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Abstract

Wireless sensor networks are often used for environmertaitoring applications. In this context
sampling and reconstruction of a physical field is one of tlstimportant problems to solve. We focus
on a bandlimited field and find under which conditions on thevoek topology the reconstruction of
the field is successful, with a given probability. We reviewegular sampling theory, and analyze the
problem using random matrix theory. We show that even a veegular spatial distribution of sensors
may lead to a successful signal reconstruction, providatittre number of collected samples is large
enough with respect to the field bandwidth. Furthermore, we the basis to analytically determine

the probability of successful field reconstruction.

Keywords: Irregular sampling, random matrices, Toeplitz matrix,eeigplue distribution.

. INTRODUCTION

One of the most popular applications of wireless sensoraorsis environmental monitoring.
In general, a physical phenomenon (hereinafter also caledor field or physical field) may
vary over both space and time, with some band limitation ithkomains. In this work, we
address the problem of sampling and reconstruction of daddald at a fixed time instant.
We focus on a bandlimited field (e.g., pressure and tempejatand assume that sensors are

randomly deployed over a geographical area to sample theopienon of interest.
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Data are transfered from the sensors to a common data-bofjemit, the so-called sink node.
In this work, however, we are concerned only with the recmiesion of the sensor field, and we
do not address issues related to information transports,Tlia assume that all data is correctly
received at the sink node. Furthermore, we assume that tieorsehave a sufficiently high
precision so that the quantization error is negligible, #&mel sensors position is known at the
sink node. The latter assumption implies that nodes arereitdtated at pre-defined positions,
or, if randomly deployed, their location can be acquirece (83—[10] for a description of node
location methods in sensor networks).

Our objective is to investigate the relation between thevask topology and the probability
of successful reconstruction of the field of interest. Thecegs of the reconstruction algorithm
strongly depends on the given machine precision, since ytfaihto invert some ill-conditioned
Toeplitz matrix (see Sectidnlll).

More specifically, we pose the following questiaimder which conditions on the network
topology (i.e., on the sample distribution) the sink nodecsssfully reconstructs the signal
with a given probability?The solution to the problem seems to be hard to find, even uhéer
simplifying assumptions we described above.

The main contributions of our work are summarized below.

(i) We first consider deterministic sensor locations. By reungvirregular sampling theory [1],
we show some sufficient conditions on the number of sensdbg tdeployed and on how
they should be spatially spaced so as to successfully reecahshe measured field.

(i) We then consider a random network topology and analyze tt#gm using random matrix
theory. We identify the conditions under which the filed mestouction is successful with a
fixed probability, and we show that even a very irregularigpdistribution of sensors may
lead to a successful signal reconstruction, provided tmatumber of collected samples
is large enough with respect to the field bandwidth.

(i) Finally we provide the theoretical basis to estimate thaireg number of active sensors,

given the field bandwidth.

Il. RELATED WORK

Few papers have addressed the problem of sampling and teadim in sensor networks.

Efficient techniques for spatial sampling in sensor netwate proposed in [2], [3]. In particu-
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lar [2] presents an algorithm to determine which sensoretstshould be selected to acquire data
from an area of interest and which nodes should remain weatbi save energy. The algorithm
chooses sensors in such a way that the node positions cangpedato a blue noise binary
pattern. In [3], an adaptive sampling is described, whidovad the central data-collector to
vary the number of active sensors, i.e., samples, accotdinige desired resolution level. Data
acquisition is also studied in [4], where the authors cagrsal unidimensional field, uniformly
sampled at the Nyquist frequency by low precision sensdns. duthors show that the number
of sensors (i.e., samples) can be traded-off with the poetisf sensors. The problem of the
reconstruction of a bandlimited signal from an irregular glesamples at unknown locations is
addressed in [5]. There, different solution methods ar@gsed, and the conditions for which
there exist multiple solutions or a unique solution are waksed.

Note that our work significantly differs from the studies abdecause we assume that the
sensors location are known (or can be determined [8]-[1@])the sensor precision is sufficiently
high so that the quantization error is negligible. The goestve pose is instead under which
conditions (on the network system) the reconstruction ocadbmited signal is successful with

a given probability.

