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Abstract—In this paper, we review some potential applications only the determinant of{1) wheN = L has a nice expression

of random Vandermonde matrices in the field of signal procesag 1 . ‘

and wireless communications. Using asymptotic results bad on I H (e—wz — e—M) .

the theory of random Vandermonde matrices, we show through NN/2 L<h<I<N

several application examples, namely deconvolution, witess - . . . .
capacity analysis and sampling theory, the research poteiat The result however is of little use in signal processing

of this theory. Quite surprisingly, in nearly all the cases,the and wireless communications for example. One way of cir-
asymptotic results turn out to be valid for dimensions which cumventing this problem was proposed by Ryan et[al. [7]
are of intere;t for the community. The simulations confirm that wherews,....o;, are modeled as independent and identically
random matrix theory/free probability theory are once more a distributed (oh taki | 9 in thi
unique tool to better understand the behavior of the eigenviaes istributed (phases) taking values @m 7). In this case,
of matrices. the random phases enable to predict neat expressions of
the asymptotic (in the sense wheré — oo, L — oo
and % — ¢) moments of the Gram matrix associated to
the Vandermonde matrix as well as more advanced models
where products of the Vandermonde matrix with deterministi
matrices are concerned. Remarkably, the results showtbat t
Vandermonde matrices have had for a long time a centigbments depend only on the ratioand the distribution of
position in signal processing due to their connections withe entries of the phases and have explicit expressions. The
other important matrices in the field such as the FET [1] @glf-averaging properties of these matrices provide fhezea
Hadamard|[[2] transforms to name a few. The matrices haygat tool to determine the parameters of interest in a pnoble
various applications in different fields|[3].1[4]./[5]./[6The where Vandermonde matrices are put forward. These results
applied research has been somewhat tempered by the fact #iat reminiscent of similar results concerning i.i.d random
very few theoretical results were available. For examphi] U matrices [9] which have shed light in the design of many
the recent results in [[7], only results on the determinantgportant wireless communication problems such as CDMA
and the moments of the determinant of Vandermonde matric[gg]’ MIMO [LI] or OFDM [12]. Building on the results

were known [[8]. For a given deterministic Vandermondgs [7], this paper provides some useful applications shgwin

Index Terms—Vandermonde matrices, Random Matrices, de-
convolution, limiting eigenvalue distribution, MIMO.

I. INTRODUCTION

matrix V' of dimensionV x L defined by: the implications of these results in various applied fields.
1 e 1 section]], we show how Vandermonde matrices can be used
1 e—dw s edwr to perform deconvolution and extend therefore the resuits o
V=—1. ] ) (1) [13] restricted to the Gaussian case. The main examples are
VN | . I geared towards wireless systems, and include estimation of
—J(N=1)w; —Jj(N-1wr

e e

the number of paths, detection of the transmissions powfers o
_ o _ , the users, detection of the number of sources, and wavélengt
This project is partially sponsored by the project BIONEWRIA).

This work was supported by Alcatel-Lucent within the Alddtacent Chair eStimation; In SeCtiOUI_I' the asy_mptotic r.esu“S gre UKE_d
on flexible radio at SUPELEC perform wireless capacity analysis. Capacity of line othsig
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of multi-user MIMO systems and multifold scattering are thi
main examples which have not been dealt with in the liteeatu
before or up to some very coarse approximations [14]. Rinall
section[IV provides an important feature of the applicatio
of Vandermonde matrices to the very active field of spars
signal reconstruction. Interestingly, one can provide a-ge ]
eral framework where only the sampling distribution matter
asymptotically. The first example concerns the computaifon
the MMSE (Minimum Mean Square Error) whereas the secor
example focuses on the estimation of the sampling distabut
All the sections are illustrated by extensive simulatiortgolr  os|- E
discuss the validity of the asymptotic claims in the finite
regime.

In the following, upper (lower boldface) symbols will be
used for matrices (column vectors) whereas lower symbdls w
represent scalar valueg,)” will denote transpose operator
(.)* conjugation and.) = ((.)7)" hermitian transposeL.,
will represent then x n identity matrix. We lettr,, be the
normalized trace for matrices of orderx n, and7'r the non-
normalized traceV will be used only to denote Vandermonde
matrices with a given phase distribution. The dimensiorthef
Vandermonde matrices will always € x L unless otherwise 4 i
stated, and the phase distribution of the Vandermonde caatri
will always be denoted by. 08 )

1 ol L L L L I I

Fig. 1. The density., (z) used in this papery = 7 and A = 10d.

1

0.7 4

Il. DECONVOLUTION
0.6 —

A. Detection of the number of sources

0.5 7

Let us consider a receiver witN antennas and mobiles
(each with a single antenna) in the cell. The received signo. 7

at the base station is given by
0.3 q

r; :VP%51—|—HZ (2)

0.2 q
Here,r;,s;, n; are respectively thé&v x 1 received vector, the
L x 1 transmit vector by thd. users and théV x 1 additive
noise. In the case of a line of sight between the users and 1 0 ————— : . ] ]
base station (and considering a Uniform Linear Array), iratr
V has the following form:

Fig. 2. Histogram of the mean eigenvalue distribution6df) samples of

1 o1 VHV, with V a 1600 x 1600 Vandermonde matrix with phase distribution
1 €7j27'r% sin(61) . eijﬂ’% sin(0r,) Po-
V=
VN L
e—i2n(N=1)¢sin(01) ... o—j2nssin(0r) high concentration of the eigenvalues near the origin, dsal a

