such that vy[n] = X [k]. Determine the filters hy;[n] and g;[n],
k=0, ..., N—1such that Z[n] = x[n], i.e., for perfect reconstruction, and justify your
results.

Note also that as opposed to the perfect reconstruction filterbank seen in class, which used
perfect lowpass and highpass filters, the filters of this filterbank have overlapping spectra.
Ideal filters are therefore not a necessary condition for a perfect reconstruction filterbank.
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Figure 10: Filterbank for Problem 4.

Problem 5 (SampLING RATE CHANGE AND ALIASING)

In this exercise, we change the sampling rate of an audio file. We do this operation twice, first
without and then with the antialiasing filters, and we compare the two outcomes.

(a)

(b)

Download the file “vista.wav” from the course webpage. Load it into Matlab and listen
to it. (Use the functions wavread and soundsc.) What is the sampling frequency of
“vista.wav”?

Now, use the functions downsample and upsample to change the sampling rate to 13230
Hz. Do the operations without using the antialiasing filter. Plot the magnitude of the
DFT of the outcome. Listen to the resulting audio sequence. Comment on the quality.

Now, use the functions downsample, upsample, firpm and conv to change the sampling
rate to 13230 Hz. For the appropriate antialiasing, use 81-point Parks-McClellan filters
with a transition band of width 0.047. Plot the magnitude of the DFT of the outcome.
Listen to the resulting audio sequence. Comment on the quality.

Compare the audio sequences obtained with and without antialiasing filters. What is the
effect of aliasing? Explain what happened in both cases, and how the result makes the
two sequences sound different.

Now, use the functions decimate and interp to repeat question (¢). What would you
expect? Can you notice a difference in the (audio) outcomes of questions (c) and (e)?



