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Abstract. Consider a N × n matrix Zn = (Znj1j2) where the individual entries
are a realization of a properly rescaled stationary Gaussian random field:

Znj1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where h ∈ ℓ1(Z2) is a deterministic complex summable sequence and (U(j1, j2);
(j1, j2) ∈ Z2) is a sequence of independent complex Gaussian random variables
with mean zero and unit variance.

The purpose of this article is to study the limiting empirical distribution of
the eigenvalues of Gram random matrices ZnZ

∗
n and (Zn+An)(Zn+An)

∗ where
An is a deterministic matrix with appropriate assumptions in the case where
n→ ∞ and N/n→ c ∈ (0,∞).

The proof relies on related results for matrices with independent but not
identically distributed entries and substantially differs from related works in
the literature (Boutet de Monvel et al. [4], Girko [9], etc.).
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1. Introduction

The model

Let Zn = (Znj1j2 , 0 ≤ j1 < N, 0 ≤ j2 < n) be a N × n random matrix with
entries

Znj1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (U(j1, j2), (j1, j2) ∈ Z2) is a sequence of independent complex Gaus-
sian random variables (r.v.) such that EU(j1, j2) = 0, EU(j1, j2)

2 = 0 and
E |U(j1, j2)|2 = 1, and (h(k1, k2), (k1, k2) ∈ Z2) is a deterministic complex se-
quence satisfying

∑

(k1,k2)∈Z2

|h(k1, k2)| <∞.

The bidimensional process Znj1j2 is a stationary Gaussian field. Indeed,

cov(Znj1j2 , Z
n
j′
1
j′
2
) = n−1C(j1 − j′1, j2 − j′2)

where
C(j1, j2) =

∑

(k1,k2)∈Z2

h(k1, k2)h
∗(k1 − j1, k2 − j2) (1.1)

(we denote by a∗ the complex conjugate of a ∈ C — we also denote by A∗ the
hermitian adjoint of matrix A).

The main results

The purpose of this article is to establish the convergence of the empirical
distribution of the eigenvalues of various Gram matrices based on Zn in the large
limit n→ ∞, N/n→ c ∈ (0,∞). More precisely, we shall study the convergence
of the spectral distribution of ZnZ

∗
n and (Zn + An)(Zn + An)∗ where An is a

deterministic matrix with a given structure. In particular, if Zn is square, we
take An to be Toeplitz. The contribution of this article is to provide a new
method to study Gram matrices based on Gaussian fields. The main idea is to
approximate the matrix Zn by a matrix Z̃n unitarily congruent to a matrix with
independent but not identically distributed entries. This method will allow us
to revisit the centered case ZnZ

∗
n, already studied by Boutet de Monvel et al.

in [4] and to establish the limiting spectral distribution of the non-centered case
(Zn +An)(Zn +An)

∗ for some deterministic matrix An.

Motivations

The motivations for such a work are twofold. First of all, we believe that
this line of proof is new. Let us briefly describe the three main elements of it.
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The first one is a periodization scheme popular in signal processing and
described as follows:

Z̃n = (Z̃nj1j2)

where

Z̃nj1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U
(

(j1 − k1)modN, (j2 − k2)modn
)

,

where mod denotes modulo.
The second element is an inequality due to Bai [2] involving the Lévy dis-

tance L between distribution functions:

L4(FAA
∗

, FBB
∗

) ≤ 2

N2
Tr(A−B)(A−B)∗ Tr(AA∗ +BB∗), (1.2)

where FAA
∗

denotes the empirical distribution function of the eigenvalues of the
matrix AA∗ and Tr(X) denotes the trace of matrix X . With the help of this
inequality, we shall prove that ZnZ

∗
n and Z̃nZ̃

∗
n have the same limiting spectral

distribution.
The third element comes from the advantage of considering Z̃n. In fact, Z̃n

is congruent (via Fourier unitary transforms) to a random matrix with inde-
pendent but not identically distributed entries. Therefore, we can (and will)
rely on results established in [11] for Gram matrices with independent but not
identically distributed entries.

The second motivation comes from the field of wireless communications. In
a communication system employing antenna arrays at the transmitter and at
the receiver sides, random matrices extracted from Gaussian fields are often
good models for representing the radio communication channel. In this course,
the stationary model as considered above is often a realistic channel model.
The computations of popular receiver performance indexes such as Signal to
Interference plus Noise Ratio or Shannon channel capacity heavily rely on the
knowledge of the limiting spectral distribution of matrices of the type ZnZ

∗
n

(see [6, 13] and also the tutorial [16] for further references).

About the literature

Various Gram matrices based on Gaussian fields have already been studied
in the literature. The study of the general case (Zn +An)(Zn +An)∗ has been
undertaken by Girko in [9, 10]. His approach is based on more general results
valid in the case of a Gram matrix with asymptotically independent entries. In
this context, Girko shows that the normalized trace of its resolvent has the same
asymptotic behavior as the normalized trace of a deterministic matrix verifying
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a certain non-linear “canonical equation”. Since no assumptions are done on
the structure of An, there might not be any limiting spectral distribution. In
the case where Zn is a stationary field and An is Toeplitz, the equations have
a simpler form, and depend on the spectral measure of Zn and on the Fourier
transform of the entries of An. Note that the Gaussianity is not necessary in
this approach.