@) @ higher proportion of larger eigenvalues, when compared to

Here,; is the angle of the user in the cell and is supposed e uniform phase qlistribution. Thi_s can be seen from fighire 2
be uniformly distributed ovef—a, a]. P is anL x 1 power where the mean eigenvalue d|§tr|bqtlonﬁmf0 sa_mp_les .of a
matrix due to the different distances from which the useris.emt600 x 1600 Vandermonde matrix with phase distributipn

In other words, we assume that the phase distribution has Y @ = 7, d =1, and A = 10d is shown. A corresponding
form 274 sin() with 6 uniformly distributed on[—a, o]. It eigenvalue histogram for uniform phase distribution can be

is easily seen, by taking inverse functions, that the densjt found in [7]. Throughout the paper we will assume, as in

when 2dsine o 1 figure['_il,.thatq =45,d= .1, and\ = 104 when modgl[f(B) is
used. With this assumpuoﬁ,dj‘ﬂ < 1 is always fulfilled.
polz) = v The goal is to detect the number of sourdesand their
Qeuy [ Am2d2 2 respective power based on the sample covariance matrix

2
A supposing that we hav& observations, of the same order

on [—2rdsina 2mdsina - and () elsewhere. This density isasN. When the number of observation is quite higher than
shown in figurd1l. The effect of a high concentration for thignd the noise variance is known), classical subspace m&tho
density near the origin is that the Vandermonde matrix haqEb] provide tools to detect the number of sources. Indestd, |
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R be the true covariance matrix i.e given by [3). Both the number of sources and the powers are
" 9 estimated. For the phase distributién (3), the integfaland
R =VPV" +71 I3 can be computed exactly (for general phase distributions
The matrixR hasN — L eigenvalues equal 8> and L eigen- they are computed numerically), and arel[17]
values strictly superior t@2. One can therefore determine

the number of source by counting the number of eigenvalues I, = A In (1 + Sino‘)
different fromo2. However, in practice, one has only access 4da? 1—sina
to the sample covariance matrix given by 7 A2 tan o
. 1 2T 4d2ad
R=—-YY",
. K Under the assumptions = 7 and A = 10d used throughout
with this paper, the integrals above take the values
Y = [r1,..1x] = VPZ[sy, ...
[r1,..rx] = VP2[sq, ..., sk] + [n1, ,AnK] 10 .
If one simply has the sample covariance mafitx (@) has Iy = ﬁln 22
three independent parts which must be dealt with in order to
get an estimate oP: the Gaussian matrice$ = [sq, ..., Sx]| I; = igo
andN = [ny, ..., ng]|, and the Vandermonde pavt. It should m

thus be possible to combine Gaussian deconvolution [16] an
Vandermonde deconvolutiohl[7] by performing the followinq
steps:

dFor estimation of the powers, knowing that we have only

hree sets of powers with equal probability, it suffices to

) . L . estimate the three lowest moments in order to get an estimate

1) Estimate the moments of VP2SS"P2V' using of the powers (which are the three distinct eigenvalueB pf
multiplicative free convolution as described in [13]. Thisrherefore, in the following simulations, propositibh 1 iesfi

is the denaising part. . _ _ ~ used to get an estimate of the moment$ofThen these are
2) Estimate the moments V™V, again using multi- yseq to obtain an estimate of the three distinct eigenvaities
plicative free deconvolution. P using the Newton-Girard formulas [18]. These should then

3) Estimate the moments & using Vandermonde decon-jie ¢lose to the three powers #.

_ volution as described i [7] _ ) For the model[(B), it turns out that power estimation does
Putting these steps together, we will prove the following: ot work particularly well. The result is shown in the first

Proposition 1: Define plot of figure[B. In the plottK = L = N = 576,
2 and ¢ = 1/0.1. Even though the matrices are quite large,
I, = (2m)" ! / po(z)"dz, (4) the estimated powers are quite far from the actual powers.
‘ ‘ 0 . Actually, the estimation process is so far off that it congsut
and letmj = tr (P') be the moments oP, andm}, = eigenvalues which are complex conjugate pairs insteadeof th
trN(f{i) the moments of the sample covariance matrix. Thdrue, real ones((5,1,1.5) (this is an explanation for that
the equations the two lowest eigenvalues in the plot seem to coincide,

since it is only the absolute values of the eigenvalues which

mL = CQm}:) + o2 : : ; ;
R are plotted). Increasing the matrix sizes further resufts i
m% = comp + (32 + cacs)(mp)? estimates which are closer to the true powers, but one would

+202(ca + c3)mb 4+ o*(1 + ¢1) need matrices of size larger thQﬂOO x 2000 to get mgch .
mS = comd + (32L5 + Bescs)mbm? closer to the true powers. As will be. seen, power estlma'uon
R e 272 258/ p10P works much better for the phase distribution model in the
+ (313 + 3c5e3 s + cac3) (mp)? next section. A tentative explanation for this is the diéiece
+30%(1 + ¢1)cam? between the corresponding eigenvalue histograms of tmase t
1302((1 + 1)c2 I + e3(cs + 2¢2)) (mb)? Vandermonde matrices, which are shown in figdre 2 for model

(3), and in figure 4 of([7] for the model of the next section.
6/ o For estimation of the number of usets we assume that
+oo(er + 3 +1) the power distribution of is known, but notL itself. Since

provide an asymptotically unbiased estimator for the md-< is unknown, in the simulations we enter different candidate
ments m}, from the moments ofmi, (or vice versa) values of it into the following procedure:

+30%(c? + 3c1 + 1)eamb

when limy .o % = c1, limy_.oc £ = ¢, and where 1) Computing the moments?, = try, (P?) of P.

