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Chapter 8, The Z-Transform: Problem Solutions

Problem 1

(a) Yes, it can be BIBO stable. For stability, the unit circle has to lie in the ROC, i.e.,
Tmin < 1 < Tmax-

~"x[n] is linear, because if z[n] = axi[n| 4+ bxs[n|, then

(b) The system y[n| = «
v[n] = a " (ax1[n] + bxs[n]) = aa™ "z1[n] + ba” "xs[n].

However, the system is not time-invariant, because if we define Z[n| = z[n — ng), then

O[n] = a™"Z[n] = o "x[n — ng] # v[n — ng.

(c) Since the overall system is the interconnection of 3 linear systems, it is also linear (by
the linearity of the convolution). To find out whether it is time-invariant, we derive the
impulse response:

—n

vln] = a "zn]
wln] = (o "zn])  hin]
yln] = o ((a "z[n]) = h[n))

= a" ( Z o *z[k]hn — k:])

k=—o0

= Y a"Fafk]hn — k]

k=—00

= z[n]* (a"h[n]).

Hence, we see that the overall impulse response is ah[n]. Now, we see that the overall
system is actuall time-invariant, because if Z[n] = z[n — ng), then

]« (a"hn]) = Y i[n— kloFh[k]
k=—o00
= i z[n — k — nola®hk]
k=—o00
= Z z[(n — ng) — k]aFh[k]
k=—o00

= (xx(a'h))[n —ngl.

(d) If H(z) has a ROC that is the ring ryin < |2| < Tmax, then we know that H(z) has at
least one pole piow,1 With absolute value |piow,1| = Tmin, at least one pole pyigh 1 such that

1



|Phigh,1| = Tmax, and that there are no poles with absolute value in (7min, "min). Hence,
we can write

Nlow Nhigh
hin] = Z (Plow,i)"uln] + Z (Phigh,k)"u[—n — 1] 4 additional terms,
i=1 k=1
where we assumed that there are Nioy, poles piow,; With |piow,i| = Tmin (lying on the

smaller circle) and that there are Npign poles phigh x With [Phigh k| = Tmax (lying on the
larger circle). The additional terms indicated correspond to poles that are located away
from the ROC.

Now,
Nlow Nhigh
a"h[n] = Z (Prow,i0)"u[n] + Z (Phigh, k) "u[—n — 1] + o*additional terms,
i=1 k=1

and one can see that the ROC will now be ring |a|rmin < |2| < |@|rmax. Hence, the
system is stable if |a|rpmin < 1 < |o|rmax-

Problem 2

[DFT AND Z-TRANSFORM]

N-1 N-1f g Nl L
X(z) = z[n]z7" = [— X[k:]e]‘”"N] z "
n=0 n=0 N k=0
= N-1 ,
= — Z X [k] el N 2T ]
N k=0 n=0
N-1 N
- =Y xH—
N o 1 —elWwN -1

Problem 3

[MIMIMUM PHASE SYSTEM]

(a-1) Since |c¢| > 1, the transfer function has a zero outside the unit circle and it is not a
minimum phase system. In order to make it minimum phase we add a zero at z = 1/c*
instead of z = ¢ and then compensate it in the all-pass filter:

1—cz!
H(z) = 1—dz1
B 2l -t 11—zt
1 —dzt ozl — e
B 27l —e* (C) z_l—%
- _ d.—1 ’ ¥ 1\ % _
1—dz c*/ 1= (E) z—1
|Z| = 1/|C*| <1 causal all-pass filter
lp| =1|d| <1



So we have

-1 *

27 —c

Hinin () 1—dz1
and 1_1 1

c  z = 1—rcz

H = £ =

ap(2) 11— (%)* O
By plug in €’ we have

Hap() = L —ce™™ 1 —|cleifeiv

oW _ x| e—iw _ |c|e=®

The group-delay is the negative derivation of the phase. The phase of the transfer
function can be computed as the following:

) 1— ’c’ewe iw
arg Hop(e™) = arg <W

1= \c\ewe_i”>

= arg <€ZUJW
= arg[e™] +arg [1 — ]c]ewe_’w} —arg [1 — ]c[e_i‘gei“)]
= w+arg [(1 — |¢| cos(w — ) +i(|c| sin(w — 0))]

—arg [(1 — le|cos(w — ) + i(—|c| sin(w — 9))}

— wttan? c[sin(w—-0) tan— —|e| sin(w — 0)
B 1 —|c| cos(w — 0) 1 —|c| cos(w — 0)
in(w — 0)
_ 5 tan 1 |e| sin(w
W stan 1 —|c| cos(w — 0)
Note that % tan~la = H% Therefore
w d iw
grdHgp(e™) = o arg Hgp(e™)
d d 1 le|sin(w —0)
= 2w Zotan !
dw’ T dw 1o |e| cos(w — )
1 — |e|cos(w — 0))? —le|* + |c| cos(w — 6
= —1-2

(1 —|c|cos(w —0))% + (Je|sin(w — 0))2 (1 — |c|cos(w — 0))?
B —le|? + |c| cos(w — )

14 |c|? — 2|c| cos(w — 0)
o2 = 1

= >0
1+ |c|? = 2|c| cos(w — 0)

where the inequality follows from |¢| > 1 and holds for any w.
(a-ii) Since the group delay of any all-pass system is positive, we have

grd [H(z)] = grd[Hmin(2)] + grd [Hep(2)]
> grd [Huin(2)]

which proves that the minimum phase system has the minimum group-delay among all
the systems with the same frequency response.