[1l. | RREGULAR SAMPLING OF BAND-LIMITED SIGNALS

Let us consider the one-dimensional model whesensors, located in the normalized interval
[0, 1), measure the value of a band-limited sigpdl. As a first step, we assume that the position
of the sensors sampling the field are deterministic and knawd the sensors can represent each
sample with a sufficient number of bits so that the quantiregirror is negligible. Let, € [0, 1)
for ¢ = 1...,r be the deterministic locations of the sampling points adencreasingly and
p(t,) the corresponding samples.

A strictly band-limited signal over the intervgd, 1) can be written as the weighted sum of

M’ harmonics in terms of Fourier series
M/

p(t) = Y ae®™* 1)
k=—M'

Note that for real valued signals the Fourier coefficientssBathe relationa; = a_;, and that
the series[(1) can be represented as a sum of cosines.

The reconstruction problem can be formulated as follows:
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given r pairs [t,,p(t,)] for ¢ = 1,...,r andt, € [0,1) find the band-limited signal in[1)

uniquely specified by the sequence of its Fourier coeffgient

Let the reconstructed signal be

ﬁ(t) _ Z dke%rikt (2)
k=—M
where thea, are the corresponding Fourier coefficients up to Meth harmonic. In general,
the reconstruction procedure will minimize(t) — p(t)||* if M < M’ and givep(t) = p(t) if
M= M.
Consider thg2M + 1) x r matrix F whose(k, ¢)-th element is defined by

1 .. k=-M,....M
(F)kz,q — _e27r1ktq
e q=1,...,r
the vectora = [a_yy, ..., do,...,ay|T oOf size2M + 1 and the vector

p = [p(t1),...,p(t,)]*. We have the following linear system [1]:
FF'a="Fp (3)

where(-)' is the conjugate transpose operator. Let us defivte FF™ andb = Fp, hence[(B)
becomesT'a = b and thena = T'b.

When the samples are equally spaced in the intgdva), i.e.,t, = (¢—1)/r, we observe that
the matrixF is a unitary matrix FF' = T = IZMH)ﬁ and its rows are orthonormal vectors of
an inverse DFT matrix. In this cadd (3) gives the fivétFourier coefficients of sample sequence
P-

When the sampleg, are not equally spaced, the matfixis no longer unitary and the matrix
T becomes d2M + 1) x (2M + 1) Hermitian Toeplitz matrix

To rLo-c Tom

r-1 To -+ Tom-1
T=T =

T—oMm To

1The symboll,, represents the by n identity matrix
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where

I = g
T)in = Thom = — 2mi(k—m)tq k,m=—-M...,M 4
(T =riem = 3¢ m , @
The above Toeplitz matrid is uniquely defined by thé )/ + 1 variables
1 - 2milt
= - ™a = —2M,...2M 5
Ty r ;e ) ( )

The solution of [(B), which involves the inversion @f, requires some care if the condition
number of T (or equivalently ofF) becomes large. We recall that the condition number a$

defined as

)\max
" )\min (6)

where\.., and\;, are the largest and the smallest eigenvalu€F,akespectively. The base-10
logarithm of k is an estimate of how many base-10 digits are lost in solviligear system
with that matrix.

In practice, matrix inversion is usually performed by alfons which are very sensitive to
small eigenvalues, especially when smaller than the maghiacision. For this reason in [1] a
preconditioning technique is used to guarantee a boundeditcan number when the maximum
separation between consecutive sampling points is notamel More precisely, by defining
wy = (tgg1 — t4—1)/2 for ¢ = 1...,r, wheret, = t, — 1 andt,.; = 1+ ¢;, and by letting

W = diagwy, ..., w,), the preconditioned system becomes
T,a=Db,

where T, = FWF' andb,, = FWp. Let us define the maximum gap between consecutive
sampling points as

0 =max(t, —t,-1).

In [1] it is shown that, wher < 1/2M ,we have:

14 26M\ >
< -
ATw) < <1 - 25M)

This result generalizes the Nyquist sampling theorem ta#se of irregular sampling, but only

(7)

gives asufficientcondition for perfect reconstruction when the conditionminer is compatible

with the machine precision. Unfortunately, whén- 1/2M, the result[(¥) does not hold.
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In Figure[1l and2 we present two examples of reconstructethlsigrom irregular sampling,
using [3). Figurd ]l refers to the cagé = 10 and r = 26, where the samples have been
randomly selected over the intervi@l 0.8). The signal is perfectly reconstructed even if large
gaps are presend (> 0.2, i.e., 6 > 1/2M). In Figure[2,r = 21 samples of the same signal of
Figure[1 have been taken randomly over the entire winfiow). Due to the bad conditioning
of the matrixT (i.e., very low eigenvalues), the algorithm fails in redoasting the signal due
to machine precision underflow.

