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Abstract

In this paperwe study the spectrumof certain large random Hermitian Jacobi matrices.These
matricesare known to describecertain communicationsetups.In particularwe are interestedin an
uplink cellular channelwhich models mobile usersexperiencinga soft-handaf situation under joint
multicell decoding.Consideringrather generalfading statisticswe provide a closedform expression
for the percell sum-rateof this channelin high-SNR,whenan intra-cell TDMA protocolis employed.
Sincethe matricesof interestare tridiagonal, their eigervectorscan be consideredas sequencesvith
secondorderlinearrecurrenceTherefore the problemis reducedo the studyof the exponentialgrowth
of productsof two by two matrices.For the casewhere K usersare simultaneouslactive in eachcell,
we obtain a seriesof lower and upperboundon the high-SNR power offset of the percell sum-rate,

which are considerablytighter than previously known bounds.

. INTRODUCTION

The growing demandfor ubiquitousaccesso high-datarate services,has produceda huge

amountof researchanalyzingthe performanceof wirelesscommunicationssystems.Cellular
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systemsare of major interestasthe mostcommonmethodfor providing continuousservicesto
mobile users,in both indoor and outdoorervironments.Techniquedor providing betterservice
andcoveragein cellularmobile communicationsre currentlybeinginvestigatedby industryand
academialn particular the use of joint multi-cell processing(MCP), which allows the base-
stations(BSs) to jointly processheir signals,equvalently creatinga distributed antennaarray
hasbeenidentified as a key tool for enhancingsystemperformancgsee[1][2] and references
thereinfor suneys of recentresultson multi-cell processing).

Most of the works on the uplink channelof cellular systemsdeal with a single-cell setup.
Referenceghat considermulti-cell scenariostend to adoptcomple< multi-cell systemmodels
which renderanalyticaltreatmentextremelyhard(if not, impossible).Indeed mostof theresults
reportedin theseworks are derived via intensve numerical calculationswhich provide little
insight into the behaior of the systemperformanceas a function of various key parameters
(e.g.[3]-[8)).

Motivated by the fact that mobilesusersin a cellular system“see” only a small numberof
BSs,andby the desireto provide analyticalresults,an attractve analyticallytractablemodelfor
a multi-cell systemwassuggestedby Wynerin [9] (seealso[4] for an earlierrelevantwork). In
this model,the systems cells areorderedin eitheraninfinite lineararray or in the familiar two-
dimensionalhexagonalpattern(also infinite). It is assumedhat only adjacent-celinterference
is presentand characterizedy a single parametera scalingfactora € [0, 1]. Consideringnon-
fading channelsanda “wideband” (WB) transmissiorschemewhereall bandwidthis available
for coding (asopposedo randomspreading)the throughputobtainedwith optimumandlinear
MMSE joint processingf the receved signalsfrom all cell-sitesare derived. Sinceit wasfirst
presentedn [9], “Wynerlike” modelshave provided a frameavork for mary works analyzing
varioustransmissiorschemesn both the uplink anddownlink channelgsee[2] andreferences
therein).

In this work we considera simple “Wynerlike” cellular setuppresentedn [10] (seealso
[11]). Accordingto this setup,the cellsarearrangedon a circle (or a line), andthe mobile users
“see” only the two BSswhich are locatedon their cell’'s boundariesAll the BSsare assumed
to be connectedthrough an ideal backhaulnetwork to a central multi-cell processo(MCP),
that can jointly processthe uplink receved signalsof all cell-sites,as well as pre-procesghe

signalsto be transmittedby all cell-sitesin the downlink channel.The usersare hencein what
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is referredto asa “soft-handof” situation,which is very commonin practicalreal-life cellular
systemsand is thereforeof real practicalas well astheoreticalinterest(seefor example[12]
for a recentsurwey on handof schemes)With simplicity and analytical tractability in mind,
andin a similar mannerto previous work, the model provides perhapsthe simplestframevork
for a soft-handdf settingin a cellular system,that still representgeal-life phenomenauchas
intercell interferenceand fading.

Unfortunately the analysisof “Wynerlike” modelsin generalandthe “soft-handof’ setupin
particular presentssomeanalyticaldifficulties (seeSectionll-B) whenfadingis present.These
difficulties rendercorventionalanalysismethodssuchaslarge randommatrix theoryimpractical.
Indeedthe percell sum-rateratessupportecoy MCP in the uplink channelof the “soft-handof’
setupsareknown only for limited scenariosuchasnon-fadingchannelsphase-fdingchannels,
fadingchannelgut with large numberof userspercell, andRayleighfadingchannelswvith single
useractive percell [10][11][13]. The latter resultis dueto a remarkableearly work by Narula
[14] dealingwith the capacityof a two-tap time variant ISI channel.Calculatingthe percell
sum-ratecapacitysupportedby the uplink channelof the “soft-handof’ setupin the presence
of geneal fading channels(not necessarilyRayleigh fading channels)when finite numberof
usersare active simultaneouslyin eachcell remainsan openproblem(see[11][15] for bounds
on this rate). As will be shavn in the sequel,this problemis closely relatedto calculatingthe
spectrumof certainlarge randomHermitian Jacobimatrices.The high-SNR characterizatiorof
the sum-ratecapacity previously unknavn, is the main focus of this work.

In particularwe calculatethe high-SNRslopeand power offset of the rate with a single user
active percell (intra-cell TDMA) undera rathergenericfading distribution. We also prove the
following resultsfor any given numberof active userspercell. We prove the existenceof a
limiting sum-ratecapacitywhenthe numberof cells goesto infinity andcalculatethe high-SNR
slopein Theorem?2. Moreover, we give boundson the high-SNR power offset in Proposition
3. In particular we give a sequencef explicit upper and lower-bounds;the gap betweenthe
lower andthe upperboundsis decreasingvith the bounds’orderand compleity.

The restof the paperis organizedasfollows. In Sectionll we presentthe problemstatement
and main results.Sectionlll includesa comprehensie review of previous works. Several ap-
plications of the main result are discussedn SectionlV. Concludingremarksare includedin

SectionV. Variousderivationsand proofs are deferredto the Appendices.
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[I. PROBLEM STATEMENT AND MAIN RESULTS
A. SystenmModel

In this paperwe considera linear versionof the cellular “soft-handof” setupintroducedin
[10][11], accordingto which M + 1 cellswith K single antennausersper cell are arrangedon
a line, wherethe M single antennaBSs are locatedon the boundariesof the cells (seeFig. 1
for the specialcaseof M = 3). Startingwith the WB transmissiorschemewhereall bandwidth
is devotedfor codingandall K usersaretransmittingsimultaneouslyeachwith averagepower
p, and assumingsynchronizedccommunicationa vector basebandepresentatiorof the signals

receved at the system$ BSsis given for an arbitrary time index by
y=Hpyx+n . Q)

The M x K(M + 1) channeltransfermatrix H ; is a two block diagonalmatrix definedby

a; bl 0 0
0 .o
: .. .. .. 0

wherea,, and b,, are 1 x K row vectorsdenotingthe channelcomplex fading coeficients,
experiencedby the K usersof the mth and (m + 1)th cells, respectrely, whenreceved by the
mth BS antennan representshe M x M zeromeancircularly symmetricGaussiamoisevector
n ~ CN(0,1,).