(b-i) From the causality of the systems, we have hyin[n] = hn] = 0 for n < 0. Using the
Parseval’s theorem we can write

> 1 T iw
Z ‘hmim[n”2 = o | Hynin(e )]2dw
@ 1 [7

- H w2
57 | ()P

= > |hn)P
n=0

where (a) follows form |H(z)| = |Hpin(2)|.
(b-ii) By the definition of H(z), it should be of the form
1
H(z) = Q)1 ~ =)

where the constant ¢ should be determined such that |H(2)| = |Hmin(2)|, which yields
lc| = |a|. Therefore H(z) = |a|Q(c)(1 — Xz71)

(b-iii)
Hpin(z) = Q(2)(1 —az™h)
— hmin[n] = (][TL] * ((5[’11] - a5[n - 1])
= q[n] — agln — 1]
and
Hiz) = [a|Q(z)(1——==27")
= hmin[n] = ¢q[n]* <|a|5[ ] |O%|5[ —1])
— Jolgln) ~ % gfn 1]
(b-iv) We can write
Dm - Z mln Z ‘h
n=0
= Z]q[n]—aqn—l ZHOé’q ——‘q[n—lﬂ
n=0

= > [lalnP +lallgln — 1 — 2R{aqg(n — Lg[n]}]

n=0
m OZ2 2
=3 [laPlatal? + |'a*'|2|q[n— 12 - 22 g — 1]qm)
n=0
= > [lalnll?* = lgln — 1P] = |of? Z [g[n][* — lq[n — 1]?]
n=0

(@) ®)
= (L~ la?Dlg[m]* > 0

where (a) and (b) follows from the causality of ¢[n] and the fact || < 1, respectively.
(b-v) We have seen in part (b-iv) that Y7 o [hmin[n]|*> > Y1t [[n]|?. This means although
hmin[n] and h[n] have the same total energy, the energy of hy,in[n] will be appear earlier

than the energy of h[n] and the minimum phase system has the minimum energy-delay
among all the systems with the same magnitude response.



Problem 4

1. Let H(z) = ¥,h[n|z~™. We have that

d d .
EH(Z) = (Sphln]z™")
= %, (—n)h[n)z"!

= — 27 '8, nh[n)z™"
and the relation follows directly.

2. We have that

n z L
auln] < "
Using (a) we find
no™ufn] Z d 1 az™!
— —z— = .
o e \1- a1 (1 —az71)2
Thus,
-1
n+1 Z az
(n+ 1) uln + 1] Z(l =
and 1
n Z
(n+ 1)a"uln + 1] 0o

The relation follows by noticing that
(n+1)a"uln+ 1] = (n + 1)a"u[n]
since when n = —1 both sides are equal to zero.

3. The system is causal since the ROC corresponds to the outside of a circle of radius «
(or equivalently since the impulse response is zero when n < 0). The system is stable
when the unit circle lies inside the ROC, i.e. when |a| < 1.

4. When « = 0.8, the angular frequency of the pole is w = 0. Thus the filter is lowpass.
When o = —0.8, w = 7 and the filter is highpass.

Problem 5

1. The transfer function of the system is given by:

Y (2)(1—3.252"1 +0.75272) = X(2)(z7 + 3272)
Y (2) 27143272 27 H1+ 3271 z+3

H(z) =
Since the system is causal, the convergence region is |z| > 3. We can see that there is
the pole z = 3 that is out of the unit circle and therefore the system is unstable (Figure

1).

>> zplane ([0 1 3], [1 -3.25 0.751)

X(z) 1-32521+07522 (1—-02521)(1—-321) (2—025)(z—3)



Imaginary Part
I

Figure 1: Pole zero plot.

2. Z-transform of the output signal is:

27 N1+ 3271

271 43272
1-3271h=
102Dz~ %)

Y(2) = H(2)X(z) = = {001

From Y (z) we can see that the unstable pole z = 3 is canceled and only the pole z = 0.25
of Y(z) is left. Since the system is causal, even from the unstable system we can get the
stable output if the unstable pole is canceled by the input signal.

3. > x=[1 -3 2 -1 zeros(1,25)];
>> y=filter( [0 1 3], [1 -3.25 0.5], x);
subplot(211), stem(x), title (’input signal x[n]’) subplot(212),
stem(y), title(’output signal y[n]’)
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Figure 2: Solution 4 (c).

On Figure 2 we can see that the unstable pole is not canceled and the output signal is
therefore Y'(z) is unstable function.

Problem 6

1. We have clearly:

X(z) = Z hn)z=" + g[n]z~n+D)

n=—0oo

= H()+27G(z)



2. The ROC is determined by the zeros of the transform. Since the sequence is two sided,
the ROC is a ring bounded by two poles z1, and zg such that |z1| < |zr| and no other
pole has magnitude between |z | and |zr|. Consider H(z); if zg is a pole of H(z), H(z?)
will have two poles at +2/2; however, the square root preserves the monotonicity of the
magnitude and therefore no new poles will appear between the circles |z| = M and
|z| = \/|zr|. Therefore the ROC for H(z?) is the ring |z1| < |2| < |zg|. The ROC of
the sum H(z?) + 27 'G(2?) is the intersection of the ROCs, and so

ROC =08 < |z| < 2.



