Homework Set # 7

Problem 1 (Aliasing)

Let $x(t) = \operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$.

- (a) Write down $X_c(j\Omega)$, the continuous time Fourier transform (CTFT) of x(t), and plot it.
- (b) Now, assume that x(t) is sampled at a sampling frequency $f_s = \frac{1}{2}$. Find $\tilde{X}_c(j\Omega)$, which is defined as

$$\tilde{X}_c(j\Omega) = \sum_{k=-\infty}^{\infty} X_c(j\Omega - jk\Omega_s).$$

Plot $\tilde{X}_c(j\Omega)$.

- (c) Let x[n] be the sequence of samples. Find $X(e^{j\omega})$, the DTFT of x[n].
- (d) Now, assume that we do a sinc-interpolation of the signal, as specified in Section 10.6.3 of the course notes. Let $\hat{X}(j\Omega)$ be the CTFT of the interpolation of x[n]. Find $\hat{X}(j\Omega)$ and plot it.
- (e) Find $\hat{x}(t)$, which is the interpolation of x[n]. Is it equal to x(t)? Explain why or why not.

Problem 2

Consider the Fourier transform of the signal $x_c(t)$, given in Fig. 1.

Figure 1: $X(j\omega)$

- (a) What is the bandwith of the signal, *i.e.*, the minimum Ω_N such that $X(j\Omega) = 0$ for $|\Omega| > \Omega_N$? What is the Nyquist sampling frequency for this signal?
- (b) We sample $x_c(t)$ with sampling period $T_s = \frac{1}{12}$ sec. Draw the sampled spectrum of the signal, $X_s(j\Omega)$. Specify the value of the important points on both the axes.
- (c) Draw the spectrum of $X(e^{j\omega})$, the DTFT of the discrete signal $x[n] = x_c(\frac{n}{12})$.

- (d) Let we want to recover the signal from its sampled version $X_s(j\Omega)$. Find the corresponding filter we can use for that. Is it possible to do the exact reconstruction?
- (e) Repeat parts (b) and (d) for $T_s = \frac{1}{8}$ sec.
- (f) Define a new function in terms of $x_c(t)$ as $y_c(t) = e^{j2\pi t}x_c(t)$. Find $Y(j\Omega)$, the Fourier transform of $y_c(t)$, and draw it.
- (g) Let us sample from the new signal with sampling period $T_s = \frac{1}{10}$ sec. Draw the corresponding sampled spectrum, $Y_s(j\Omega)$.
- (h) Is there any aliasing effect in $Y_s(j\Omega)$? Is it possible to recover the original signal $x_c(t)$ from $Y_s(j\Omega)$? If yes, explain the required steps and write down the explicit formula, otherwise, prove your answer.
- (i) Recall the Nyquist sampling frequency found in (a). Is it in contradiction with the result of part (h)? Why?

Problem 3

We are considering a continuous-time signal $x_c(t)$ with corresponding continuous-time Fourier transform $X_c(j\Omega)$ given in Figure 2.

Figure 2: Continuous-time Fourier transform of $x_c(t)$ in Problem 3.

(a) Suppose that we are sampling $x_c(t)$ with period T_s , i.e. we create

$$x[n] = x_c(nT_s), \qquad n \in \mathbb{Z}.$$

According to the sampling theorem, what is the maximum sampling period T_s for which $x_c(t)$ is recoverable from $\{x[n]\}$?

- (b) Suppose $\Omega_1 = 2\pi \cdot 150$, $\Omega_2 = 2\pi \cdot 200$. Let us sample at rate $f'_s = 100$ Hz. Does this satisfy the condition given in part (a)?
- (c) Let $v[n] = x_c(nT'_s)$, $n \in \mathbb{Z}$, with $f'_s = \frac{1}{T'_s} = 100$ Hz. Sketch the spectrum of v[n].
- (d) Let $x_s(t) = \sum_n v[n]\delta(t nT'_s)$ be a continuous-time signal. Sketch the continuous-time Fourier transform $X_s(j\Omega)$ of $x_s(t)$.
- (e) Can we recover x_c(t) from v[n]? If so, clearly and explicitly demonstrate the method. If not, explain.
 Hint: Can x_c(t) be reconstructed from x_s(t) found in part (d) of problem?