We assumeahroughoutthatthe fadingprocessesrei.i.d. amongdifferentusersand BSs,with
A ~ T, andb,, , ~ m, and canbe viewed for eachuseras ergodic processesvith respect
to the time index. We denoteby P the probability associatedvith thoserandomsequencesand
by [E the associatedxpectation.We will be working throughoutwith a subsetof the following
assumptions.

(H1) E,., (log|z|)? < oot andE,, (log|z|)* < occ.
(H2) 7, andm, are absolutelycontinuouswith respectto Lebesguaeneasureon C.
(H3) Thereexists a real M suchthatif x is distributed accordingto =, (resp.m;) thenthe

densityof \x|2 is strictly positive on the interval [M; co).

1A naturalbaselogarithm is usedthroughoutthis work unlessexplicitly denotedotherwise.
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(H3) Thereexist m, < M, € RT U {oc} (resp.m, < M, € RT U {oc}) suchthatif = is
distributed accordingto «, (resp.m;) thenthe density of |:c\2 andthe Lebesgue-measure
on [mgy; M,] (resp.[my; M,]) are mutually absolutelycontinuous.

(H4) Thereexists a ball in C suchthat the Lebesguemeasureoutsidethat ball is absolutely
continuouswith respectto =, and .

We further assumethat the channelstate information (CSI) is available to the MCP only,
while the transmittersknow only the channelstatistics,and cannotcooperateheir transmissions
in ary way. Thereforejndependenteromeancircularly symmetricGaussiarcodebooksonform
with the capacityachieving statistics,wherex denoteshe (A + 1)K x 1 transmitvectorx ~
CN (0, pI ), andp is the averagetransmitpower of eachuser? (p is thusequalto the transmit
SNR of the users).

With the abore assumptionsthe system(1) is a multiple accesschannel(MAC). We are

interestedn the percell sum-ratecapacity
Cu(P) = %E (logdet Gpy)  [nats/channel use] , (3)
where P £ K p is the percell transmittedaveragepower,
GMéIM—i‘PHMHRj ) 4)

andthe expectationis taken over the channeltransfermatrix entries.(Hereandin the sequel for
ascalarz € C, ' denotesghe complex conjugate, while for a matrix A, A" denotesthe matrix

with A'(4, j) = A(j,4)".) The non-zeroentriesof the Hermitian Jacobi matrix G, areequalto
[GM]m,m—l =p < bm—l; a, >,
(Gl = 1+ 0 (|am]” + [ba]*) . (5)

[GM]m,nH»l = p < Qyyy1; bm >,
whereout-of-rangeindicesshouldbe ignored,andfor ary two arbitrary L lengthvectorsa, b

we define< a;b >2 37 alb, and|a|* £< a;a >.

2Note that sincethe channeltransfermatrix H »; is a column-egular gain matrix (seedefinitionin [16]) when M/ — oo, the
capacityachieving statisticsremainsthe samein this case,evenif we allow the usersto cooperateaslong asthey are unavare
of the CSI.
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Sincewe shallfocuson the asymptote®f infinite numberof cells M — oo, boundaryeffects
can be neglectedand symmetryimplies that the rate (3) equalsthe maximum equal rate (or
symmetriccapacity)supportedoy the channel[17].

The above descriptionrelatesto the WB protocol where all userstransmit simultaneously
According to the intra-cell TDMA protocol only one useris simultaneouslyactve percell,
transmitting1 /K of the time using the total cell transmitpower P. In this caseit is easily
verified that with no loss of generality we can considera single userper cell in termsof the

percell sum-ratesetting X = 1 in (1) and (2).

B. AnalysisDifficulty

Many recentstudieshave analyzedthe ratesof various channelsusing resultsfrom (large)
randommatrix theory (see[18] for a recentreview). In those cases,the numberof random
variablesinvolved is of the order of the numberof elementsin the matrix G,,; (or H,,), and
self-averagingis strongenoughto ensureconvergenceof the empirical measureof eigervalues,
andto derive equationgfor the limit (or its Stieltjestransform).In particular this is the caseif

the normalizedcontinuouspower profile of H ,;, which is definedas

i i+1 j j+1

converges uniformly to a bounded,piecavise continuousfunction as M — oc, seee.g. [18,

Theorem2.50] and[19] for fluctuationresults.In the caseunderconsideratiorhere, it is easyto

verify thatfor K fixed, Py, (r, t) doesnot corverge uniformly, andothertechniquesarerequired.

C. ExtremeSNRRaime Characterization

As mentionedearlier the percell sum-ratecapacityof the “soft-handof” setupis known only
for certainlimited casedo be elaboratedn the next section,andin generalanalyticalresultsare
hardto derive. As an alternatve to deriving exact analyticalresultswe focus hereon extracting
parametersvhich characterizethe channelrate under extreme SNR scenarios.The readeris
referredto [20] - [22] for an elaborationon the extreme SNR characterization.

a) The Low-SNRReaime: This regime is usually the operatingregime for wide-band
systemgq21].
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The averagepercell spectralefficiengy in bits/sec/Hz,expressedas a function of the sys-

tem averagetransmit SNR, £, /Ny, is evaluatedby solving the implicit equationobtainedby

_c, (B B
P=Cy <N0> N (7)

in (3), whereC,,(E,/Ny) = Cy(P)/ log 2 standsfor the uplink spectralefficieney measuredn

substituting

[bits/sec/Hz].The low-SNR regime is characterizedhroughthe minimum transmit £, /N, that

enableseliable communications,

Ly a log 2 (8)
NOmin CM<0) 7
andthe low-SNR spectralefficiency slope
. 2
2 [cM(o)]
So= —————, (9)
—Cun(0)
yielding the following low-SNR affine approximation
Eb) So (Eb Ey ) :
Cul—|~—|— —— bits/sec/Hz]. 10
M (NO 3|dB NO dB NOmin dB [ / / ] ( )

In the above definitions 3|4z = 101log,,2, and Cy;(0) and Cy(0) are the first and second
derivatives (whenever exist) with respectto P of the percell sum-ratecapacity respecitrely,
evaluatedat P = 0. Focusingon Gaussiarchannelswith recever CSl only, it canbe shovn [21]
thatthereis no needto calculatethe two derivativesof theratein P = 0, andthatthe low-SNR

parametersare simply given by

, 2
E, MK log2 o2 (tr (BH,HY))
= N 0 = —

No min tr (EH}'WHM) M tr (E (HTMHJ\/I> 2)

b) The High-SNRRagime: This is usually the operatingregime for high-datarate (high

(11)

spectralefficiency) systemg(thatis the caseactuallyin all 2.5/3 G standards).
The high-SNRregime is characterizedhroughthe high-SNR slope (also referredto asthe

“multiplexing gain”, or “pre-log”)

A CM<P> R TE .
Ry 42
andthe high-SNRpower offset
Lo = Plggo log 2 <log P= Seo ’ (13)
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yielding the following affine capacityapproximation

S log?2
C]\J(P> ~ 3‘dBO

Note that the high-SNR approximationreferencechannelhereis that of a single isolatedcell,

(Plas — 3[asLoo) - (14)

with no fading, andtotal averagetransmitpower P.
The high-SNRcharacterizatiof the percell sum-ratesupportedy the “soft-handof” uplink

channelis known only in certainlimited scenariogsee Sectionlll) andis the main focus of
this work.

