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THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL
WISHART MATRIX

By JACK W. SILVERSTEIN!

Weizmann Institute of Science

For positive integers s,n let M, = (1/5)V,VY, where V, is an n X s
matrix composed of ii.d. N(0,1) random variables. Assume n = n(s) and
n/s =y € (0,1) as s = oco. Then it is shown that the smallest eigenvalue of
M, converges almost surely to (1 — ‘/; )2 as s — oo.

For each s = 1,2... let n = n(s) be a positive integer such that n/s -y > 0
as s = oo. Let V, be an n X s matrix whose entries are i.i.d. N(0,1) random
variables and let M, = (1/5)V,V.F. The random matrix V,V,' is commonly re-
ferred to as the Wishart matrix W(Z,, s).

It is well known [Maréenko and Pastur (1967), Wachter (1978)] that the
empirical distribution function F, of the eigenvalues of M, [F(x)= (1/n) X
(number of eigenvalues of M, < x)] converges almost surely as s = oo to a
nonrandom probability distribution function F, having a density with positive
support on [(1 — y/y)% (1 + y/¥)?], and when y > 1, F,, yields additional mass on
{0}. It is also known [Geman (1980)] that the maximum eigenvalue AS),, of M,
converges a.s. to (1 + ‘/5 )2 as s = 0. [The statement of this result in Geman
(1980) has all the M, constructed from one doubly infinite array of i.i.d. random
variables. However, it is obvious from the proof that no relation on the entries of
V, for different s is needed.] These results are established under assumptions
more general on the entries of V, than Gaussian distributed, involving conditions
on the moments of these random variables.

The present paper will prove the following

THEOREM. For y <1 the smallest eigenvalue N3, of M, converges a.s. to
(1—-y)?ass— oo.

The proof relies on Ger§gorin’s theorem [GerSgorin (1931)] which states: Each
eigenvalue of an n X n complex matrix A = (a;;) lies in at least one of the disks

lz—ay<Yle,l Jj=12,...,n,
i)
in the complex plane.
GerSgorin’s theorem will be applied to a tridiagonal matrix orthogonally
similar to M. This result is relevant to areas in multivariate statistics, for
example regression or tests using the central multivariate F matrix, where the
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boundedness of the largest eigenvalue of M, !, namely [A,;.(s)] ', is needed. The
truth of the theorem for non-Wishart matrices would also be important. How-
ever, as will be seen, the proof relies strongly on the variables being normal, so a
different method appears to be necessary for more general sample covariance
matrices.

PrOOF OoF THE THEOREM. Since F, has positive support to the right of
(1 — /y)? we immediately have

(1) limsupA$), < (1 — ‘/5)2 a.s.
S§— 00

Assume s is sufficiently large so that n < s. Let O} be s X s orthogonal, its
first column being the normalization of the first row of V,, the remaining columns
independent of the rest of V,. The columns of O} can be constructed, for example,
by performing the Gram—Schmidt orthonormalization process to the first row of
V., together with s — 1 linearly independent nonrandom s-dimensional vectors.
We have that V! = V,0! is such that its first row is (X, 0,0,...,0), where X2 is
x%(s), X, = 0, and the remaining rows are again made up of i.i.d. N(0, 1) random
variables. (It will also follow that X_ is independent of the remaining elements of
V! but this fact will not be needed.)

Let O} be n X n orthogonal of the form

10 --- 0

0

oL |
0

where O, _, is orthogonal, its first row being the normalization of {(V,');,}7, (as

a vector in R™~'), the rest independent of V. Then V.2 = O!V! is of the form

X, 0 0
Yn—l
0 )
0

where Y? | is x*(n - 1), Y, ;> 0and W,_, , , is(n — 1) X (s — 1), made up of
i.i.d. N(0,1) random variables.
We then multiply V.2 on the right by an s X s orthogonal matrix O2 of the

form
1 0 0 e 0
0
0
Os2—1
0

where the first column of O?_, is the normalization of the first row of W, _, .,
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and then multiply V20?2 on the left by an appropriate n X n orthogonal matrix,
and so on. In the end we will have the existence of two orthogonal matrices
O, and O, such that

X, 0 0 0 0
Y, X, 0 0 ) 0
O Y;l—2 Xs—2 O O
0,VQO, = 0 0 : E
0 0 0 0O --- 0 Y Xs_(n_l) o -+ 0

where X? is x%(i), X; > 0, and Y? is x*(/), Y; > 0. The fact that these random
variables are independent will not be needed.