Driven by these observations, the objective of our work isptovide conditions for the
successful reconstruction of the sampled field, by usingobabilistic approach. In the following
we give a probabilistic description of the condition numbeithout explicitly considering

preconditioning.

V. THE RANDOM MATRIX APPROACH: UNSUCCESSFUL SIGNAL RECONSTRUCTION

The above results are based on deterministic locationsedampling points. In this section we
discuss instead the case where the sampling pojnase i.i.d. random variables with uniform
distribution/[0,1). In other words we consider the case where the mélriis random and
completely defined by the random vecto [t4, ..., t,.]. We introduce here the parametels
the ratio of the two-sided signal bandwid2d/ + 1 and the number of sensors

5:2M+1- (8)

r

In the following we consider the asymptotic case where tHeegmof M/ andr grow to infinity
while 5 is kept constant. We then show that properties of systents fimite // andr are well
approximated by the asymptotic results.

We focus here on the expression of the probability of unsssfoésignal reconstruction, i.e.,
the probability that the reconstruction algorithm failsegn the machine precision the signal
bandwidth)/, and the number of sensarsFor a given realization o' and for finite values of
M andr we denote by = [\, ..., \apr11] the vector of eigenvalues, and By,;, = min(\)
and A\, = max(A) the minimum and maximum eigenvalues, respectively. Alsgfies(z) be
the empirical probability density function (pdf) of the eivalues ofT for a finite M and
and let f3(z) be the limiting eigenvalue pdf in the asymptotic case (ihen M andr grow

to infinity with constant3) [6]. The random variable,;, = min(A), and the condition number
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r have pdff}7"%(x) and f7; 5(x), respectively. The corresponding cumulative density fions
(cdf) are denoted by s(x), Fs(x), Fifh(z), and Fiy 5(x).

A. Some properties of the eigenvalue distribution

We first analyze by Montecarlo simulation some propertigbefistributionfy, s(x). Figurel3
shows histograms of, s(x) for M = 1,4, 10,90, 5 = 0.25, and bin width of0.1. Notice that,
as M increases with constarit, the histograms offy,; s(x) seem to converge tgs(x), only
depending on3. Indeed, looking at the figure, one can notice that the diffee between the
curves forM = 10 and M = 90 is negligible. Although we report in Figufd 3 only the case
for 5 = 0.25, we observed the same behavior for any valugsofVe therefore conclude that
M =10 is large enough to provide a good approximationf/efz).

In Figure[4 we show histograms ¢f, 5(z) for 5 = 0.15,0.25,0.35,0.45,0.55 and values of
M around100. For g larger than0.35 the distribution shows oscillations and tends to infinity
while x approaching). On the other hand, fo# lower than0.35 the pdf does not oscillate and
tends to0 while z approaching). In order to better understand this behavior for smalvhich
can be heavily affected by the bin width, in Figlte 5 we coesitie cdfF), 5(x) in the log-log
scale, for various values of ranging from0.1 to 0.8 and M = 200. The dashed curves represent
the simulated cdf. Surprisingly they show a linear behafworsmall values ofr and for any
value of 5. This is evidenced by the solid lines which are the tangemthé¢ dashed curves at
Fyp(x) = 1072 The slope of the lines is parameterized fyln our simulations the machine
precision is approximately = 1076 and, hence, values aof < ¢ cannot be represented since
they are treated as zero by the algorithm. Indeed the sigtlladfs loose their linear behavior
while approaching: = ¢ (see the casg = 0.8 in Figure[%). We conclude that far < 1 the
cdf F3(x) can be approximated by

Fs(z) ~ ba® 9

wherea = a(f) andb = b(3) are both functions ofi. By deriving [9) with respect ta: we

obtain the approximate expression for the pdf:

fo(x) = a(B)b(B)z*@~! (10)

From (10) it can be seen that the functia()3) represents the slope dfs(x) in the log-log

scale forr < 1. Note that in order:®® ! to be integrable if0, c¢), for any positive constant,
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the conditiona(3) > 0 should be satisfied. Note also from Figlfe 5 that the slapg = 1 is
obtained for ~ 0.35. For this value of the approximate pdf is constant for< 1, which is
consistent with the results in Figuré 4.