D. Main Results

Recall the definition of Cy,(P), c.f. (3). Startingwith intra-cell TDMA schemewhere only

one useris active percell transmittingwith power P we have the following.

Theorem 1 [intra-cell TDMA scheme K = 1, high-SNRcharacterization] Assume(H1) and
(H2).

a) For every P > 0, Cy,(P) corvergesas M goesto infinity. We call the limit C(P).

b) We get the following boundson C(P),

max(Er, log(1 + P [z[*), Er, log(1 + P |y[*)) < C(P) < Er, i, log(1+ P(|z]* + [y%))-
c) Further assumg(H3) or (H3’)]. As P goesto infinity,
C(P) =log P + 2max (E,, log |z|,E., log |z]) + o(1).
In particular, S, = 1 and L, = —2max (E,, log, |z| , E,, log, [z]).

Note that point c) shawvs that the lower bound of point b) is tight in the high-SNR regime.
Proof: The proof of pointsa) andc) follows from Theorem5 of AppendixA, wherewe prove

that the variableC,, (P) £ 1/M log det G, corvergesalmostsurely Note however that
M

1 1 2 2
0< MlogdetGMS MZlog (1+P(‘am‘ + |bm| ))7 (15)

m=1

and the secondinequality is due to Hadamards inequality for semi-positve definite (SPD)
hermitian matrices.With (H1), it follows that C,,;(P) is uniformly integrable, and hencethe
almostsurecorvergenceimplies corvergencein expectation Recallingthat Cy,(P) = E Cy(P)
completegshe proof of point a) andc).
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Let us shav point b) usingthe tools of [23]. We first shav the lower bound.We considern,

x andy asin (1).

Cu(P) = —1(z;y|(ai)i<i<m; (bi)1<i<m)

M
Z I (25 y|(25)1<i<y, (ai)1<i<ar, (bi)1<i<nr)

—

== ==

<

> Z I (23 y-1/(%i)1<i<s (@i)1<i<r, (0i)1<i<m)

—

=|-

M
1
M Z (250125 + n5a]bj 1),

j=1
which is the percell sum-ratecapacityof a single userfading channel.Therefore,the lower
boundis [24] E,, log(1 + P|y|*). As arguedin the proof of Theorem5 in Appendix A, we
canexchangetherole of 7, andr,, therebygettingthe claimedlower bound.Finally, the upper
boundof b) follows immediatelyfrom Hadamards inequality for SPD hermitianmatrices. |

In the proof of Theorem5 (intra-cell TDMA scheme),we use ideas from the theory of
product of randommatrices.Note that C,;(P) = 1/M 3™ log(1 + PA,,) where {\,,}2_,
arethe eigervaluesof H ,, H }u andthe analysisof capacityhingesuponthe study of spectral
propertiesof H,,H',. The main idea is to link the spectralpropertiesof the latter matrix
with the exponentialgrowth of the elementsof its eigen/ectors.SinceHMH& is a Hermitian
Jacobi matrix, hencetridiagonal,its eigervectorscan be consideredas sequencesvith second
orderlinearrecurrenceTherefore the problemboils down to the studyof the exponentialgrowth
of productsof two by two matrices.This is closelyrelatedto the evaluationof thetop Lyapunw
exponentof the product; The explicit link betweerC,,(P) andthetop Lyapuna exponentis the
Thoulessformula (see[25] or [26]), a versionof which we prove in AppendixD. We emphasize
however thatwe do not usethe Thoulessformula or Lyapune exponentsexplicitly in the proof
of Theorem>.

Like in theresultof Narula[14] describedelow in Sectionlll, our approachusesthe analysis
of a certain Markov Chain. Unlike [14], we are not able to explicitly evaluate the invariant
measureof this chain. Instead,we usethe theory of Harris chainsto both prove corvergence
and continuity resultsfor the chain. The appropriatedefinitionsare introducedin the courseof

proving Theorem5.

Octoberl1, 2007 DRAFT



10

We remarkthat Theoreml continuesto hold in a real setup,that is if insteadof (H2), we

assume

(H2') =, and, are supportedon R and are absolutelycontinuouswith respectto Lebesgue
measureon R.

Sincethe argumentis identical, we do not discussthis casefurther It is also notedthat unlike
the non-fading case,where intra-cell TDMA schemeis optimal (see[9]), it is proved to be
suboptimalfor K > 1 in the presenceof fading[27], yet TDMA it is one of the mostcommon
accessrotocolsin cellular systems.

Turning to the WB scheme(which is the capacity achieving scheme[27]), where all the
bandwidthis usedfor coding, and all K usersare transmitting simultaneouslywith average
power p (andtotal cell averagepower P = Kp), we have the following lessexplicit high-SNR

characterization.

Theorem 2 [WB schemeK > 1, high-SNRcharacterization] AssumgH1), (H2) and (H4), and
K> 1.

a) For every P > 0, Cy;(P) corvemgesas M goesto infinity. We call the limit C(P).

b) We get the following boundson C(P),

max(Elog(1+ Plal|’ /K),Elog(1+ P|b|* /K)) < C(P) < Elog(1 + P(|lal* + |b]*)/K),

whete the expectationis taken in the following way: the randomvariablesa and b are
independentand a (resp.b) is a comple K-vector whosecoeficients are independent
and distributed accoding to 7, (resp.m).

c) As P goesto infinity,

¢+ [bf°
C(P) =log P+ Elog e +o(1) , (16)

whee the expectationis taken in the following way: the random variables ¢ and b
are independentand b is a comple K-vector whosecoeficients are independentand
distributed accoding to 7,. Thelaw of e is mg, which is the uniqueinvariant probability
of the Markov chain definedby

o+ [ba_1]*sin?(a,, b,
i = |anf? | E 1Bl s (@ Bit) ) (17)
6n—i_|bnfl|

Octoberl1, 2007 DRAFT



11

whetle for any two arbitrary equallengthvectos a, b,

_[<a;b >|?

sin?(a,b) £ 1
( ) |a"2 ‘b|2

(18)

In particular, S, = 1 and £, = —Elog, (e+}\{b\2>.