IImpy oo % = c3. 2) The momentstr;,(P?) are fed into the formulas of
The proof of this can be found in appendiX A. Note that proposition[1, and we thus obtain candidate moments

the statement applies to anmy with continous density[]7], m; of the sample covariance matri.

not only the densities we restrict to here. In the simulatjon 3) Compute the sum of the square errors between the

propositio 1 is put to the test wh&hhas three sets of powers, candidate moments of the sample covariance matrix,

0.5, 1, and 1.5 (with equal probability), with phase disttibn and the moments of the observed sample covariance



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANARY 2008 4

. B 3 A 12 T
matrices, i.e. comput®_;_, |m; —m;|°, where 70f o EsimaeofL
Actual value of L
N ~
m; = - ZtrN (RJ) , 601 J
J=1
N i . 50 R
whereR; are the observed sample covariance matrice °
A more natural thing to do would perhaps be to compu w ©% ° o 00004 . |
a weighted sum of the square errors instead, i.e. compi _, o ® 00, qee oo o O%Oooooo ooo G
Zf’zl w;|m; —m;|? for some choice of weights;. This L o @ ®P° o ° o @ 9
strategy was used in [13] for Gaussian deconvolutio o o

where it was argued that th@atalan numberg§l19] are
a good choice of weights. The argument was basi “[,
on the fact that the limit oftry (%XXH)’C as
N — oo is the k’'th Catalan number[[20], wher&
is an N x N standard Gaussian matrix. We will not ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
perform weighting of the sum of square errors in thi °¢ 2 2 0 4 s 6 70 8 e 100
paper, since the sum of square errors is computed up to

three moments only. For higher moments, the weightina @ K=1
would be much more crucial (the Catalan numbers gra  +f "o Estmateofl
very fast in size). Actual value of L
The estimatel, for the number of users is chosen as the or eor 8
which gives the minimum value for the sum of square erro
after these steps. sof .
In figure [3, we have setr = 0.1, N = 100, and
L = 36. P has three sets of powers, 0.5, 1, and 1.5 (wit ° 1
equal probability). We tried the procedure described alfove - |<= é)oom@o < o -
1 all the way up to100 observations. It is seen that only a s ,
small number of observations are needed in order to get
accurarate estimate df. When K = 1, it is seen that more ;| i
observations are needed to get an accurate estimdtevdien
compared toX = 10. 0l |
B. Estimation of the number of paths T M N ey
In many channel modeling applications, one needs to deter- N(me)b:fo_bselzam

mine the number of paths of the channel [21]. For this purpose

consider a multi-path channel of the form: Fig. 3. Estimate for the number of users. Actual valuelofs 36. Also,
o =+/0.1, N = 100.

L
h(r) = Zaig(T — 1)

Here, o; are i.d Gaussian random variables with power ] ]

and ; are uniformly distributed delays ovée, 7). g is the Ve Will here setV’ = 7" =1, which means that the; of (1)
low pass transmit filter. In the frequency domain, the chanr@® uniformly distributed ovej0, 2z]. Our model becomes
is given by:

L
o(f) =D _aG(f)eIm
=1

) a ni
For simplicity, we suppose the transmit filter to be ideal and r=Vpz [ + , (6)
thereforeG(f) = 1. Sampling the continuous frequency signal ar, ny
at f; = z% whereW is the bandwidth, the model becomes
1 o1
e—i2m P pT R

wherelL is the number of pathgy is the number of frequency

: : samplesP is the unknownl x L diagonal power matrix, and

e—2m(N-1) I eijTr(Nfl)% n; is independent, additive, white, zero mean Gaussian noise
(5) of varianceﬁ. We takeK observations of {6) and form the

2=
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observation matrix 7of "o el
Actual value of L
Y = [1‘1 e 'I‘K]
a§1> agK) ool il
= VP2 , .
a(Ll) ce OL%/K) (7) 5 R ) B ]
o af® ¥ %0 %0 5 50.°00 © pw o8 Do, 0 y
+ | : U , R °7F 009 O, o o ®° °
2O ) s 1
N N o
which is the same model aEl(2), the only difference beir | 7
that the phase distribution of the Vandermonde matrix now
uniform. In this case, we can do even better than propogltion °f 7
in that one can write down estimators for the moments whic
0 ‘ ‘ ‘ ‘

are unbiased for any number of observations and frequer o5 % ® & 0 8 w5 100

Samp|eS: Number of observations
Proposition 2: Assume thatV has uniformly distributed @K=1
phases, and let}, be the moments dP, andm’, = try(R’) . ‘ :
the moments of the sample covariance matrix. Define al 0 Rtk ol
_ N _ L _ L
c1= 7, C2 = %, andcg = . Then ol |
E [mR] = CQm}:) + 02
1 50 B
E [m%] = cy (1 — N) m%b + ca(ca + c3)(mp)?
_|_20,2(62 +03)m}3 +0,4(1 +Cl) _,407 OO 0.0 ° ]
1 32 0d” ° °
E [m%] = C2 (1 + ﬁ) <1 — N —|— m) mz)jg 306O B
+({1-— i 363 1+ L + 3cacs m}gm% 20y 1
N K2
1 | i
(14 ) H3darad) w0
5 Clc% 1 5 o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(b) K =10

c1cs
+30? (ﬁ +c3+c3+ 3cz03) (mb)?