Problem 4 (Interpolation)

For this exercise you need to use the MATLAB files which are in the file hw7_matlab.zip, available on the course webpage.

Zero-Order and First-Order Hold, Sinc Interpolation

The file interpol.m defines the function

f = interpol(x, t, I, Ts)

that implements the interpolation formula seen in class,

$$x(t) = \sum_{n=-\infty}^{\infty} x[n] I\left(\frac{t-nT_s}{T_s}\right).$$

The function interpol has the following arguments:

- **x** A vector containing the finite-length signal x[n].
- t A vector of time instances on which the interpolated signal x(t) will be evaluated. The return value **f** will be a vector of the same size as **t**. Of course **t** can also be just a scalar.
- I A handle to the interpolation function I(t) (look again at Homework 6 if you don't remember what a function handle is). I must be a handle to a function of the form f = I(t) where t is a vector containing the time instants on which the function I(t) is to be evaluated.

Ts The sampling period T_s .

(a) Write two functions Izero and Ifirst that implement, respectively, a zero-order hold and a first-order hold interpolator. Create the signal x[n], $n = 0, \ldots, 9$ by sampling the continuous time-signal $x_c(t) = \sin(2\pi ft)$ for f = 440 Hz and $T_s = 1$ ms:

>> Ts = 1/1000; >> f = 440; >> n = 0:9; >> x = sin(2*pi*f*n*Ts);

Use interpol along with Izero and Ifirst to create a stem-plot of x[n], superimposed with the zero-order hold and first-order hold interpolation. For your plot, use a timescale of t = 0:Ts/100:9*Ts i.e., the plot will show 100 interpolated points for each sample. To create the interpolated signals, write

```
>> xzero = interpol(x, t, @Izero, Ts);
>> xfirst = interpol(x, t, @Ifirst, Ts);
```

Hint: The easiest way to implement a function of the form

$$f(t) = \begin{cases} a & \text{if } t > c \\ b & \text{if } t \le c \end{cases}$$

is using the following code:

f = zeros(size(t));
f(t > c) = a;
f(t <= c) = b;</pre>

This should make it easy to implement the interpolators.

(b) On the same figure, plot the interpolation using $I(t) = \operatorname{sinc}(t)$.

Lagrange Interpolation

The file interpol_lag.m defines the function

f = interpol_lag(x, t, Ts)

that implements Lagrange interpolation (see Equation 10.33 of the course notes). The parameters \mathbf{x} , \mathbf{t} , and \mathbf{Ts} have the same meaning as in interpol, except that \mathbf{x} must be a vector of length 2N + 1, representing x[n] with $n = -N, \ldots, N$.

(c) Write the function

```
f = lagrange(t, k, N, Ts),
```

used by interpol_lag, which implements the Lagrange polynomial formula seen in class,

$$L_{n}^{(N)}(t) = \prod_{\substack{k=-N\\k\neq n}}^{N} \frac{t/T_{s} - k}{n - k}, \quad n = -N, \dots, N$$

(d) Create the signal x as in (a), but with n = -4, ..., 4. Plot on the same figure a stem plot of x[n] and its interpolation using Langrange polynomials. To compute the interpolation, write

(e) Plot the superposition of $\operatorname{sinc}(t/T_s)$ and $L_0^{(N)}$ for $T_s = 10$ ms and for N = 1, 5, and 10 to verify that $L_0^{(N)}(t)$ indeed approaches $\operatorname{sinc}(t/T_s)$ as N becomes large.

For this exercise you need to hand in a printout of all your plots and of all your MATLAB code.