As with the caseK = 1, pointa) andc) of Theorem?2 follow from the almostsurecorvergence
statedin Theorem21 of AppendixC, using (H1) and (15). As with Theorem5, we do not use
the Thoulessformula or Lyapunw exponentsexplicitly in the proof of Theorem21. The proof
of point b) is the sameasthe proof of Theorem1.b). It is worth mentioningthatin contrastto
Theoreml, the non-asymptotidower boundb) is not tight in generalfor large SNR. This is
sinceit is anincreasingfunction of K andcorvergesto a rate of a single-userGaussiarscalar
channelwhich is smallerthanthe asymptoticrate of (23).

Note that althoughthe roles of the sequencega, } and{b,} in (17) are not symmetric,the
expression(16) is symmetricin 7, and,, asis the casefor K = 1.

We concludethis sectionby noting that while Theorem2 (WB schemeK > 1) doesnot give
explicit expressiondor the high-SNRpower offsetasTheoreml, its proof leadsimmediatelyto
easily computablebounds.In the following, the notationis asin Theorem2, andwe let ¢,,(a)

denotethe Markov chain (17), with initial conditioney(a) = a.

Proposition 3 AssumgH1), (H2) and (H4), and K > 1. Then,

2 2
E log <M) < Plim [C(P) — log P] < Elog (M) ’

whete the expectationis takenin the following way. ¢,,(0) (resp.e,(oc)) and b are independent.
b is a complex K-vector whosecoeficients are independentind distributed accoding to .
en(0) (resp.e,(o0)) is the n-th stepof the Markov chain definedby (17) with initial condition

ep(0) = 0 (resp.ep(o0) = 0).

Indeed,sincethe expression(17) for ¢, ., IS monotoneincreasingn ¢,,, thelaw of ¢ in Theorem
2 is stochasticallydominatedbelov by the law of ¢, with intial condition0, and stochastically
dominatedabove by the law of e,, with initial conditionocc. That samemonotonicityalsoshovs

that the sequencesf laws of ¢, (0) (resp.,e,(oc)) are monotoneincreasing(resp.,decreasing)

with respectto stochasticorder
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As a direct consequencef Proposition3 with n = 1 and (13), we get the following bounds
on the high-SNR power offset

2 2 2 .9 712
_Elog, <W> < Lo, < —Elog, <‘a| S “;;b) + 1b] ) , (19)

wherethe expectationis taken in the following way: a, b andb’ areindependentand a (resp.
b, b') is a complex K -vectorwhosecoeficientsareindependenanddistributed accordingto
(resp.m,). Notethatfor K goingto infinity, if we assumer, = 1, andzeromean thensin?(a, b)
convergesto 1, thereforethe ratio betweenthe upper and lower-boundof (19), corvergesto 1,
which also agreeswith the asymptoticresult of (37).

Numerical Results: In Figures2 and 3 we presentthe high-SNR power offset bounds of
Proposition3 in the specialcaseof Rayleighfading (real andimaginary partsare independent
Gaussiarrandomvariableswith zero meanand variancel/+/2), for K = 2 and K = 10 users
percell respectiely. The curvesare producedby Monte Carlo simulationwith 10° samplesThe
figuresinclude also the lower bound of [11], see(38), and the asymptoticresults(and lower
bound)for large numberof userspercell £, = —1 (achieved by taking K to infinity in (38)).
Examiningthe figuresit is obsered that the new boundsare getting tighter with their ordern
andthatthe new lower boundis tighter than (38) alreadyfor n = 2. Moreover, fixing the order
n, the new boundsare getting tighter with the numberof userspercell K. This obsenation
is also evident from Fig. 4, wherethe boundsare plotted for a fixed ordern = 2 versusthe
numberof userspercell K. Finally, sincethe upperboundof Fig. 2 is negative, we conclude
that the presenceof Rayleighfading is beneficialover non-fading channelsin the high-SNR

region alreadyfor K = 2. (See[11] for a similar conclusionin the low-SNR region.)

I11. BACKGROUND, PREVIOUS RESULTS AND BOUNDS

In this sectionwe briefly summarizeoreviouswork on the “soft-handof’ uplink cellularmodel
introducedin [10][11]. For concisenesswe restrictthe discussionto the casewherer, = .
Most of the resultsin the sequelcan be extendedto includethe generalcasewheren, # .

Starting with non-fading channels(i.e., when 7, and m, are singletonsat 1), the percell

sum-ratecapacityof the uplink channelis givenfor M — oo by [11]

1+2P+\/1+4P>

2 (20)

Rnf - IOg <
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This rate is achieved by any symmetricintra-cell protocol with averagetransmit power of P
(e.g.intra-cell TDMA, andWB protocols).It is notedthat the sameresultholdsalsofor phase
fading processe$13].

The extreme SNR characterizatiorof (20) is summarizedor the non-fading setupby

4 Eb . 10g2
3 7 NOmin B 2 ’

S = Se=1, Lo=0. (21)

Returningto the flat fadingsetup,the channelcoeficientsaretaken asi.i.d. randomvariables,

denotingby
my £ Bamp) = Ebpy) 3 m2 2 E(Janil”) = E(|bml*)
vV om,k (22)
m J 3
ma £ E(lansl") = E(jbnsl") 5 K= m—;‘
2

the mean,secondpower moment,fourth power momentandthe kurtosisof anindividual fading
coeficient.
The percell sum-ratecapacityof the WB schemewith fixed P and increasingnumber of

usersandcells M, K — oo, is given by [11]3

1+ 2Pm, + \/1 + 4Pmy + 4P2(m% — |my|")

Ryp_ = log 5 (23)
The rateis maximizedfor a zero meanfading distribution andis given by
Rypr = log(1 + 2myP) . (24)

Comparing(20) and (24) (with m, = 1), it follows that the presenceof fadingis beneficialin
casethe numberof usersis large. We note that (23) is also shavn in [11] to upperboundthe
respectre rate for ary finite numberof usersi.

Returningto the intra-cell TDMA (K = 1), for which standardrandommatrix theoryis not
suitable (see Sec. II-B), the powerful momentboundingtechniqueemployed in [27] for the
Wyner model, canbe utilized to obtainlower and upperboundson the percell sum-rate.

An alternatve approachwhich replacesthe role of the singular valueswith the diagonal
elementsof the Cholesly decompositiorof the the matrix G,;, was presentedoy Narula[14]

for a two diagonalnonzerochannelmatrix H,, whoseentriesare i.i.d. zero-meancomple

3Here, the numberof usersk is taken to infinity andthenthe numberof cells M is taken to infinity.
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GaussianRayleighfading). Originally, Narula had studiedthe capacityof a time varying two
tapsinter-symbol-interferenc€lS1) channel wherethe channelcoeficientsarei.i.d. zero-mean
complex GaussianWith the above assumptionsegardingthe ISI channelcoeficientsit is easy
to verify that the capacityof this modelis equalto the percell sum-ratecapacityof an uplink
intra-cell TDMA schemeemployed in the “soft-handof” model.