Fig. 4. Estimate for the number of paths. Actual valuelofs 36. Also,

4 ) 1 L o =+0.1, N = 100.
+30 (cl +3c1 +1+ F) comp

figure[® shows the results which confirms the usefulness of the
approach. We see that even for smaller matrix sizes than the
Haodel of the previous section, the estimates are much closer

+0° (cf +3c +1+ %)

Just as propositionl 1, this is proved in apperidix A. In t
following, this result is used in order to determine the nemb!© the true powers.
of paths as well as the power of each path. The different o
convergence rates of the approximations are clearly seenGn Estimation of wavelength
the plots. In the field of MIMO cognitive sensing [22], [23], terminals

In figure[4, the number of paths is estimated based on timist decide on the band on which to transmit and in particular
procedure sketched above. We haveset /0.1, N = 100, sense which band is occupied. One way of doing is to find
and L = 36. The procedure is tried for all the way up to the wavelength\ in (3), based on some realizations of the
100 observations. The plot is very similar to figurke 3, in thatample covariance matrix. In our simulation, we have set
only a small number of observations are needed in orderdo= 1 and A = 10, K = 10, L = 36, N = 100, and
get an accurate estimate 6f When K = 1, it is seen that ¢ = 1/0.1. We have tried the valuek 2, ..., 100 as candidate
more observations are needed to get an accurate estimatev@felengths, and chosen the one which gives the smallest
L, when compared td{ = 10. deviation (in the same sense as above, i.e. the sum of the

For the estimation of powers simulation, we have Ket= squared errors of the first three moments are taken) from a
N = L = 144, ando = /0.1, following the procedure also different number of realizations of sample covariance ioes:
described above, up t00 observations. The second plot inThe resulting plot is shown in figuifg 6, and shows that the
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(a) Estimation of powers for various number of observatitarsthe model
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Fig. 6. Estimation of wavelength. Deconvolution was perfed for varying
number of observations, assuming different wavelengthshé true model

@,d=1,1x=10, K =10, L =36, N = 100, ando = +/0.1.
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Fig. 5. Estimation of powers for the two mod€[$ (3) ahbl (5)hi$ tsection,

for various number of observations.

Vandermonde deconvolution method can also be used
wavelength estimation. It is seen that the estimation getteb

when the number of observations is increased.

1. WIRELESSCAPACITY ANALYSIS
A. General Results on Capacity and moments

Number of samples

Fig. 7. Estimation of the true capacit%,» log, det (I4+ pVVH) when the
Vandermonde matri® has uniform phase distributio’V has size36 x 36,

and o0 = 3 was used. The estimate is obtained from different number of
samples approximating the true capacity.

for

(8), but rather asymptotic formulas (i.e. formulas whiclplsp
when N — oo without the expectation operator). Asymptotic
formulas for the capacity wheW is a Vandermonde matrix
are not known, contrary to the case for Gaussian matrices:
Since no exact formulas for the asymptotic capacity of Van-

For a general matri¥V, consider the mean capacity definediermonde matrices are known, we will instead obtain good

as
Cny = 2E(logydet (Iy + ZWWH))
= 3 T E(log (1+ %0 (WWH)))  (8)
= [log, (14 Z5t) u(dt),
where p is the mean empirical eigenvalue distribution o

WWZ jeE (% SN SN — /\i))

estimates for it by taking an average bf (8) (as defined) over
many samples. In figurE]l 7, capacity estimates dor= 3
obtained this way up to 1000 samples are showrn3fox 36
Vandermonde matrices with uniform phase distributionsilt i
seen that also for much small number of samples, all capacity
Estimates are betweén145 and 0.146. 200 samples will be

where); are the eigenval- sed in the simulations, since this gives a value close to the

ues of WW¥, In practice, we do not need the expectation imalue the capacities seem to converge to.
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Substituting the Taylor series Assume now thatZ < t,. Then
1 & tk p(t —to) pto
logy(1+1t) = — » (—1)F1— 9 <1
0g2(1+) ln2;( ) k ©) 1+top |~ 1+top —
in (8), we obtain that for all ¢ € [y1,72], so that our Taylor series converges forall
N for sucht,. Also, thet, > 22 which makes-£22— smallest is
_ 1 oo (DR g o m " tpas , 1+t )
CN = 532 ka1 Fori J tFu(dt) to = 4. This "proves” that expansion arourg = % is the
= 53, (D" my () (10) optimal choice for our Taylor expansion, and that it conesrg
1 yoo (—1)’mmk(u)p’“ for all choices ofp in this case.
. n2 k=1 k ’ Let us attempt to compute how many terms are needed in
wherep is SNR, and where the Taylor expansior[(11) in order to estimate the capacity
. at p = 10 with accuracy better than.5, for Vandermonde
my(p) = /L‘ du(t) for k € Z°* phase distributions given by1(3) and (5). Due to the above

. _ . considerations, we usy = 2. If N terms in [11) are used
are the moments of. WhenW is a Vandermonde matrix, it is to approximate the capacity, and for< 22, consider the

unknown whether this series converges. However, one dan sémainder term
assess if a finite partial sum df {10) is a good approximation
to the actual capacity. In the following, this will be done fo o (=D)Fp (t _ B)’“
applications to capacity of line of sight of multi-user MIMO Wi k (1 + ngp)k 2
systems, and multifold scattering. Up Toterms in [ID) are o o &
used in the assessments, sirice [7] has computed the sevten firs < Z 1 ( P )

moments of the Vandermonde matrices. In the examples, low kN1 1+ %p

SNR values (i.e. higlr-values) will be used, since the series 1 y2 N N+1 1
(I0) will only converge then. This follows from the fact that < ( ) ) —
the radius of convergence &f (9) arouhé 1, so that[(ZD) can N+1L\1L+3p 1 11”72,)
converge only whemp < iQ where the support of the mean v N ’
eigenvalue distribution of the Vandermonde matrix is dedot - P2 < Ps )

by 71,72, AN+ DL+ Fp)