It follows that M is orthogonally similar to a tridiagonal matrix, the first and
last rows being, respectively,

(1/s)(Xx2, X,Y,_,,0,...,0),
(1/8)(070’ o ’O’ Xs—n+2Y1r Y12 + XsQ—n+1)’
while the three nonzero elements in the j + 1st row (j = 1,2,...,n — 2) are
(l/s)(Xs—j+1Yn—jr Yn2—j + Xs2—jr Xs—an—j—l)’
By GerS§gorin’s theorem we have that

A(:))in = min[(l/s)(st - ){syvn—l)’(]‘/s)(yvl2 + st—n+1 - Xs—n+2yvl)’

(2)
jin’ff_lz(l/s)(y,f_j + st—j _(Xs—j+1Yn—j + Xs—an—j—l))]~

We have x%(1)/m — ,.0 and x*(m)/m — ,.1 as m - 0. Since s/n >y €
(0,1) as s = oo we have

(1/8)(Xs2 - Xs},n—l) - a.s.l - ‘/3;’
(1/8)(Y12 + Xs2—n+1 - Xs—n+2Y1) - a.s.l - y as § = oo.
Notice1 —y >1—y > (1 —y)%

Applying Markov’s inequality to P(exp(¢x2(m) — tm) > exp(tse)) and
P(exp(—tx%(m) + tm) > exp(tse)) for sufficiently small ¢ > 0, it is straightfor-
ward to show for any & > 0 the existence of an a € (0,1) depending only on ¢
such that

P(|(x*(m)/s) = (m/s)| > ¢) < 2a°
for all s > 0 and all positive integers m < s.
Therefore we can apply Boole’s inequality on 2n — 2 (< constant - s) events
to conclude that for any ¢ > 0
P( max  |(X2/s) —m/s|>eor max |(Y,2/s)— m/s|> e)
<n-1

s—(n—2)<m<s m<
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is summable. Therefore

max[ max  |(X2/s) — m/s|, max |(Y2/s) - m/s|] -,.0 ass— .
m<n-—1

s—(n—2)<m<s

We have
A3 =|(1/s) (B2, + X2, — (XY + X, Y, )
~((n=i)/s+(s=i)/s =([(s =i+ 1) /s [(n—j)/s
+(s =7)/s(n =i =1)/s))|

<|(%2,/5) —(n =) /s| +|(X2,/5) — (s = j)/s|

+|[( Xy V5 ) (Y Vs ) = (s =7+ 1) /s [(n =) /5|

+|( Xy V5 ) (Yo /Vs) = (s = 1) /5 [(n =T = 1) /5.

Using the inequality |ab — ab| < |a2 — a?|'/2|b% — b%|'/% + |a||b® — b%|V% +

|b]|a? — a?|'/? for a, b, a, b nonnegative, together with the fact that the nonran-
dom fractions making up A; are bounded by 1, we conclude that

max A} -, .0 ass— oo.
Jj<n—2

The expression
(n=7)/s+(s=j)/s —=([(s—j+1)/s(n—J)/s
+{(s = ))/s [(n—j—-1)/s)
~ achieves its smallest value when j = 1, for which we get

(n—-1)/s+(s—1)/s —(\/(n —1)/s + (s —1)/s{(n - 2)/3)
—>y+1—2‘/§=(1—\/§)2 as s — 0.

Therefore, from (2) we have

liminfAS), > (1 - /y)* as.

§—> 0

which, together with (1) gives us
lim Ag, = (1 - ‘/;)2 a.s. m]

§— 00

We note that the above proof can easily be modified to show A3, — (1 + Vy)?
for all y > 0.
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