Some additional considerations can be drawn from Figureh&wpresents the pdf gfy, 5(z)
for 5 = 0.25,0.50,0.75 and M = 200. It is interesting to note that for any value ¢f large
eigenvalues are less likely to appear than very small eajaas. This is evident by observing
that for x > 1 the pdf falls to—oc much faster than for < 1. This consideration is of great

relevance when discussing the condition number distobuti

B. Distribution of the minimum eigenvalue

For finite M the cdf of \,;, can be computed as follows
F};}fg(x) = PAmin < z|M)
= P(min(A) < z| M)

In general the random variables, ..., \;y/,1 are not independent. However, considering suf-
ficiently large values of\/ (namely, M > 10), we can write the following upper bound for

Fyih(z) < (2M + 1) Fy(x). (11)
This is obtained by assuming that the eigenvalues are imdiepe with pdf equal to the limiting
eigenvalue distribution. The simulation results presgriteFigure[Y confirm the expression in
(@1). The figure shows the cdfs of and A\,;, in the log-log scale for3 = 0.25,0.50,0.75
and M = 40. The cdf of \,;;, also shows a linear behavior far < 1. In the log-log scale,
according to[(I1), the two cdfs should be separatedoby,(2M + 1). In our case:M = 40
andlog,,(2M + 1) ~ 1.91. As is evident from the figure, this upper bound is extremaitt
especially for low values of.

C. Distribution of the condition number

Here we describe the condition number distribution. Theddmn number is defined by (6).
As noted at the end of Section IM-A the minimum eigenvalue thates the ratio\,,.x / Amin. This
fact is more evident in Figurel 8, where we compare the digiobs of the condition number
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and of the minimum eigenvalue, fgr = 0.25 and M = 10, 20, 40. The three dashed curves on
the left represent the pdf of the minimum eigenvalue. Thaldoies on the right represent the
pdf of the condition number for the same values)Mdf The two set of distributions look very
similar. We definey = log,, =, v}'5(y) = logy, fi15(10Y) andyj; 5(y) = logy, fi75(10Y). By
observing the results in Figufé 8, the following relatioridso

Vars(y) = s (—y + d)

where d is a parameter. In the plot, for each value &f the circles represent the above
approximation where the parametérs set tol/3. The same considerations hold for any value

of 3. Converting the above approximation into the linear scatke,obtain:
K min ]'Od
fM,ﬁ(x) ~ Jmp (?)
and by taking the derivative of both sides bf](11) with resgecr, we finally obtain

Fsle) = (M + 1) (md)

i

which holds forz > 1.

D. Summary

In this section we have given numerical evidence of the Valg facts:
« the condition number distribution is dominated by the disiion of the minimum eigen-
value of T,
« the distribution of the minimum eigenvalue is upper bountigda simple function of the
asymptotic distribution of the eigenvalues Bf
Thus, in the following we focus offi;(x); indeed, knowingfs(x) we could obtain the probability
that the minimum eigenvalue is below a certain threshodd, that the condition number is less

the machine precision.

V. SOME ANALYTIC RESULTS ON THE EIGENVALUE PDF

We now derive some analytic results on the asymptotic emepwdistribution,fs(x). Ideally
we would like to analytically computg;(z), however such a calculation seems to be prohibitive.

Therefore, as a first step we compute the closed form express§the moments of the asymptotic
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eigenvalue distributioriE[A\?]. Note that, if all moments are available, the an analyticesgion
of f3(x) can be derived through its moment generating function, ipyyég the inverse Laplace
transform.