One can ask the question whether one can circumvent fich is a good bound if much of a large proportion of the
problem with the convergence radiusof (9) by using a differegjgenyalues of the Vandermonde matrix is close to the origin
Taylor expansion, so that this expansion can be used torobtgjis can be inspected from the histograms of the eigenvalue

the capacity at all SNR when one has the first order momes\/andermonde matrices in this paper and[ih [7]).
only. We will indeed show that this is possible, but that it g figures 4,5, and 6 i [7], we see that ~ 5 is a

in practice will require computation_of many moments (thgood guess for the upper bound of the support when the phase
first seven moments as computed in [7] are not enough dinytion has the forni5) (although we haven't proveakth

obtain good approximations). Therefore, current methanls d, oyen exists). For uniform phase distributigh (5), the numbe
not suffice in capacity estimation for Vandermonde matric€g :arms A thus needs to be chosen so that

at all SNR, so that an extension of the methods from [7], or

new methods are needed. 25 25 N <05
To the end of coming up with a different Taylor expansion N+1 \ 26 -

than [9), consider the following, wherg is any positive

constant: for the given precision angl. It is easily checked thaV = 21

is the lowest number of terms which makes this possible, so
log(1 +pt) = log(l +top+ p(t —to)) 1) that21 terms in the Taylor expansioi{11), and thus fHe
= falt %(t —tg)k. (11) first moments, are needed to obtain the required precision.
] . From figure[ 2 we see thak =~ 15 is a good guess for the
In order for this series to be accurate for few terms, we “eﬁﬁper bound of the support when the phase distribution has
to ensure tha#”l(f:t(fz)‘ < 1 whent is in the suppor{yi,12] the form [3). For this case, the number of terdighus needs

of p. to be chosen so that
Assume first thad < tq < L. Then N
75 75
V@—%)<pﬁr%w N:T(%) =05
L+ top L+ top

for the given precision ang. It is easily checked thaV = 64
for all ¢ € [y1,72]. It is easily checked that the latter is 1 is the lowest number of terms which makes this possible, so
whenp < ﬁ One easily checks also théﬁfioz") is a that64 terms in the Taylor expansiof (11), and thus tHde
decreasing function of,. We conclude from this that = %> first moments, are needed to obtain the required precision.
is the value in0, %] wich makes our power series converg&his clearly indicates that the moments computed_in [7] do

fastest. not suffice.
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0.7

B. Capacity of line of sight of multi-user MIMO systems True capacily
We consider a base station equipped wittantennas and & Cotmated sopaciy v
mobiles (each with a single antenna) in the cell. The receiv®| o]
signal at the base station is given by o
0.5 o A
r, = CP%Sl +n; °
[}
Here,r;, s;, n; are respectively thé&v x 1 received vector, the °4f o ]
L x 1 transmit vector by thd. users and théV x 1 additive o
noise. In the case of line of sight between the users and tos- Ooo 1
base station, the model «°
1 o1 02 ] OOoO . ++++++++
1 €7j27'r% sin(601) . eijﬂ’% sin(6r)
V=—]| . : oaf
vN : IR
eijTr(Nfl)% sin(61) ... eijﬂ’% sin(6r)
(12) 804 0.6 008 o1 o1 014 0.16

applies. Hereg; is the angle of the user in the cell and is
supposed to be uniformly distributed overa, o . P:isa _ o )
I 1 power matrix due 1o the different distances from whicfis, & Esimsion of chenel capacty for he tree and samns
the users emit. been testedl. = N = 36, d = 1, A = 10.
In this case, we would like to derive the mean channel
capacity [8) per dimension for random positions of the users
of the system, which is given by x10°

25 T T T T T T
=+  Deviation from true capacity for 3 terms estimated capacity

1 1 eviation from true capacity for 7 terms estimated capaci
C=E <1og2det(1+—2VPVH)). (13) 7 DO LT LS SRR O TSI SR apact,
(o

Note that the moments PV V were computed in[]7].
When the phases &f are uniformly distributed, theorem 3 in
that paper expresses the fifssuch mixed moments in terms o 00

of so-calledVandermonde expansion coefficientich also *°[ + ° i
are computed. Also, theorem 5 of the same paper tells us h N 0o

to get the expansion coefficients when the phase distributi N
has a continous density: To compute the expansion coefficie *§ )
for this case, we have to compute the density moménts ( ** 000

numerically. We will therefore do the following: + 000

1) Compute the first seven density momeais (4), and fro®®| +
this get the the expansion coefficient up to order Ty,

2) Estimate the first seven momentsBV ”V using the T,
result in [7] (note that the moments @VZV are % 10 20 30 0 50 60 70 80
obtained from those dP V'V by multiplication byc).

3) Substitute these in (ILO) to get a capacity estimate.