Boutet de Monvel et al. [4] have also studied Gram matrices based on sta-
tionary Gaussian fields in the case where the matrix has the form Vn+ZnZ

∗
n, Vn

being a deterministic Toeplitz matrix. Their line of proof is based on a direct
study of the resolvent, taking advantage of the Gaussianity of the entries.

Disclaimer

In this paper, we study in detail the case where the entries of matrix Zn are
complex. In the real case, the general framework of the proof works as well if
one considers the real counterpart of the Fourier unitary transforms, however
the computations are more involved. We provide some details in Section 5.

2. Assumptions and useful results

2.1. Notation, assumptions, Stieltjes transforms and Stieltjes kernels

Let N = N(n) be a sequence of integers such that

lim
n→∞

N(n)

n
= c ∈ (0,∞).

We denote by i the complex number
√
−1, by 1A(x) the indicator function over

set A and by δx0
(x) the Dirac measure at point x0. A sum will be equivalently

written as
∑n

k=1 or
∑

k=1:n. We denote by CN (0, 1) the distribution of the
Gaussian complex random variable U satisfying EU = 0, EU2 = 0, and E |U |2
= 1 (equivalently, U = A + iB where A and B are real independent Gaussian
r.v.’s with mean 0 and standard deviation 1/

√
2 each).

Assumption A-1. The entries (Znj1j2 , 0 ≤ j1 < N, 0 ≤ j2 < n, n ≥ 1) of the
N × n matrix Zn are random variables defined as:

Znj1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (h(k1, k2), (k1, k2) ∈ Z2) is a deterministic complex sequence satisfying

hmax
△
=

∑

(k1,k2)∈Z2

|h(k1, k2)| <∞

and (U(j1, j2), (j1, j2) ∈ Z2) is a sequence of independent random variables with
distribution CN (0, 1).
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Remark 2.1. Assumption (A-1) is a bit more restrictive than the related as-
sumption [4], which only relies on the summability of the covariance function of
the stationary process.

For every matrix A, we denote by FAA
∗

the empirical distribution function
of the eigenvalues of AA∗. Since we will study at the same time the limiting
spectrum of the matrices ZnZ

∗
n (resp. (Zn + An)(Zn + An)∗) and Z∗

nZn (resp.
(Zn+An)

∗(Zn+An)), we can assume without loss of generality that c ≤ 1. We
also assume for simplicity that N ≤ n.

When dealing with vectors, the norm ‖·‖ will denote the Euclidean norm. In
the case of matrices, the norm ‖·‖ will refer to the spectral norm. Denote by C+

the set C+ = {z ∈ C, Im(z) > 0} and by C(X ) the set of bounded continuous
functions over a given topological space X endowed with the supremum norm
‖ · ‖∞.

Let µ be a probability measure over R. Its Stieltjes transform f is defined by

f(z) =

∫

R

µ(dλ)

λ− z
, z ∈ C+.

We list below the main properties of the Stieltjes transforms that will be needed
in the sequel.

Proposition 2.1. The following properties hold true:

(1) Let f be the Stieltjes transform of µ, then

- the function f is analytic over C+,

- the function f satisfies: |f(z)| ≤ 1/Im(z),

- if z ∈ C+, then f(z) ∈ C+,

- if µ(−∞, 0) = 0, then z ∈ C+ implies z f(z) ∈ C+.

(2) Conversely, let f be a function analytic over C+ such that f(z) ∈ C+ if

z ∈ C+ and |f(z)| |Im(z)| bounded on C+. If limy→+∞ −iy f(iy) = 1, then f
is the Stieltjes transform of a probability measure µ and the following inversion

formula holds:

µ([a, b]) = lim
η→0+

1

π

b
∫

a

Im f(ξ + iη) dξ,

where a and b are continuity points of µ. If moreover zf(z) ∈ C+ if z ∈ C+

then, µ(R−) = 0.

(3) Let Pn and P be probability measures over R and denote by fn and f
their Stieltjes transforms. Then

(

∀z ∈ C+, fn(z) −−−−→
n→∞

f(z)
)

=⇒ Pn
D−−−−→

n→∞
P .
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Denote by MC(X ) the set of complex measures over the topological set X .
In the sequel, we will call Stieltjes kernel every application

π : C+ → MC(X )

either denoted π(z, dx) or πz(dx) and satisfying:

(1) ∀z ∈ C+, ∀g ∈ C(X ),
∣

∣

∫

g dπz
∣

∣ ≤ ‖g‖∞/Im(z).

(2) ∀g ∈ C(X ),
∫

g dπz is analytic over C+,

(3) ∀z ∈ C+, ∀g ∈ C(X ) and g ≥ 0, Im
( ∫

g dπz
)

≥ 0,

(4) ∀z ∈ C+, ∀g ∈ C(X ) and g ≥ 0, Im
(

z
∫

g dπz
)

≥ 0.

2.2. A quick review of the results for matrices with independent en-
tries

In order to establish the convergence of the empirical distribution of the
eigenvalues, we will rely on the results based on matrices with independent
but not identically distributed entries. Let us recall here those of interest (the
assumptions and the statements are based on [11]).