In the limit for M andr growing to infinity with constant? the expression of[\?] can be
easily obtained from the powers @f. IndeedT is an Hermitian matrix and can be decomposed
asT = UAU', whereA = diag\) is a diagonal matrix containing the eigenvaluesIofind

U is the matrix of eigenvectors. It follows that
T{T*} = Tr{(UAU")"}
= Tr{UA’U"}
= Tr{U'UA?}

= Tr{A"}
2M+1

= D X (12)
1=1

Then:

i TH{E|[T?]} = lim
M,r1—>+002M+1 {E [T} Mr—>+002M+1

2M+1 21VI+1
W+l _g =5

2|

1 2M
= E| lim A
M?"—>+002M—|—1Z

2]M+1 IB =0

= E[\] (13)

Please notice that sinc® is a Toeplitz matrix the Grenander-Szeg6 [7] theorem cdagd
employed in the limit forM — +oo. Unfortunately in this case the theorem is not applicable
since all entries ofl' depend on the matrix siz&/.

From (13) and[(5) we obtain:

Pl —
E[Y] M}}Eioo 2M+17“p Z Z E

2M+1_6 qeQ lel

exp (27?12 (0 — g[i+1})>] (14)

where

Q = {q|q:[q17---7q;)], qz'zl,...,r}
= {l|l:[€17"-7€p]7 Ez:0772M}
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and where the sign| refers to the moduly operatcH. The average is performed over the
random vectot = [t1,...,t,].

Let now P be the set of integers from 1 o
P=A{1,...,p}. (15)

Let q € Q and letl < k(q) < p be the number of distinct values assumed by the entrieg of
Such values can be arranged, in order of appearance, in therée= [¢1, . . ., gi(q)] Where the
entriesg; are all distinct. Usingy andq we create the subse (q), . . ., Pr(q) (q) of P defined
by
Pila) ={i€P | a =g} (16)

Such subsets are non-empty and disjoiRf & 0, UP; = P, andP; NP, = () for j # h).
Finally we definer(q) ’

(@) = {Pu@); - -, Py (a) }

as the partition ofP induced byq.

Example 1. Letp =6 andq = [4,9,5,5,4,3]. Then, by [(15),P = {1,2,3,4,5,6}.
We havek(q) = 4 distinct values which we arrange, in order of appearancehen
vectorq = [4,9,5,3]. Then

Pi(a) ={1,5} (1 =0¢5=aq),

Pala) ={2} (@2 = @),

Ps(a) ={3,4} (a3 =aq1 =),

Pu(a) ={6} (a6 = da),
and7(q) = {{1,5},{2},{3,4}.{6}}.

For any giveng € Q, using the definition oP;(q), we notice that the argument of the average

operator in[(14) factorizes ih(q) parts, i.e.

p k(a)
exp (27riz te. (0 — f[z‘ﬂ})) = H exp (27ritq] Z l; — ﬁ[iﬂ])
i=1 j=1

iEPj (q)
2For simplicity here we follow the conventidip] = p and[p + 1] = 1.
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each depending on a single random variable Then from [1#) we have:

k(q)
P _—
E[N] = M}«_,Jroo (2M+1)7=p Z Z E Hexp 2mity, Z b — L
2M+1_5 €Q leLl j=1 i€P;(q) |
1 k(q)
= s (2M + 1)rp > 2 E |exp | 2mity, > b=l
2M+L_ g qeQ leLc j=1 U i€P;(q)
1 k(a)
LD S BN | (] I SR an
M4l _g qeQ leL j=1 i€P;(q)

whered(-) is the Kronecker’s delta. Expressidn{17) can be furthepsfiad by observing that
. there existr(r —1)---(r —k+1) =r!/(r — k)! vectorsq € Q generating a certain given
partition of P made ofk subsets,

. for a givenq the expression

k(a)
u(@=>_ J[ o[ D t—tin (18)
leL j=1 i€P;(q)

is a polynomial in the variable M, since it represents the number of points with integer
coordinates contained in the hypercybe. .., 2M|? and satisfying the:(q) constraints
Z li —Lig =0 (19)
i€P;(a)
We show in Appendikl | that one of these constraints is alwagsimdant and that the number
of linearly independent constraints is exactlyq) — 1. By consequence the polynomial
Canm(q) has degree — k(q) + 1.
Let 7, be the set of distinct partitions ¢ generated by all vectorg € Q, then from [(1¥) we
obtain:

B = M71“—>+oo 2M—i—1rf” Z Z H(S Z b= b

2M+1 -3 qeQ leL j=1 i€Pj(a)

(a)

= lim
M 7"—>+oo 2M + 1 rp Z Z CZM
2]\{+1_6 E’Z;J q=T

() 1 d

= i 20
MT—I>r-li-OO (2M + 1)rp Z (r— l{:(T))!C2M(T) (20)
2M+1_6 reT,
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where