In the simulations, these steps are followed to obtainedzgﬁrg)‘dma?gx?&%g)'fr\‘/’::iot:;j e Eae%fﬂg’stf;; i‘%_gfzevi“fas'i"ﬂs
capacity estimate. Different number of terms in the approx-= 10.

imation [10) are used to see how fast the series converges

to the true capacity. Note that there is no known formula for

the true capacity in this case. The true capacity is instead

also approximated, by taking 1000 samples of the randomin figure[9, p has been fixed ab.04, and different values
matrices involved in the expression for the capacity. Inéffi of L have been tried in the capacity estimation. It is seen that
the SNR-values where the Vandermonde convolution capaditye capacity estimated is better for higherThe explanation
estimates begin to converge to the actual value are cleadythat the Vandermonde convolution formulas are asymptoti
seen. Itis perhaps surprising that the approximation veitbef so that they give better approximations for higheand N.
terms is more accurate for higher SNR values. This is the caSlso here it is seen that theterm approximation is worse.
since the power series approximation is better only close Wée can’t expect that the deviation goes to zero for higher
the origin when more terms are added: Far away from tlsénce the error not only lies in the (asymptotic) Vandermeond
origin, the approximation can be worse when more terms arenvolution formulas, but also in the approximatidnl(1@)da
added (but will eventually improve when even more terms atke error from this part does not go away when we increase
added). L).
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C. Multifold scattering
i W u uippe o 7
We consider a MIMO system (between two users e 0359
with N Uniform Linear Array antennas anfl scatterers in ./, i
between). The received signal in one end of the MIMO syste °
is given by ossrr 1
1 [¢]
ry = V{{P§V25i +n,; (14) o3ser o Oo oo o ° o ° o 4
> ° o o o
where 'g 0,355 o & OOoO & 069, Q%OOOOO% OO oooooo OOOO oOO CDOOOOCD,
8 o o 0000 o o e [<le] o “& 9
1 e 1 & © ° ©° °
0.354 o O 4
eijW% sin(61) . eijW% sin(0r) °°
o 1 0.353F 4
Vi=— o
N ' ' ' 0.3521 g
e—d2n(N=1)$sin(61) .. g—j2m$sin(dr)
0.351 —
and
1 L. 1 0'350 160 260 360 460 560 6(‘]0 760 8(‘)0 9(‘]0 1000
Number of samples
1 e—d2m 4 sin(¢1) ... e—J2mgsin(¢r)
Vo= /N : . : > Fig. 10. Estimation of the true capacity obtained from défé number of

samples approximating the expectation[in] (1H).x 36 matrices were used,

e—2m(N=-Dgsin(d1) .. p—j2mdsin(or) ey

where allg; and ¢; are independent.

The scatterers distort the signal with attenuat@n This : fﬁm
model has already been studied(ini/[14] using an approximati _sample capacly
of the Vandermonde matrix by an i.i.d zero mean randol s}
matrix. As shown in[[7], this is not the case as the limiting
eigenvalues of the Gram matrix associated to the Vandermor AL
matrix are quite different from the Marchenko Pastur lajv [9 il ok
The mean capacity8) per received dimension is given by .

i

Capacity
-
ol
T
I

C = %E (1og2 det(I + %fopévgvgfp%vl)) . (15)

We will assume thalP = I (other case are more involved). | M i

In other words, we need the moments 6{’ Vo, ViV, To :

get these, we can use theorem 9 [of [7]. Also here we a os| ]

restricted to getting capacity estimates away fr@rsince we

only have the lower order moments available. In this case,

is also expected that we would need more observationsto % 2 s 4 5 & 1 8

good capacity estimates: Figlird 10 shows the approximafion

the true capacity (15) by taking many samples of modél (14),

similarly topfigur)e{:g fZ)r i//andergmond)e/ matr?ces with unifo(r ig. 11. Several realizations of the capacifylog, det (I + p XX ')
B . whenX is standard, complex, Gaussian. Matrices of Sigex 36 were used.

phase distribution36 x 36 matrices were used, antl = 3.  The asymptotic capacity (16) is also shown.

The values are seen to be betw@ett and0.36. For figurd Y,

one could infer yet another decimal.

-
N
w
IS
&
o
~
©
©

10

the uniform phase distribution gives highest values for the
D. Capacity of Gaussian versus Vandermonde models capacity. The effect of using two independent Vandermonde
patrices is seen to increase the capacity somewhat. It is see
that the variance of the Vandermonde capacities is higher
than for the Gaussian counterparts. This should come as no

If X is anN x N standard, complex, Gaussian matrix, the
an explicit expression of the capacity exists|[24]

limy oo 3 logy det (T4 p (5 XXH)) = surprise, due to the slower convergence to the asymptotic
2log, (1 +p—3(VIp+1- 1)2) (16) limits for Vandermonde matrices][7]. Although the capasiti
Clogse [ T 1)\2 of Vandermonde matrices with uniform phase distributiod an
4p (VIp+T-1)" Gaussian matrices seem to be close, we have actually no

In figure[11, several realizations of the capacity are coegputproof that the capacities of Vandermonde matrices are finite
for Gaussian matrix samples of si3é x 36. The asymptotic since it is unknown whether the Vandermonde mafrlx (1) has
capacity [(Ib) is also shown. In figurel12, several realirastioa compactly supported limiting eigenvalue distributiér, [7

of the capacity are computed for Vandermonde samples although extensive simulations seem to confirm this fact. In
the same size, with the phase distributions given[By (5) aady case, the results show that a structured ULA form of the
(3). Realizations of [(15) are also shown. It is seen thahtenna geometry provides a decrease of capacity withaespe
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Capacity
-
ol
T

05

0 1 2 3 4 5 6 7 8 9 10
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(a) Realizations of}; logy det (I+ pVVH) whenw has uniform phase
distribution [3).
3
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(b) Realizations of3; log, det (I+ pVVH ) whenw has the phase distri-
bution [3).
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Fig. 12.

(c) Realizations of(15).