Remark 2.2. The Wigner case (Hermitian matrix with independent but not
identically distributed entries) is also of interest since one can relate the eigenval-
ues of ZZ∗ to the eigenvalues of the Wigner matrix

(

0 Z∗

Z 0

)

. This case has been
studied by Casati and Girko [7], Shlyakhtenko [14,15], Anderson and Zeitouni [1]
among others.

Consider a N × n random matrix Yn where the entries are given by

Y nj1j2 =
Φ(j1/N, j2/n)√

n
Xn
j1j2

where Xn
j1j2

and Φ are defined below.

Assumption A-2. The complex random variables

(Xn
j1j2 ; 0 ≤ j1 < N, 0 ≤ j2 < n, n ≥ 1)

are independent and identically distributed (i.i.d.). They are centered with
E |Xn

j1j2
|2 = 1 and there exists ε > 0 such that E |Xn

j1j2
|4+ε <∞.

Assumption A-3. The function Φ : [0, 1] × [0, 1] → C is such that |Φ|2 is
continuous and therefore there exists a non-negative constant Φmax such that

∀(t1, t2) ∈ [0, 1]2, 0 ≤ |Φ(t1, t2)|2 ≤ Φ2
max <∞. (2.1)
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Theorem 2.1 (Independent entries, the centered case [8]). If (A-2) and

(A-3) hold and n→ ∞, then the empirical distribution of the eigenvalues of the

matrix YnY
∗
n converges a.s. to a non-random probability measure µ whose Stielt-

jes transform f is given by f(z) =
∫

[0,1] πz(dx), where πz is the unique Stieltjes

kernel with support included in [0, 1] and satisfying for all g ∈ C([0, 1]),

∫

g dπz =

1
∫

0

g(u)

−z +
∫ 1

0

(

|Φ|2(u, t)
/[

1 + c
∫ 1

0 |Φ|2(x, t)πz(dx)
])

dt
du. (2.2)

If one adds a deterministic pseudo-diagonal matrix Λn to the matrix Yn, the
limiting equation is modified and in fact becomes a system of equations.

Assumption A-4. Let Λn = (Λnij) be a complex deterministic N × n matrix
whose non-diagonal entries are zero. We assume moreover that there exists a
probability measure H( du, dλ) over the set [0, 1]× R with compact support H
such that

1

N

N
∑

i=1

δ(i/N, |Λn

ii
|2)(du, dλ)

D−−−−→
n→∞

H( du, dλ). (2.3)

Denote by Hc the support of the image of probability measure H under the
application (u, λ) → (cu, λ) and by R the support of the measure 1[c,1](du) ⊗
δ0(dλ) where ⊗ denotes the product of measures. The set H̃ = Hc ∪ R will
be of importance in the sequel (see also Remarks 2.4 and 2.5 in [11] for more
information).

Theorem 2.2 (Independent entries, the non-centered case [11]).
Assume that (A-2), (A-3) and (A-4) hold and let n → ∞. Then the empirical

distributions of the eigenvalues of matrices (Yn + Λn)(Yn + Λn)
∗ and (Yn +

Λn)
∗(Yn+Λn) converge a.s. to non-random probability measures µ and µ̃ whose

Stieltjes transforms f and f̃ are given by

f(z) =

∫

H

πz(dx) and f̃(z) =

∫

H̃

π̃z(dx)

where πz and π̃z are the unique Stieltjes kernels with supports included in H
and H̃ and satisfying

∫

g dπz =

∫

g(u, λ)

−z(1 +
∫

|Φ|2(u, t)π̃(z, dt, dζ)) + λ/[1 + c
∫

|Φ|2(t, cu)π(z, dt, dζ)]

×H(du, dλ), (2.4)
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∫

g dπ̃z = c

∫

g(cu, λ)

−z(1+c
∫

|Φ|2(t, cu)π(z, dt, dζ))+λ/[1+
∫

|Φ|2(u, t)π̃(z, dt, dζ)]

×H(du, dλ) + (1 − c)

1
∫

c

g(u, 0)

−z(1 + c
∫

|Φ|2(t, u)π(z, dt, dζ))
du (2.5)

where (2.4) and (2.5) hold for every g ∈ C(H).

3. The limiting distribution in the centered stationary case

We first introduce the following complex-valued function Φ : [0, 1] × [0, 1]
→ C defined by

Φ(t1, t2) =
∑

(ℓ1,ℓ2)∈Z2

h(ℓ1, ℓ2)e
2πi(ℓ1t1−ℓ2t2). (3.1)

We also introduce the p× p Fourier matrix Fp = (F pj1,j2)0≤j1,j2<p defined by

F pj1,j2 =
1√
p

exp
(

2iπ
(j1j2

p

))

. (3.2)

Note that matrix Fp is a unitary matrix.

Theorem 3.1 (Stationary entries, the centered case [4, 9]). Let Zn be a

N×n matrix satisfying (A-1) and let n→ ∞. Then the empirical distribution of

the eigenvalues of the matrix ZnZ
∗
n converges in probability to the non-random

probability measure µ defined in Theorem 2.1.

3.1. Proof of Theorem 3.1

Recall that

Znj1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2).

We introduce the N × n matrix Z̃n whose entries are defined by

Z̃nj1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1 modN, j2 − k2 modn).