- the notation) _ . represents the sum over all vecteggienerating a certain given partition
T,
. the equality(a) has been obtained by substitutingl(18), and
. the equality(b) holds because the number of vecteygienerating a given partition is
rl/(r — k(r))!.
We point out that the function(q) and(,,/(q) depend only on the partition(q) induced by
q. Since in the third line of[{20) we removed the dependencehernvectorsg, the expression
of E[)\*] is now function of the partitions only. Then with a little abuse of notation, in the
following we refer to the functiong and (o), ask(7) and (aps(7), respectively.
Taking the limit we finally obtain:

EV] = 3 v(r)g)

T€Tp

p

A DI G (21)

k=1 TG’Tp’k

where7, ;, is the subset off, only containing partitions of siz&, and

o(r) = 1li Cour (7)

Moo (20M )P+
i.e. v(r) is the coefﬁcierH of degree(2M)P~**1 of the polynomial¢yy (7). Sincel < k < p
from (21) we note thaE[)\?] is a polynomial ing of degree3?~!. Again, for the sake of clarity

we give an example:

3Notice also that the coefficient(r) represents the volume of thnvex polytopalescribed by the constrain{S {19) when

the variablee; are considered real and limited to the inter{@l1]. By consequencé < v(7) < 1.
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Example 2. Let p = 6 and q given by Example 1. The partition is =
{{1,5},{2},{3,4},{6}}. Then the set ok(r) = 4 constraints[(19) are given by:
£1+€5 = €2+€6
by = U3
f3+€4 = €4+€5
le = 0O
The last equation is redundant since can be obtained sumapnthe first three
constraints. Simplifying we obtaii, = /5, and ¢, = ¢35 = (5. Since each variable

¢; ranges from0 to 2M, the number of integer solutions satisfying the constsaist
exactly (opr (1) = (2M + 1)3, and thenv(7) = 1.

To compute[(21) we need to enumerate the partitiors 7,,. First of all we notice thafZ,
represents the set of partitions ofpeelement set and thus has cardinali#y| = B(p) where
B(p) is thep-th Bell numberor exponential numbel1], and that the subséf, ;, has cardinality
Sy, Which is aStirling number of the second kir{d2]. An effective way to enumerate such
partitions is to build a tree of depth as in Figured B. A label is given to each node, starting
from the root which is labeled by “a”. The rule for buildingethree is as follows: each node
N generatesn + 1 leaves, labeled in increasing order starting from “a”, amds the number
of distinct labels in the path from the root to the notle The number of leaves of such a tree
of depthp is given by B(p). Each path from the root to a leaf represents a partitiaf the set
P. For a given partition (or path in the tree) the suliBetis the set of integers corresponding
to the depths of thg-th label in the path.

Example 3: Let us considep = 4 and the patha, b, a, a] (See Figuré]9). In the path
there are two distinct labels, namely “a” and “b”; thefr) = 2. The label “a” is found

at depths 1,3, and 4, while the label “b” is at depth 2. Theifiamtof P = {1,2, 3,4} is
then given byr = {{1, 3,4}, {2}}. This partition (or path) contributes to the expression

of E[\?] = E[\!] with the termv(7)3P~* = 3? since in this case(r) = 1.
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Using the procedure described above we can derive in clas®d dny moment of\. Here

we report the first few moments:

E[\ = 1

EN] = 147

E[N] = 1433+ 3

ENY] = 1+6ﬂ+2—;ﬂ2+ﬁ3

E\°] = 1+106+%062+4—??63+64

In practice the algorithm complexity prevents us from cotimumoments of order greater than
p = 12. To the best of our knowledge, a closed form expression ofgdreeric moment of\
is still unknown. If all moments were available, then an gtialexpression offs(x) could be

derived through its moment generating functigp(s)

“+o0 +0oo P
wals) = [ fatoperar =30 2l (22)
p=0

by applying the inverse Laplace transform.