Following [14], we usethe Cholesk decompositiorappliedto the covariancematrix of the
uplink intra-cell TDMA schemeoutputvector G, = L, DU »;, Where L, (resp.U ) is a
lower triangular (resp.uppertriangular) matrix with 1 on the diagonal.The diagonalentriesof
G, aregiven (with K = 1) by

2
dm=1+P\am|2+P|bm|2<1—P|adm71‘> L, m=2,...,M, (25)
m—1

wheretheinitial conditionof (25)is d; = 1+ P |a,|* + P |by|°. Thus,the diagonalentries{d,,}
form a discrete-timecontinuousspaceMarkov chain; Narulas main obsenation was that this
chain possessea uniqueergodic stationarydistribution, given by

~log(z)e P

fa(z) = r>1, (26)

B P T
whereEi(z) = f;" Wdt is the exponentialintegral function. Further asis proved in [14],

the stronglaw of large numbers(SLLN) holds for the sequencglogd,,} as M — oc. Hence,
the averagepercell sum-ratecapacityof theintra-cell TDMA schemdg K = 1) canbe expressed

as .
Rigma_r = lim E (M logdet G M)

M —o0

) 1
= A%gréo E <M log det (LMDMUM)> 27)

M
. 1 Z B
= J&Ii)l’cl)oE (M P log dm> = Eﬂ'd (log d) s
wherethe last expectationis taken with respectto f,(x), asdefinedin (26). In particular

_ [ (log(x))®e"F
Riqma £ = /1 Ei (%) p dx . (28)

Narulas approachs basedon an explicit calculationof the invariantdistribution f,;, andis thus
tied to Rayleigh fading. Modifications of key parameterqsuch as the entries’ PDF, and the

numberof nonzerodiagonals)leadto analytically intractableexpressions.
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Another result derived by following the footstepsof [14] is an upperboundon the percell
sum-rateof the WB schemewith finite K andinfinite numberof cells M — oo, in the presence

of a generalfadingdistribution, given by

(29)

1+ 2Pmy + /1 + 4Pmy + 4P2 (1 — ) (m3 - m14))
2

Rypk—t < log (
and in the specialcaseof zero meanunit powver (m; = 0, my = 1) fading distribution (e.g.
Rayleighfading) the boundreduceso

14+ 2P+ /(1 +2P)? — (4P2/K)>
> .

(30)

Rypk—t < log (

This resultwhich is proved in [14] for K = 1 (intra-cell TDMA protocol) and expandedto an
arbitrary K in [15], is derved by noting that the averageof the determinantof the receved

vector covariancematrix G, canbe recursvely expressedy
E(det G,,) = A E(det G,,, 1) — B E(detG,,, 2) ; m=3,..., M , (32)

with initial conditions

E(detGy)=A ; E(detGy) = A*—- B, (32)
where
P, 4
A=1+2Pm, ; B:f(m2+(K—1)|m1\). (33)

SeeAppendix E for more details. The solutionto (31) is given by

E(detG,,) = r™ — ¢ s, (34)
where
TZ%(A+\/A2_4B> ; S=%<A—\/A2—4B> : (35)

are real and positive, and ¢, ¢ are determinedby the initial conditions(32). Finally, (29) is

derived by the following setof inequalities
o1 .1
Rypx—t = J\}lglo MIE (logdet Gpy) < A%lgéo i logE (det Gpy) =logr (36)

wheretheinequalityis dueto Jensers inequality andthe lastequalityfollows from the factthat
r > s, and M — oo. In the caseof K = 1, the upperboundof (30) coincideswith the percell

sum-ratecapacityof the non-fadingsetup(20). Thus,the presencef Rayleighfadingdecreases
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the ratesof the intra-cell TDMA protocol supportedby the “soft-handof’ model. Nevertheless,
it is shavn in [11] that alreadyfor K = 2 the presenceof fading may be beneficialat least
for low SNR values.The tightnessof the boundis demonstratedy noting the for K — oo it
coincideswith the asymptoticexpressionof (23).

The extreme SNR characterizatiorof the WB ratefor M — oo in the presenceof a general

fading distribution is summarizedoy [11]

S 2 : By,  _ log2
07 ko flmyt 0 Nomin _ 2ma
2K 2m?2
: (37)
Se <1 —log, <m2+\/(1—%) (m%—\mll“)) < Lo -

The boundsof the high-SNR parametersaretight for K > 1. For the specialcaseof Rayleigh

fading the extreme SNR characterizatiorare given by [11]

1+% ! Nomin 2 (38)

— . 1
Sw=1; —logy (14 /1- %) <L <k,

where~ =~ 0.5772 is the EulerMascheroniconstant.lt is notedthat the right inequality of the

log 2
Sy = —2+ ; E  _ log2

high-SNR power offset is tight for K = 1, while the left inequality is tight for K > 1. The
beneficialeffectsof Rayleighfadingandincreasinghumberof usersare evidentwhencompared
to the non-fading extreme-SNRparameter®f the respectie non-fading setup(21).

To concludethis sectionwe emphasizehat calculatingexact expressiondor the high-SNR
parametersof the WB protocol rate with finite numberof userspercell and geneal fading

distribution remainsan openproblem.

IV. APPLICATIONS

In this sectionwe presentserseral applicationsof the main resultspresentedn this work (see
SectionlI-D).

c) Intra-Cell TDMA and RayleighFading: Assumingthat only one useris active percell

K =1 andsymmetricRayleighfadingchanneli.e. 7, and 2 areexponentialdistributions

with parameterl), the high-SNR power offsetis given accordingto Theoreml, by

1 [
Lo = —max (E(log, la|*), E(log, |b|2)) / e *logx dr = " (39)
0

- log 2 log 2
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wherethe last equalityis dueto [28, pp. 567, formula4.331.1].Obviously this resultcoincides
with the high-SNR power-offset derived by applying the definition of £, (see(13)) directly to
the exact expressionderived in [14] (seeexpression(28)).