For simplicity, we shall write Ũn(j1, j2) instead of U(j1 modN, j2 modn). Re-
call that L stands for the Lévy distance between distribution functions. The
main interest in dealing with matrix Z̃n lies in the following two lemmas.
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Lemma 3.1. Consider the N×n matrix Yn = FN Z̃nF
∗
n . Then the entries Y nℓ1ℓ2

of Yn can be written as

Y nℓ1ℓ2 =
1√
n

Φ
( ℓ1
N
,
ℓ2
n

)

Xn
ℓ1ℓ2

where Φ is defined in (3.1) and the complex random variables {Xn
ℓ1ℓ2

, 0 ≤ ℓ1
< N, 0 ≤ ℓ2 < n} are independent with distribution CN (0, 1).

Proof of Lemma 3.1. We first compute the individual entries of matrix Yn =
FN Z̃nF

∗
n :

Y nℓ1ℓ2 =
∑

j1=0:N−1
j2=0:n−1

exp{2iπ(j1ℓ1/N − j2ℓ2/n)}√
Nn

Z̃nj1j2

=
1√
n

∑

j1=0:N−1
j2=0:n−1

exp{2iπ(j1ℓ1/N − j2ℓ2/n)}√
Nn

×
∑

(k1,k2)∈Z2

h(k1, k2) Ũ
n(j1 − k1, j2 − k2)

=
1√
n

∑

j1=0:N−1
j2=0:n−1

exp{2iπ(j1ℓ1/N − j2ℓ2/n)}√
Nn

∑

m1=0:N−1
m2=0:n−1

U(m1,m2)

×
∑

(k1,k2)∈Z2

h(j1 −m1 + k1N, j2 −m2 + k2n)

=
1√
n

Φ
( ℓ1
N
,
ℓ2
n

)

∑

m1=0:N−1
m2=0:n−1

U(m1,m2)
exp{2iπ(m1ℓ1/N −m2ℓ2/n)}√

Nn
.

Let Xn
ℓ1ℓ2

be the random variable defined as

Xn
ℓ1ℓ2 =

∑

m1=0:N−1
m2=0:n−1

U(m1,m2)
exp{2iπ(m1ℓ1/N −m2ℓ2/n)}√

Nn

for 0 ≤ ℓ1 ≤ N−1 and 0 ≤ ℓ2 ≤ n−1. Denoting byXn and Un theN×nmatrices
with entries Xn

ℓ1ℓ2
and U(ℓ1, ℓ2) respectively, we then have Xn = FNUnF

∗
n .

Define vec(A) to be the vector obtained by stacking the columns of matrix A.
Then the Nn × 1 vectors X = vec(Xn) and U = vec(Un) are related by the
equation X = (F ∗

n⊗FN )U (Lemma 4.3.1 in [12]), where ⊗ denotes the Kronecker
product of matrices. The vector X is a complex Gaussian random vector that
satisfies

EX = (F ∗
n ⊗ FN ) EU = 0
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and
EXXT = (F ∗

n ⊗ FN ) EUUT (F ∗
n ⊗ FN ) = 0.

After noticing that the matrix (F ∗
n ⊗ FN ) is unitary, we furthermore have

EXX∗ = (F ∗
n ⊗ FN ) EUU∗(F ∗

n ⊗ FN )∗ = InN

where Ip is the p×p identity matrix. In short, the entries of Xn are independent
and have the distribution CN (0, 1). Lemma 3.1 is proved. 2

Lemma 3.2. Let Bn be a N × n deterministic matrix such that the sequence

(1/n)TrBnB
∗
n is bounded over n. Then

L
(

F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗
) P−−−−→
n→∞

0,

where
P−→ denotes convergence in probability.

Proof of Lemma 3.2. Bai’s inequality (1.2) yields:

L4
(

F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗
)

(3.3)

≤ 2

n2
Tr(Zn − Z̃n)(Zn − Z̃n)

∗

× Tr
(

(Zn +Bn)(Zn +Bn)
∗ + (Z̃n +Bn)(Z̃n +Bn)∗

)

.

We introduce the following notation:

αn =
1

n
Tr(Zn − Z̃n)(Zn − Z̃n)

∗,

βn =
1

n
Tr(Zn +Bn)(Zn +Bn)

∗, β̃n =
1

n
Tr(Z̃n +Bn)(Z̃n +Bn)

∗.

With this notation, inequality (3.3) becomes:

L4
(

F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗
)

≤ 2αn(βn + β̃n).

In order to prove that

L(F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗)
P−→ 0,

it is sufficient to prove that αn(βn + β̃n)
P−→ 0, which follows from αn

P−→ 0 and
βn and β̃n being tight. Indeed,

P{αn(βn + β̃n) ≥ ε} ≤ P{αnβn ≥ ε/2} + P{αnβ̃n ≥ ε/2}
≤ P

{

αn ≥ ε

2K

}

+ P{βn ≥ 2K}

+ P

{

αn ≥ ε

2K̃

}

+ P{β̃n ≥ 2K̃}.
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Let us first prove that

αn
P−→ 0. (3.4)

Since αn is non-negative, it is sufficient by Markov’s inequality to prove that
Eαn → 0.