Several realizations of the capacity for Vanderdeomatrices for

the two phase distributions used in this paper.
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Fig. 13. Estimation of the true capacit} log, det (I + p+ XX ) when
X is complex standard, Gaussid@tt x 36 matrices were used, and = 3.

The estimate is obtained from different number of samplgsagmating the
true capacity.

to having a more random like geometry in the case of line of
sight environments.

Figure [13 shows the number of samples needed to get
accurate estimation of the capacity for Gaussian matrices,
similarly to how this was done for Vandermonde matrices with
uniform phase distribution in figudgl 7. The estimated values
are seen to lie betwedh144 and0.146, which is very close
to the values we obtained for Vandermonde matrices. Same
matrix sizes $6 x 36) and value foro (3) was used.

The fact that the capacity of line of sight Vandermonde
matrices is in simulation lower than the capacity of Gaussia
matrices is a very interesting issue and permits to under-
stand the differences between line of sight and non-line of
sight environments. Interestingly, the moments of stmextu
Vandermonde matrices with uniformly distributed phases ar
always larger than the moments of Gaussian i.i.d. matrasss,
corollary 2 in [7]. When the phase distribution is given by, (3
a similar result holds due to theorem 5 [n [7]. However, one
can not prove from these results any effective relation betw
the capacities.

IV. SIGNAL RECONSTRUCTION

Several works have investigated how irregular sampling
affects the performance of signal reconstruction in thegmee
of noise in different fields namely sensor networks| [25]]][26
image processing [27]) 28], geophysids [[29], compressive
sampling [30]. The usual Nyquist theorem states that for a
signal with maximum frequencyimax, one needs to sample the
signal at a rate which is at least twice this number. However,
in many cases, this can not be performed or one has an
observation of a signal at only a subset of the frequencies.
Moreover, one feels that if the signal has a sparse spectrum,
one can take fewer samples and still have the same informatio
on the original signal. One of the central motivations ofrspa
sampling is exactly to understand under which condition one
can still have less samples and recover the original sigpal u
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to an error ofe [31]. Let us consider the signal of interest a8. Estimation of the sampling distribution
a superposition of its frequency components (this is algo th

case for a unidimensional bandlimited physical signal) i.e In the following, we suppose that one hasobservations

of the received sampled vecter

N—-1
[ Z ake%m Y = [Xl, XK] = VT[al, ...,aK] + [1’117 ...,nK]

The vectorx is the discrete output of the sampled continuous
and suppose that the signal is sampled at various instagignal z(w) for which the distribution is unknown (however,
[t1,...,t] with ¢; € [0, 1]. This can be identically written as ¢ is known). This case happens when one has an observation

without the knowledge of the sampling rate for example. As

= ik recalled in section IV ofi[7], the problem falls in the realh o
Z are ' deconvolution and one is able to infer on the density of the
= density ofw in other words finding the moment of

In the presence of noise, one can write it in the following o
manner: / pw(x)kd:c.
0

_ T
x=V'a+n If we define

N 1
with x = [z(w),..2(w)]?, a = [a1,..,an]Tn = R=—-YY", (18)

[n1,...,nz] and K
and I, by (), then by successive Gaussian deconvolution as

1 e 1 detailed in sectiofilll, we have
1 e jwi e e_jUJL
V = — . i . . (17) 1 = C: + 0'2
VN A mg = 02—‘1-(62[ + coc3)
e—I(N=Dwr ... g—i(N=D)w R = etlabtacs)
+20%(ca +c3) +0*(1+¢1)
3 _ 2

We definec as the ratio of observations to the number of ™z = ©2 +3(3C212‘236203) , 19
complex harmonics i.e = £ + (313 + 3c3e3ly + o) (19)

+30%(1 +c1)ca
+302((1 + ¢1)c2I2 + c3(c3 + 2¢2))
4(.2
A. Performance analysis of the reconstruction algorithm +3g (201 +3c1 + ey
+0°(cf + 3c1 + 1),
The task of the reconstruction algorithm is to calculate an
estimatea of the spectruma. The usual reconstruction metrlcwherem = F {trN(Ri)}, limpy 00 % = ¢1, impy— oo % =

is the minimum mean square error which is defined as . . .
q c2, and th_,oo % = ¢3. The estimation off,, is averaged

on the various set of K observations.
We have tested[{19) the following way: We have taken
a phase distributions which is uniform on|0,«], and 0

elsewhere. The density is thg8 on [0, ], and0 elsewehere.
The linear filter which minimizes the MMSE or maximizegn this case we can compute ' that

the Signal to Interference plus noise ratio is known to be the

1
MMSE:NIEHé—aHQ.

MMSE filter. Results on the interplay between information I, = 27

theory and estimation theory [32], [33] show that the MMSE Q

is strongly related to the eigenvalues V7. [ 21\ ?
In particular, one has that: o (E)