Note that the sameresult holdsif an attenuationfactoris addedto one of the fading paths,
e.g.b, = ab,, whereb,, ~ CN'(0,1) anda € [0, 1]; this follows directly from Theorem1, but
not from [14], which requiressymmetricfading paths(i.e. a = 1).

d) Intra-Cell TDMA and Genenl Fading Statistic: Considerthe following single user

single-inputsingle-output(SISO) flat fading channelfor an arbitrary time index
y=axr+n, (40)

wherez is the input signalz ~ CN (0, P), andn is the additive circularly symmetricGaussian
noisen ~ CAN(0,1). In addition, a is the fading coeficient « ~ w, satisfying conditions
(H1)...(H3) andknown only to the recever (recever CSI). Assumingthat the fading processs

alsoergodicin the time domain,the ergodic capacityof the channelis given by [24]
C = Eq, log(1+ Plal’) , (41)

where the expectationis taken over the fading distribution 7,. Accordingly, under the mild

conditions(H1)... (H3), the high-SNRregime of this channelis characterizedy
Seo=1 : Lo=—E, log,la* . (42)

Using Theoreml, we cannow establishthe following analogybetweenthe multi-cell setupand
the SISO channelat hand.

Corollary 4 Thehigh-SNRcharacterizationof theintra-cell TDMA per-cell sum-@ate supported
by the “soft-handof” setupwith fadingdistributions,, 7, sud that[E,, log, |a|* > E,, log, |b|,

coincideswith thoseof a scalar single-userfading channelwith fading distribution .

This obsenation allows us to use the vast body of work done for the celebratedscalar flat
fading channel[24]. In particular the high-SNR characterizatiorof flat fading channelswith
the following fadingstatisticshave beenconsideredn previous works: (a) Rayleighdistribution,
(b) Rice distribution, (c) log-normaldistribution, and (d) Nakagami distribution (see[24] and
referencesherein).
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e) Intra-Cell TDMA and OpportunisticSdeduling: Throughouthis work we have assumed
that the instantaneoushannelstateinformation is known to the MCP recever only. Here we
further assumehat somesort of ideal feedbackchannelis available betweenthe MCP recever
and the K mobile usersincludedin eachcell. This feedbackchannelis usedto schedulethe
“pest” local userin eachcell for transmissionduring the currenttime slot*. In otherwords, in
eachcell the userwith the strongestthannelfadetowardsthe BS locatedon the right boundary
of eachcell is scheduledor transmissioh with power P. Hence,the index of the selecteduser
in the mth cell reads

ey = argmax\amk|2 m=1,2,...,M. (43)
k=12,...K

The resulting M x (M + 1) channeltransfermatrix H ; of this schedulingschemeis a two
diagonalmatrix with independenentries.The probability densityfunction of the main diagonal

i.i.d. entries’amplitudesis given by
dﬂ—K,‘a‘Q — Kﬂ—‘la{‘gldﬂ—‘a‘Q 3 (44)

following the maximumorder statistics[30]. On the otherhand,the i.i.d. entriesof the second
non-zerodiagonalare distributed accordingto the original fading statisticsr,.
Assumingthatr, .2 andm, satisfyconditions(H1)... (H3), we canapply Theoreml in order
to derive the high-SNR characteristic®f the percell sum-rateachievable by this opportunistic
scheduling
So=1 ; Lo=—max (E”K,mp (log, ), Er, (log, \6\2)> . (45)

For Rayleighfadingchannelsaandin the casewherethe numberof userspercell is large K > 1,
we canusethewell known factthatthe squareof the maximumof the K amplitudesbehaeslike
log K with high-probability(see[31]). Hence,the rate high-SNRpower offset of this schemés

Lo ~ —logylog K | (46)

revealing a multi-user diversity gain of loglog K. It is noted that allowing additional power
controlto this schemewill yield betterperformancesHowever, we areunableto apply Theorem
1 for this situation.Finally, choosingthe BS locatedon the right boundaryof the cell is arbitrary;

taken the BS locatedon the left boundaryof the cell yields the sameresults.

4See[29] for a similar schedulingdeployed in the Wyner cellular uplink channel.

®Sincethe right mostcell indexed (M+1), hasno BS on its right boundaryit randomlyschedulesa userfor transmission.
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V. CONCLUDING REMARKS

In this paperwe study the high-SNR characterizatiorof the percell sum-ratecapacity of
the “soft-handof’ uplink cellular channelwith multi-cell processing.Taking advantageof the
specialtopology inducedby the setup,the problem reducesto the study of the spectrumof
certainlarge randomHermitian Jacobimatrices.For the intra-cell TDMA protocol whereonly
one useris active simultaneouslypercell we provide an exact closedform expressionfor the
percell sum-ratehigh-SNR power offset for rather generalfading distribution. Examiningthe
result, it is concludedthat in the high-SNR regime, the rate of the cellular setupat handis
equialentto the one of a single userSISO channelwith similar fading statistics.

Turning to the capacityachiezing WB protocol, whereall K usersare actve simultaneously
in eachcell, we derive a seriesof lower and upperboundsto the rate. Theseboundsare shovn
(via Monte-Carlosimulations)to be tighter than previously knowvn bounds.

Note thatin Theorem2 pointsa) andc) andin Proposition3, we take the fading coeficients
relatve to the usersof one cell to be independentThoseresultscontinueto be true if we
assumecorrelationbetweenthe fading coeficients relative to the usersof the samecell (but
independencéetweencells). The proof is identical to the proof givenin the paper

Someof the analysisreportedherecanbe extendedto includethe casewhereG,; is (2p—1)-
diagonalfor somep > 2 (e.g.p = 3 for the channelmatrix of the Wyner model), using an
adaptatiorof the “Thoulessformulafor the strip” derived originally in [32]. Usingthis approach,
boundssimilar to thoseof Prop.3 may be provided on the rate. Details will appearelsavhere
[33].
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APPENDIX
A. Proof of Theoem1

In order to streamlinethe proof we somavhat modify notation. We considertwo random
sequence®f comple numbers(a,,) and (b,). The (a,) (resp.(b,)) arei.i.d of law =, (resp.
™) andthe (a,) are independenof the (b,). We setQ = ((a,), (b,)). We denoteby P the
probability associatedvith thoserandomsequencesndby E the associateaxpectation.For a

given integer n, we considera channeltransfermatrix H ; of size M x (M + 1).

aq bl 0 0
0
H, =
0
o .- 0 apr bM

We considerthe following variable

Cur(P) = % tr {1og (1 + PHMHTM)} .

Note that,
‘a1‘2+ ‘bl‘Z a;bl 0 e 0
agb! las|* + [bo)* albs
HMHEWZ 0 0
ajwafl
i 2 2
0 0 aMbM,1 |aAJ| + ‘bM‘

With this notation,as explainedin Sectionll-D, Theorem1 follows from the following.

Theorem 5 [K = 1] AssumgH1) and (H2).

a) For everyp > 0, Cy(P) corvemgesP-a.sas M goesto infinity. We call the limit C(P).
b) Further assumg(H3) or (H3)]. As p goesto infinity,

C(P) = log P+ 2max (E., log |z|; E, log |z]) + o(1).

Proof of Theoem5 Without loss of generality in the proof we canassume

(H5) E,, log|z| < E,, log|z|.
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Indeed,we may exchangethe role of entriesa; andb; for 1 < ¢ < M by a right-left reflection,
namelythe transformationi; = by;_;11, Ej =ap_j+1, L < <M.