αn =
1

n
Tr(Zn − Z̃n)(Zn − Z̃n)

∗

=
1

n2

∑

j1=0:N−1
j2=0:n−1

∣

∣Znj1,j2 − Z̃nj1,j2
∣

∣

2

=
1

n2

∑

j1=0:N−1
j2=0:n−1

∣

∣

∣

∑

(k1,k2)∈Z2

h(k1, k2)V (j1 − k1, j2 − k2)
∣

∣

∣

2

,

where V (j1, j2) stands for U(j1, j2) − Ũn(j1, j2). Thus

Eαn =
1

n2

∑

j1=0:N−1
j2=0:n−1

∑

(k1,k2)∈Z2

(k′1,k
′

2)∈Z2

h(k1, k2)h
∗(k′1, k

′
2)

× EV (j1 − k1, j2 − k2)V
∗(j1 − k′1, j2 − k′2).

Introduce the set J = {0, · · · , N − 1} × {0, · · · , n− 1}. Then

EV (ℓ1, ℓ2)V
∗(ℓ′1, ℓ

′
2) =1Z2−J (ℓ1, ℓ2)1Z2−J (ℓ′1, ℓ

′
2)

(

1(ℓ1,ℓ2)(ℓ
′
1, ℓ

′
2)

+
∑

(m1,m2)∈Z2

1(ℓ1,ℓ2)(ℓ
′
1 +m1N, ℓ

′
2 +m2n)

)

and Eαn becomes Eαn = Eαn,1 + Eαn,2 where

Eαn,1 =
1

n2

∑

j1=0:N−1
j2=0:n−1

∑

(k1,k2)∈Z2

|h(k1, k2)|2 1Z2−J (j1 − k1, j2 − k2),

Eαn,2 =
1

n2

∑

j1=0:N−1
j2=0:n−1

∑

(k1,k2)∈Z2

(k′1,k
′

2)∈Z2

h(k1, k2)h
∗(k′1, k

′
2)1Z2−J (j1 − k1, j2 − k2)

× 1Z2−J (j1 − k′1, j2 − k′2)
∑

(m1,m2)∈Z2

1(k1,k2)(k
′
1 +m1N, k

′
2 +m2n).
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Let us first deal with Eαn,2.

Eαn,2 ≤ 1

n2

∑

j1=0:N−1
j2=0:n−1

∑

(k1,k2)∈Z2

|h(k1, k2)|1Z2−J (j1 − k1, j2 − k2)

×
∑

(k′
1
,k′

2
)∈Z2

|h(k′1, k′2)|1Z2−J (j1 − k′1, j2 − k′2)

×
∑

(m1,m2)∈Z2

1(k1,k2)(k
′
1 +m1N, k

′
2 +m2n).

Since h is summable over Z2 by (A-1),

∑

(k′
1
,k′

2
)∈Z2

|h(k′1, k′2)|1Z2−J (j1−k′1, j2−k′2)
∑

(m1,m2)∈Z2

1(k1,k2)(k
′
1+m1N, k

′
2+m2n)

is bounded by hmax and

Eαn,2 ≤ hmax

n2

∑

j1=0:N−1
j2=0:n−1

∑

(k1,k2)∈Z2

|h(k1, k2)|1Z2−J (j1 − k1, j2 − k2). (3.5)

Since

1Z2−J (j1 − k1, j2 − k2) = 1 ⇐⇒
{

j1 − k1 < 0 or j1 − k1 ≥ N,
j2 − k2 < 0 or j2 − k2 ≥ n,

we get:

∑

(k1,k2)∈Z2

|h(k1, k2)|1Z2−J (j1 − k1, j2 − k2)

=
∑

k1=−∞:j1−N ;
k2=−∞:j2−n

|h(k1, k2)| +
∑

k1=−∞:j1−N ;
k2=j2+1:∞

|h(k1, k2)|

+
∑

k1=j1+1:∞;
k2=−∞:j2−n

|h(k1, k2)| +
∑

k1=j1+1:∞;
k2=j2+1:∞

|h(k1, k2)|.

The change of variables

{

j′1 = N − 1 − j1
k′1 = −k1

and

{

j′2 = n− 1 − j2
k′2 = −k2

yields

∑

j1=0:N−1
j2=0:n−1

∑

k1=−∞:j1−N ;
k2=−∞:j2−n

|h(k1, k2)| =
∑

j′1=0:N−1

j′2=0:n−1

∑

k′1=j
′

1+1:∞;

k′2=j′2+1:∞

|h(−k′1,−k′2)|.



Limiting distribution of stationary Gram matrices 641

By performing similar change of variables, one gets:

∑

j1=0:N−1
j2=0:n−1

∑

(k1,k2)∈Z2

|h(k1, k2)|1Z2−J (j1 − k1, j2 − k2)

=
∑

j1=0:N−1
j2=0:n−1

∑

k1=j1+1:∞;
k2=j2+1:∞

|h(−k1,−k2)| + |h(−k1, k2)|

+ |h(k1,−k2)| + |h(k1, k2)|.

Let us denote the inner sum in the right-hand side by S(j1, j2). In order to
check that

1

n2

∑

j1=0:N−1
j2=0:n−1

S(j1, j2) −−−−−−−−−→
n→∞ ;N/n→c

0, (3.6)

we introduce

T (j) =
∑

k1+k2≥j+2

|h(−k1,−k2)| + |h(−k1, k2)| + |h(k1,−k2)| + |h(k1, k2)|.