A. Validation

We compare the moments of obtained by simulation with those obtained with the above
closed form analysis. Table | compares the exact valueseofibiments off;(z), and the values
obtained by Montecarlo simulation, for= 0.25,0.50,0.75 andp = 1,...,5. For each value of
[ the Table shows three columns. The first column, labeled *®irasents the values obtained
by simulation, using/ = 200. The second column, labeled “Exact”, reports the valueainbt
using [1T)without taking the limit (i.e., using finite values af/ andr). The third column,
labeled “Limit”, presents the limit values obtained thrbu@1). The excellent match between

simulation analytic results shows the validity of our fingn

VI. CONCLUSIONS

We considered a large-scale wireless sensor network sagnaliphysical field, and we in-
vestigated the relationship between the network topologg the probability of successful

field reconstruction. In the case of deterministic sensoations, we derived some sufficient
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TABLE |
COMPARISON OF THE MOMENTS OF\ OBTAINED BY SIMULATION AND BY CLOSED FORM ANALYSIS FORM = 200, AND

B = 0.25,0.50, 0.75.

8=0.25 8 =0.50 B8 =0.75
Sim Exact | Limit || Sim Exact | Limit || Sim Exact | Limit
p=1 | 1.000| 1.000 | 1.000 | 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000
p=2 || 1.249| 1.249 | 1.250 | 1.499| 1.499 | 1.500 || 1.748 | 1.748 | 1.750
p=3 || 1.810| 1.810 | 1.812 | 2.746 | 2.744 | 2.750 || 3.802 | 3.801 | 3.812
p=4 || 2.926 | 2.925| 2.932 | 5.778 | 5.771| 5.792 || 9.630 | 9.620 | 9.672
p=5| 5.152 | 5.152 | 5.176 || 13.51 | 13.49 | 13.56 || 27.41| 27.35 | 27.57

conditions for successful reconstruction, by reviewing literature on irregular sampling. Then,
we considered random network topologies, and employedoranmatrix theory. By doing so,
we were able to derive some conditions under which the fietdbeasuccessfully reconstructed
with a given probability.

A great deal of work still has to be done. However, to the bésiuv knowledge, this work
is the first attempt at solving the problem of identifying tbenditions on random network
topologies for the reconstruction of sensor fields. Furtitee, we believe that the basis we
provided for an analytical study of the problem can be of saildy in other fields besides

sensor networks.

APPENDIX |

THE CONSTRAINTS

Let us consider a vector of integeff sizep partitioning the seP = {1,...,p} in k subsets

P;, 1 < j <k and the set ok constraints

> i — L =0. (23)

1€P;

We first show that one of such constraint is always redundant.
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A. Redundant constraint

Choose an integer, 1 < j < k. Summing up together the constraints, exceptjtiie, we get

k
0 = Z Zfi — gy

h=11i€Py,
h#j

= > b=l

i€P/P;

= Z&' — iy — Z Ci — Ly

i€P 1€P;

= - Z Ui — Lt (24)

’iEPj

1€P;

which gives thej-th constraint

Thus one of the constraints {19) is always redundant. We rfmw ghat the remaining — 1

constraints are linearly independent.

B. Linear independence

The k constraints[(19), after some simplifications, can be reged in the form

A" =0
where A is ak x p matrix andl = [¢y,...,¢,]. We have previously shown that the rank Af
is such that
p(A) <k-1 (25)

since one constraint is redundant anek p. We prove now that the rank of is exactlyk — 1.

It is possible to writeA asA = A’ — A” where(A’);; = 1 if ¢ € P;, and0 elsewhere. The
matrix A’ has rankk since its rows are linearly independent due to the fact thiasetsP; have
empty intersection. SimilarlyA”);; = 1 if [i — 1] € P;, and0 elsewhere. In practice the matrix

A" is the matrixA’ circularly shifted by one position to the right. Hence it daa written as

A"=A'Z
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whereZ is thep x p right-shift matrix i.e. the entries of théth row of Z are zeroes except for

a “1” at position[i + 1]. By consequence

A=A —AZ=A®1,-17),

where _ -
+1 -1 0 - 0
0
@L-2Z)=| : - .0
0 I — |
-1 0 -~ 0 +1

has rankp(I, — Z) = p — 1. By consequence, using the property

p(A) = p(A'(L, - 2))
> p(A)+p(L, —Z) —p

= k-1 (26)

Considering togethef (25) and (26) we conclydd ) = k — 1.

(1]

(2]

(3]
(4]
(5]
(6]
(7]

(8]

9]
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Fig. 6. Histograms offas,s(x) in the log-log
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