For part a), only (H1) and (H2) are neededSincepart a) is a consequencef generalfacts
concerningproductsof randommatricesand doesnot use much of the specialstructurein the
problem,we bring it in AppendixD.

Part b) usesthe theoryof Markov chainsandis specificto the particularmatrix H ;. We note
that as a by productof this approachwe obtain a secondproof of part a), however underthe
additionalassumptiorf(H3) or (H3’)]. We provide a proof of Theorem5 underthe assumptions
(H1), (H2) and[(H3) or (H3’)] in AppendicesA andB.

The structureof the proofis asfollows. We first introducean auxiliary sequenceavhich allows
usto reformulatethe problemin termsof a specialMarkov chain.The studyof the latter, which
forms the bulk of the proof of Theoremb, is carriedout in SectionB.

1) Auxiliary sequence:We begin with a technicallemma.

Lemma 6 AssumgH2). P-a.s, HMH}” doesnot havemultiple eigervalues.

Proof: We let D denotethe discriminantof HMHT , it is a polynomialin
{lai> + [b:)?, aiy1bl, al. b} which vanisheswhenthereis a multiple eigervalue. Therefore,it
is a polynomialin Ra;, Sa;, b; and Ib; It is not identically O becausdor b; = 0 and a; = 1,
the eigervaluesof HMHL are distinct. The resultfollows directly from the following lemma

which is an easyconsequencef Fubini’s theorem. [ |

Lemma 7 Let Q be a functionfrom C" to C. We assumehat () is not identically 0 and that
Q(z,...,2,) isapolynomialin the Rz; andthe 3z;. Thenthe setof therootsof () hasLebesgue

measue 0.

In the sequelwe denoteby \; > ... > \;,; the orderedeigervaluesof HMHM For a given
A, we considerthe following sequencdindexed by n) of complex humbers(the dependencén

A will only be mentionedwhenit is relevant): zo = 0, z; = 1, andfor n > 1,

anbjz—lxnfl + (|an|2 + ‘bn‘Z)xn + ajz+1bnxn+1 = ATy,

thatis
A —la,|* — |b,|? anb!
Tn+1 = |a:| ‘ TL‘ Ty — T n-l Tp—1- (47)
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Note that z,,,1(\) = 0 if andonly if X\ is an eigervalue of HMHL. Moreover, x,1 IS a
polynomialin A of degreen with highestcoeficient 1/ ]}, (a z+1b) Onecanthuswrite using

Lemmab6

Tna1(A) = H 41 - H P—as
i=1

=1

Hence,for A = —1/P,

M
1 1
Cur(P) =log(P) + 1 1og loarn (V)] + - ; log |a;1bi] P—a.s (48)
By the Law of Large Numbers(LLN),

lim — Zlog |aip1b;| = Er, log |z| + Eg, log|z| P—a.s

M—oo M

Becauseof (48), to prove Theoremb5, we only needto shav the following lemma.

Lemma 8 AssumgH1), (H2) and[(H3) or (H3')]
a) For every A < 0, +log|z,1(\)| corverges P-a.sas n goesto infinity. Thelimit is (),
the Lyapunw exponentdefinedby (62).
b) Assuméurther (H5). Then~(\) corvemesto E,, log|z| — E,, log|z| as A goesto 0.

2) Reductiorto a Markov chain: To prove Lemmas, we take ¢,, & Zp/Tn 1, fOr n > 2. Note
thatby (47) and (H2), P-a.s,z,, # 0, hencec, is well definedandnon-zero.By (47), we get
- |an|2 — ‘bn‘Z _ anbiz—l

Cn+1 = 7 T .
Ay y1bn Cpy 41y

Let d,, = c,alb,_1. Then,

2 2 ‘an‘g‘bn—l‘Z 2 2 |bn—1\2

Lete, = (1 n “’d—‘> Thendns = A — [bal> — |an|? en, and

A+ |an,1|2en,1
—A + |bnfl|2 + ‘anfl‘Z 6n717

(49)

n —

with the initial conditions, , )
— |ay|” — |b1]”
a;bl 7

dg =\— ‘bl‘g - |a1|2.

Octoberl1, 2007 DRAFT



23

ds € R andd, < — |b1\2, hence,0 < e; < 1. From (49) we concludethat for all n, ¢, € R and

0 < e, < 1. Now, for all n, '
d, b, 1

Cp =

ailbn_l ap  Cp — 1
Then,
1 n+1
n log [ni1| = — Zlog il
| (50)
= — Z ( — log(1 — e,))
15 log || convergesto E,, log |z — E, log |z| by the LLN. We now studyin detailsthe

Markov chaln €n-

B. Studyof the Markov chain ¢,, and proof of Lemma8

For simplicity, we write § £ —)\ and we re-index the chain so that it startsfrom ¢,. As in
(49),
0+ \an_l\z en_1
8+ |baot]? + lan-1]* en—1
We denoteby PP, thelaw of the sequencetartingfrom ¢, andby E., the associate@xpectation.

(51)

n —

Proposition 9 AssumgH2) and [(H3) or (H3")]. TheMarkov chain ¢,, hasa uniquestationary
probability, say x5 and for s € L' (u;), for every starting point ¢, € [0, 1], P, -a.s,

1
- Z s(ei) —— | sdps.
n i—0 n—oo

Proof: We startwith two lemmasthat will be proved later on.

Lemma 10 For «, 3,0 € R*, we definethe function ¢, s (we suppessd from the notation)

sud that for e € [0, 1]
0+ ae

P00(€) = 51 B T ae
For any givene € [0, 1], we definethe sequencegd,,(e)) by 6, = e andfor n > 1, 6,(e) =
b0 5(0n-1(€)). Then,¢, s hasexactly onefixedpointin [0, 1], say . 3, and 6, (e) corvergesto

kq 3. Moreover, the corvergenceis uniformin the starting point in the following sense:
(Ve > 0)(3ng € N)(Ve € [0,1])(Vn > ng)(|0n(e) — Kapgl < €).
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Finally if a; < ay and 81 > By, thenk,, g, < Koy gs-

Lemma 11 AssumgH2) and [(H3) or (H3)].

a) For ¢ € [0, 1], there exist two sequence$d’ (ey)) and (6%(ey)) in [0, 1] sudh that the law
of e, underP,, and the Lebesgue-measeion [(6,.(ey)), (62(eo))] are mutually absolutely
continuous.

b) (0l(ep)) and (62 (ey)) corverge to, say©! and ©? respectively®! and ©? are independent
of ey and ©! < ©2. Finally, the corvergenceis uniformin the starting point in the sense
of Lemmalo.

c) If ¢y € [©1,07], thenfor all n, the law of ¢, under P, is absolutelycontinuouswith

respectto the Lebesgue-measeion [©!) ©2].