Is is straightforward to check that T (j) −−−→
j→∞

0 and that S(j1, j2) ≤ T (j1 + j2).

We prove (3.6) by a Césaro-like argument: Let n0 be such that T (n0 + 1) ≤ ε
and take N ≥ n0. We have

1

n2

∑

j1=0:N−1
j2=0:n−1

S(j1, j2) =
1

n2

∑

0≤j1+j2≤n0

S(j1, j2) +
1

n2

∑

n0+1≤j1+j2;

j1≤N−1, j2≤n−1

S(j1, j2).

(3.7)
If n is large enough, then the first part of the right-hand side of (3.7) is smaller
than ε. Moreover,

1

n2

∑

n0+1≤j1+j2;

j1≤N−1, j2≤n−1

S(j1, j2) ≤
1

n2

∑

n0+1≤j1+j2;

j1≤N−1, j2≤n−1

T (n0 + 1) ≤ ε

and (3.6) is proved. By plugging (3.6) into (3.5), we prove that Eαn,2 → 0.
Using the same kind of arguments, one proves that Eαn,1 → 0. Finally, (3.4) is

proved: αn
P−→ 0.

Let us now check that

∃K > 0, Eβn ≤ K and ∃ K̃ > 0, E β̃n ≤ K̃ (3.8)

for n large enough. This will imply the tightness of βn and β̃n.
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Recall that by assumption there exists Bmax such that supn(1/n)TrBnB
∗
n ≤

Bmax. Consider now

1

n
Tr(Zn +Bn)(Zn +Bn)

∗ ≤
(( 1

n
TrZnZ

∗
n

)1/2

+
( 1

n
TrBnB

∗
n

)1/2 )2

≤
(( 1

n
TrZnZ

∗
n

)1/2

+B1/2
max

)2

.

In particular,

E
Tr(Zn +Bn)(Zn +Bn)

∗

n
≤ E

TrZnZ
∗
n

n
+ 2B1/2

max E

(TrZnZ
∗
n

n

)1/2

+Bmax

(a)

≤ E
TrZnZ

∗
n

n
+ 2B1/2

max

(

E

(TrZnZ
∗
n

n

))1/2

+Bmax

(3.9)

where (a) follows from Jensen’s inequality. Notice that (3.9) still holds if one
replaces Zn by Z̃n. Therefore in order to prove (3.8), it is sufficient to prove
that

∃K ′ > 0, E

(TrZnZ
∗
n

n

)

≤ K ′ and ∃ K̃ ′ > 0, E

(TrZ̃nZ̃
∗
n

n

)

≤ K̃ ′.

Consider

E

(TrZnZ
∗
n

n

)

=
1

n

∑

j1=1:N
j2=1:n

E |Znj1j2 |2 = N E |Zn11|2 =
N

n
C(0, 0),

where C is defined by (1.1). This quantity is asymptotically bounded. From
Lemma 3.1, we have

E

(TrZ̃nZ̃
∗
n

n

)

= E

(TrYnY
∗
n

n

)

=
1

n2

∑

j1=1:N
j2=1:n

∣

∣

∣
Φ

( j1
N
,
j2
n

)∣

∣

∣

2

E |Xn
j1j2 |2 ≤ N

n
Φ2

max,

which is also asymptotically bounded. Thus (3.8) is proved and so is Lemma
3.2. 2

Proof of Theorem 3.1. Lemma 3.2 implies that

P
{

L
(

FZnZ
∗

n , F Z̃nZ̃
∗

n

)

≥ ε
}

−−−−→
n→∞

0 for every ε > 0. (3.10)

By Lemma 3.1, FN Z̃nZ̃
∗
nF

∗
N = YnY

∗
n . Since FN is unitary, Z̃nZ̃

∗
n and YnY

∗
n have

the same eigenvalues. Moreover, matrix Yn fulfills (A-2) and the variance profile
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Φ defined in (3.1) satisfies (A-3) since (h(k1, k2), (k1, k2) ∈ Z2) is summable;
therefore one can apply Theorem 2.1. In particular,

F Z̃nZ̃
∗

n −−−−→
n→∞

µ a.s. =⇒ ∀ε > 0, P
{

L
(

F Z̃nZ̃
∗

n , µ
)

≥ ε
}

−−−−→
n→∞

0 (3.11)

where µ is the probability distribution defined in Theorem 2.1. Now (3.10)

together with (3.11) imply that FZnZ
∗

n
P−→ µ and Theorem 3.1 is proved. 2

4. The limiting distribution in the non-centered stationary case

Recall the definitions of function Φ and matrix Fp (respectively defined
in (3.1) and (3.2)).

Theorem 4.1 (Stationary entries, the non-centered case). Let Zn be a

N×nmatrix satisfying (A-1); let An be a N×nmatrix such that Λn = FNAnF
∗
n

is N × n pseudo-diagonal and satisfies (A-4). Then the empirical distributions

of the eigenvalues of matrices (Zn +An)(Zn +An)∗ and (Zn +An)
∗(Zn +An)

converge in probability to the non-random probability measures µ and µ̃ defined

in Theorem 2.2 as n→ ∞.