The first of these equations, combined with](19), enables us
MMSE — ac to estimatea from the observationd (18). This is tested in
p’ figure[I% for various number of observations. In figliré 14
we have also tested estimation &f I3 from the observations
whereC = & logdet (I+ pVVT) with p being the SNR.  using the same equations. When one has a distribution which
Asymptotically, whenN — oo and Loo — oo such as is not uniform, the integral&s, I, ... would also be needed in
% — ¢, the MMSE depends only on the SNR the ratio finding the characteristics of the underlying phase distiiin.
c and the probability distribution of the sampling,. The Figure[I4 shows that the estimation bf requires far fewer
MMSE can be computed in the same vein as previously witdbservation than the estimation @§. In both figures, the
a Taylor approximation for a given distribution of the saingl values K = 10, = 36, N = 100, ando = /0.1 were
in the low SNR regime. used andy was 7.
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120 " Estmated, provide benchmark figures in the non-asymptotic regime.
Actual |2
o Estimated I3
1007 _ . _acual, ] APPENDIXA
THE PROOFS OF PROPOSITIORI AND [2]
g0l Oo , The moments and fluctuations of
o O
e} 1 1
o 0 ® 0 99% 900" [ @ o050 o o3 [~ RR" = VP! <_w > PEVE.
0o o Oo%ooo & @ P00 Q)oodbio%oocb J OO%WO@ 7 K K
P © ° are related to the moments 8 through the formulas [16]
a0© 1 E [tr, (W)] = E[try ()] +o0?
2 _ 2
: Eltr, (W)] = Bty (1?)] 4
ol | ws - +20°(1 —|—301)E [try ()] +o*(1 + 1)
Eftr, (W?)] = E|try (I9)]
o PP HEF R R e +302(1 + CI)E I:tTN I‘2)}
% 160 2(‘>o 3(50 460 560 600 —|—30’261E [(t’I’N (F))2
Number of observations
+30" (F +3c1+1+ I%) Eltry (T
6
Fig. 14. Estimated values db and I3 using [19), for various number of to (Cl +3a+ 14 2) ’ (20)
observations, and fok = 10, L = 36, N = 100,06 = +/0.1. The actual N . .
value ofa was T wherec; = . Define the matrix
1
S = <—aaH> P:VHEVP:,
+ Estimated o K
Actual o
1ol i and note that
F
E[try (TF)] = cFE[try (S*)], and
k k (21)
te . 1 iy ()] = &E [(tr(8)"],
+
ot +++++ Y e
o8l Tt ST T T, **iﬁf*i +++++++ T wt o whereey = % We can now use the formulas| [7]
+ o+ +
i T Eftrr (S)] = esEltrr (T)]
oer i csFE [tr (SQ)} = c3F [trL (TQ)]
2
| +AE [(tr (T))’]
CgE [t’f‘L (SB)} = (1 + K~ 2) C3E [t?‘L ( )
+3C§E [(tTLT) tTL (TQ)} (22)
0.2 —
+ei [(trs (T))°]
L L L L L 2 — 2
s s —m B[] = Bt (T)’]
Number of observations +ﬁE [tTL (Tg)}

Fig. 15. Estimated values of using [I9), for various number of observations Where cz = %, andT = PVHV. @), (22), .and[IZZ) can
and for K’ = 10, L = 36, N = 100, 0 = v/0.1. The actual value ok was pe combined to the following formn(j,, andm/. are theith

1 moments ofW and T respectively):
m%,V = Cer}p + o2
V. CONCLUSION md = comd+ cacsE [(tm (T))Q}

In this part, we have provided some useful applications of +20%(cg + c3)E [trr, (T)] + o*(1 + ¢1)
random Vandermonde matrices. The applications concedtrat m3, = ¢z (1+ 7)) E [trL (T3)}
on wireless capacity analysis, source separation and Isigna +3cacsE [(trr (T)) (tre (T?))]
sampling analysis. As shown, many useful system models +c22E (trL( ) } (23)
use independent Vandermonde matrices and Gaussian raatrice .
combined in some way. The presented examples show how +30? ((1 +er)ez + éf) E [trp (T?)]
random Vandermonde matrices applied for such systems can +302¢5(cs + 2¢2)E [(trL (T))Q}

be handled in practice to obtain estimates on quantitiel suc
as the number of paths in channel modeling, the transmission
powers of the users in wireless transmission or the sampling
distribution for signal recovery. The paper has only touthdJp to now, all formulas have provided exact expressions for
upon a limited number of applications but the results alyeathe expectations. For the next step, exact expression$éor t

+30% (3 +3c1 +1+ &2 L) eoE[trr, (T))]
).

+00 (2 +3c1+1+ 3=
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expectations are only known when the phases are uniforndg] @. Ryan and M. Debbah, “Free deconvolution for signabgessing
distributed, in which case the formulas aré [7]

coE [trr, (T)] = cotrr,(P) [14]
ol [tTL (TQ)}
= (1= N1 eatrp (P?) + (trp (P))? [15]
CQE [t?‘L (T3)}
=(1- L+ 2N72) eotrp (P?) [16]
+3 (1= N71) 3trp(P)trL (P?) + c3(tro(P))? (24)
E |(trp (T))*| = trp(P)? 7]
E |(trp (T))*| = trp(P)? (18]
B [(try (T)) (trs (T2))]
= (1= N~ trp(P)trp(P2) + ea(tro(P))>. [29]
If the phase distributionv is not uniformly distributed, we [20]
have the following approximations [7]: 21]
coE [try, (T)] = cotrr, (P -
o FE tTL( ) =~ CQtrL )+ B L(trp(P))? [22]
CQE tTL TS)
~ CQt'I’L (P3) + 3c2Iatr (P)trn(P?) + c313(tr (P))? (23]
(trr (T))*| = (trLP)?
3 [24]
tTL ( ) tT‘LP)S
E trL (T)) (trr (T2%))] (23]
~t )tTL(PQ + CQIQ tTL(P))?’,

where the approximation i© (N~

by (4).

(25)
1), and wherel}, is defined

Propositior R is proved by combininig {23) wifh {24), while

propositior1 is proved by combininp_(23) with {25).
Matlab code for implementing the different steps here (li

(20), (22), and[(24)) can be found in[34].
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