Proof of Theorem 4.1. Denote F (Zn+An)(Zn+An)∗ by Fn and F (Z̃n+An)(Z̃n+An)∗

by F̃n. Since Λn satisfies (A-4), (1/n)TrAnA
∗
n = (1/n)TrΛnΛ

∗
n is bounded and

Lemma 3.2 implies that

P
{
∣

∣L(Fn, F̃n)
∣

∣ ≥ ε
}

−−−−→
n→∞

0 for every ε > 0. (4.1)

By Lemma 3.1 and the assumption over An,

(Z̃n +An)(Z̃n +An)∗ = FN (Yn + Λn)(Yn + Λn)
∗F ∗

N .

Since the Fourier matrix FN is unitary, (Z̃n+An)(Z̃n+An)∗ and (Yn+Λn)(Yn+
Λn)

∗ have the same eigenvalues. Since Φ defined in (3.1) satisfies (A-3), the
matrices Yn and Λn fulfill assumptions (A-2), (A-3) and (A-4), therefore one
can apply Theorem 2.2. In particular,

F̃n −−−−→
n→∞

µ a.s. =⇒ ∀ε > 0, P
{∣

∣L(F̃n, µ)
∣

∣ ≥ ε
}

−−−−→
n→∞

0 (4.2)

where µ is the probability distribution defined in Theorem 2.2. Relation (4.1)

together with (4.2) imply that Fn
P−→ µ and Theorem 4.1 is proved. 2

In the square case n×n, we can deal with slightly more general matrices An.

Assumption A-5. The n× n matrix An is a Toeplitz matrix defined as An =
(a(j1 − j2))0≤j1,j2<n where (a(j))j∈Z is a deterministic sequence of complex
numbers satisfying:

∑

j∈Z

|a(j)| <∞.
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Let ψ : [0, 1] 7→ C be the so called symbol of An defined as

ψ(t) =
∑

j∈Z

a(j)e2iπjt. (4.3)

Due to (A-5), ψ is bounded and continuous.

Theorem 4.2 (Stationary entries, the non-centered square case).
Let Zn be a n× n matrix satisfying (A-1); let An be a n× n matrix satisfying

(A-5) and let n → ∞. Then the empirical distributions of the eigenvalues of

matrices (Zn+An)(Zn+An)
∗ and (Zn+An)

∗(Zn+An) converge in probability

to non-random probability measures µ and µ̃ whose Stieltjes transforms f and

f̃ are given by

f(z) =

∫

[0,1]

πz(dx) and f̃(z) =

∫

[0,1]

π̃z(dx)

where πz and π̃z are the unique Stieltjes kernels with supports included in [0, 1]
and satisfying the system of equations:

∫

g dπz =

1
∫

0

g(u)

−z(1 +
∫

|Φ(u, ·)|2dπ̃z) + |ψ(u)|2/[1 +
∫

|Φ(·, u)|2 dπz ]
du (4.4)

∫

g dπ̃z =

1
∫

0

g(u)

−z(1 +
∫

|Φ(·, u)|2dπz) + |ψ(u)|2/[1 +
∫

|Φ(u, ·)|2 dπ̃z ]
du (4.5)

for every function g ∈ C([0, 1]).

Proof. The proof is based on the fact that a Toeplitz matrix An is very close
to a Toeplitz circulant matrix Ãn defined in such a way that the diagonal ma-
trix Λn = FnÃnF

∗
n satisfies assumption (A-4). Denoting by ψn the truncated

function ψn(t) =
∑n

j=−n a(j) exp{2iπjt}, we choose Ãn to be the matrix whose
entries are defined by

ãnj1j2 =
1

n

n−1
∑

k=0

ψn

(k

n

)

exp
(−2πik(j1 − j2)

n

)

.

Notice that in this case, Λn = FnÃnF
∗
n is given by Λn = diag([ψn(0), ψn(1/n),

. . . , ψn((n− 1)/n)]) where diag(v) is the diagonal matrix bearing the entries of
the vector v on its diagonal.

One can also prove that the complex number ãn(j1 − j2) = ãnj1j2 satisfies
ãn(0) = a(0) + a(n) + a(−n) and

ãn(j) =

{

a(j) + a(j − n) if n− 1 ≥ j > 0,
a(j) + a(j + n) if −n+ 1 ≤ j < 0.
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We denote by Fn and F̆n the distribution functions Fn = F (Zn+An)(Zn+An)∗

and F̆n = F (Zn+Ãn)(Zn+Ãn)∗ . We shall prove that L(Fn, F̆n) → 0 as n→ ∞.
Bai’s inequality yields:

L4(Fn, F̆n) ≤ 2

n2
Tr(An − Ãn)(An − Ãn)

∗ Tr(AnA
∗
n + ÃnÃ

∗
n). (4.6)

We first prove that n−1Tr(AnA
∗
n) and n−1Tr(ÃnÃ

∗
n) are bounded:

1

n
TrAnA

∗
n =

1

n

n−1
∑

j1,j2=0

|a(j1 − j2)|2 =
n−1
∑

j=−n+1

|a(j)|2
(

1 − |j|
n

)

≤
(

∑

j∈Z

|a(j)|
)2

.

(4.7)
Moreover,

1

n
TrÃnÃ

∗
n =

1

n
TrΛnΛ

∗
n =

1

n

n−1
∑

j=0

∣

∣

∣
ψn

( j

n

)∣

∣

∣

2

≤
(

∑

j∈Z

|a(j)|
)2

. (4.8)

We now prove that

1

n
Tr(An − Ãn)(An − Ãn)

∗ −−−−→
n→∞

0. (4.9)

Indeed,

1

n
Tr(An − Ãn)(An − Ãn)

∗

=
1

n

n−1
∑

j1,j2=0

|a(j1 − j2) − ãn(j1 − j2)|2 =
n−1
∑

j=−(n−1)

|a(j) − ãn(j)|2
(

1 − |j|
n

)

= |a(−n) + a(n)|2 +

n−1
∑

j=1

(

|a(j − n)|2 + |a(n− j)|2
)(

1 − j

n

)

= |a(−n) + a(n)|2 +
n−1
∑

j=1

j

n

(

|a(j)|2 + |a(−j)|2
)

≤ |a(−n) + a(n)|2 +
1

n

J
∑

j=1

j
(

|a(j)|2 + |a(−j)|2
)

+

∞
∑

j=J+1

(

|a(j)|2 + |a(−j)|2
)

.

By first taking J large enough then n large enough, the claim is proved by a
2ε-argument.

Inequality (4.6) together with the arguments provided by (4.7), (4.8) and
(4.9) imply that

L(Fn, F̆n) −−−−→
n→∞

0.
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It remains to prove that F̆n converges towards the non-random probability dis-
tribution characterized by equations (4.4) and (4.5). As previously, the variance
profile Φ defined in (3.1) satisfies (A-3). Moreover, we have

1

n

n
∑

i=1

δ(i/n, |ψn((i−1)/n)|2) −−−−→
n→∞

H(du, dλ)

where H(du, dλ) is the image of the Lebesgue measure over [0, 1] under u 7→
(u, |ψ(u)|2). Therefore Λn satisfies (A-4) and Theorem 4.1 can be applied. This
completes the proof of Theorem 4.2. 2

5. Remarks on the real case

In the case where the entries of matrix Zn are given by

Znj1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (h(k1, k2), (k1, k2) ∈ Z2) is a deterministic real and summable sequence
and where U(j1, j2) are real standard independent Gaussian r.v.’s, the conclu-
sion of Lemma 3.1 is no longer valid. In fact the entries of Yn = FN Z̃nF

∗
n are

far from being independent since straightforward computation yields:

Y nℓ1,ℓ2 = Y n
∗

N−ℓ1,n−ℓ2 for 0 < ℓ1 < N and 0 < ℓ2 < n.

We introduce the p × p orthogonal matrix Qp = (Qpj1j2)0≤j1,j2<p defined as
follows.

Qp0,j2 =
1√
p
, 0 ≤ j2 < p.

In the case where p is even, the entries Qp(j1, j2) (j1 ≥ 1) are defined by



































Qp2j1−1,j2
=

√

2

p
cos

(2πj1j2
p

)

if 1 ≤ j1 ≤ p

2
− 1, 0 ≤ j2 < p;

Qp2j1,j2 =

√

2

p
sin

(2πj1j2
p

)

if 1 ≤ j1 ≤ p

2
− 1, 0 ≤ j2 < p;

Qpp−1,j2
=

(−1)j2√
p

if 0 ≤ j2 < p.

In the case where p is odd, they are defined by















Qp2j1−1,j2
=

√

2

p
cos

(2πj1j2
p

)

if 1 ≤ j1 ≤ p− 1

2
, 0 ≤ j2 < p;

Qp2j1,j2 =

√

2

p
sin

(2πj1j2
p

)

if 1 ≤ j1 ≤ p− 1

2
, 0 ≤ j2 < p.
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In the sequel, ⌊x⌋ stands for the integer part of x. The following result is the
counterpart of Lemma 3.1 in the real case.

Lemma 5.1. Consider the N × n matrix Wn = QN Z̃nQ
T
n where AT is the

transpose of matrix A. Then the entries Wn
ℓ1ℓ2

of Wn can be written as

Wn
ℓ1ℓ2 =

1√
n

∣

∣

∣
Φ

( 1

N

⌊ℓ1 + 1

2

⌋

,
1

n

⌊ℓ2 + 1

2

⌋)
∣

∣

∣
Xn
ℓ1ℓ2

where Φ is defined in (3.1) and the real random variables {Xn
ℓ1ℓ2

, 0 ≤ ℓ1 < N ,

0 ≤ ℓ2 < n} are independent standard Gaussian r.v.’s.

The proof is computationally more involved but similar in spirit to that of
Lemma 3.1. It is thus omitted.

As a consequence of this lemma, Theorems 3.1 and 4.1 remain true with the
following minor modification: In (2.2), (2.4) and (2.5), the quantity |Φ|2 must
be replaced by Φ2

R where

ΦR(u, v) = |Φ(u/2, v/2)|.

Similarly, in the case where the Toeplitz matrix An introduced in (A-5) is real,
Theorem 4.2 remains true if one replaces in (4.4) and (4.5) the quantities |Φ|2
and |ψ|2 by Φ2

R and ψ2
R where

ψR(u) = |ψ(u/2)|.

The proof of Theorem 4.2 can be modified by replacing the Fourier matrices Fp
by Qp (see also [5, chap. 4], for elements about the pseudo-diagonalization of a
real Toeplitz matrix via real orthogonal matrices Qp).
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