We recall some definitions from the theory of Harris Markov chains,which will be used

extensvely in the proof. We refer the readerto [34] for the relevant background.

Definition 12 Denoteby (r,,) a Markov chainon I aninterval of R. Setl a probability measue
on I, it is an irreducibility measuref for all measuable set A sud that {(A) > 0 and for all
ro €1

(In) Py (r, € A) > 0.

[ is a maximalirreducibility measurdf it satisfiesthe following conditions:

« [ is anirreducibility measue.

« For any other irreducibility measue ', I’ is absolutelycontinuouswith respectto /.

o If{(A)=0theni{ry: (3In) P, (r, € A) >0} =0.

« For any irreducibility measue ', [ is equivalentto

/Il’(dro) 3 SPr(ri € )
=0

Definition 13 Denoteby (r,,) a Markov chain on I an interval of R. A set A is called Harris
recurrentif for all r, € A, P,,-a.s,the chain r,, visits A an infinite numberof times.The chain
(r,) is called Harris recurrentif givena maximalirr educibility measue [, every measuable set

A sudh that I(A) > 0 is Harris recurrent.

Definition 14 Denoteby (r,,) a Markov chain on I an interval of R. Denoteby [ a maximal

irreducibility measue. For every measuable set A sud that/(A) > 0 we denoteby 7, thetime
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whenthe chain (r,,) entess A. A measuable set B is called regularif for every measuable set
A sudh that [(A) > 0,

sup E,(74) < o00.
ro€B

Definition 15 Denoteby (r,) a Markov chain on I an interval of R. Denoteby A and B two

measuable sets.We saythat B is uniformly accessibldrom A if there existsan ¢ > 0 sud that

inf P,,((3In) r, € B) > ¢.

T’oEA
We continuewith the proof of Proposition9. Denoteby [ the Lebesgue-measuien [©!, ©7].
By [34, Theorem17.0.1],it is enoughto prove thatthe Markov chaine,, is [-irreducible,positive
Harris with invariantprobability ;5. DenoteB* the setof Lebesgue-measurabdeibsetf [0, 1]

with positive [-measureHereis a technicallemmathat will be proved later on.

Lemma 16 AssumegH2) and [(H3) or (H3')]. For all B € BT, there exists ny = ny(B) sudh
that for all n > ny,
pn 2 inf P (e, € B) > 0.

e0€l[0,1]

We continuewith the proof of Proposition9.

Stepl: TheMarkov chain ¢, is [-irreducible Harris and admitsan invariant measue unique
up to a constantmultiple By Lemmal6, for ¢y € [0,1] and B € BT, the chainhasa positive
probabilityto reachB in n, stepsstartingfrom ¢,. Thereforethe Markov chaine,, is [-irreducible
andby Lemmallc), [ is amaximalirreducibility measurdor the chaine,,. Foragiven B € BT,
by Lemmalé, the chaine,, hasa probability at leastp,,, to reachB in n, stepshencethe chain
will eventuallyreachB andhencecomebackto B aninfinite numberof times, thereforeB is
Harris-recurrenaindthe Markov chaine,, is Harris. By [34, Theorem10.0.1],the Markov chain

e, admitsan invariantmeasureuniqueup to a constantmultiple.

Step2: The Markov chain e, is aperiodic.By [34, Theorem5.4.4], thereexists an integer d,
the period of the chain, suchthat thereexist disjoint measurablesetsD,, ..., D,;_; suchthat

« Fori=0...d—1,if ¢; € D;, thenP,(e;+1 € D;11) = 1 (mod d).

. 1 ((nglDi)c) =0.
By Lemmall, for n; > ny large enoughandn > n,, the Lebesgue-measumn J = [(20! +

©?)/3, (0'426?) /3] is absolutelycontinuouswith respecto thelaw of ¢,, underP,,. Therefore,
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forany n > ny,if e, € D;, thenJ C D;, andthen,if d > 1, ¢, € D;,, andthusalsoJ C D;,q,

a contradiction.Hence,d = 1.

Step3: Theset[0, 1] is regular for the Markov chain ¢,,. Take B € B*. By Lemmal6, the
time it will take for the chaine, to enter B is a.s boundedabore by n, times a geometric
randomvariableof parametep,,,, henceit expectationis boundedabore by ny/p,,, hence[0, 1]

is regular

Now we apply [34, Theorem13.0.1] and get that the Markov chain ¢, is positve Harris,

hencehasa uniqueinvariant probability that we denote;.

Proof: [Proof of Lemmal6]
The Lebesgue-measun [0, ©?] is regular hencethereexistsane > 0 suchthat BN[©! +
e,0? — ¢] haspositive Lebesgue-measur8y Lemmall a) and b), we cantake n, suchthat
for ary given n > ny, and ary given starting point ey, P, (e,, € B) > 0. Fix n > ny. Set

P(eg) = Pey (e, € B). By (H2), ¢ is a continuousfunction on [0, 1]. By compactness,

inf Pe,(e, € B) > 0.

eo€[0,1]

Proof: [Proof of Lemmall] Let us startassuming(H3’).
a) We first assumethat M,, M, € R*. We usethe notationof Lemma10. For ¢y € [0, 1]
andn, we defined),(eo) = o7, v, (o) and b7 (eo) = P'hy, 1, (€0), Whereg™ is the n-th iteration
of the function ¢. Note thatfor el < e, € [0,1], al < ay € RT and 51 < 3, € RT,

Y ers ea] X [a, az] X [Br, Bo] — [Par 6:(€1); Pan,6: (€2)]
(SL’, 0576> — (ba,ﬁ(e)

is well definedandonto andthe inverseimageof aninterval which is not a singletonhaspositive

Lebesgue-measurd herefore, by induction, the Lebesgue-measuren [0}, 62] is absolutely
continuouswith respecto the law of e,, underP.,. Moreover, by (H2) and (51), the Lebesgue-
measureon [6;., 62] andthe law of ¢, underP,, are mutually absolutelycontinuous.

b) It is a direct consequencef Lemmal0 andwe get ©' = k,,, pq, @NA O = Ky, 1, By

Lemmal0 and (H3'), &y, m, < Km,.m,, hENCEO! < O2.
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C) ¢m..Mm, IS increasingand x,,, A, a fixed point henceif x,,, v, < e, thenfor all n,
Fma, < 0%(eo). In the sameway, for all n, K, m, > 02 (eo)-

If M, = oo (resp.M, = oc), we take for all n > 1, #> =1 (resp.f. = 0) and©? =1 (resp.
©! = 0) andthe proof is the same.

Let us nowv assume(H3). The proof is the samewith for all n > 1 andall ¢, € [0, 1],
60 (ey) =0, for all n > 1 andall ¢, € [0, 1] (exceptfor n = 1 andey = 0), 6%(ey) = 0. We get
©!'=0and©? =1. |

Proof: [Proof of Lemma10] For ¢ € [0, 1],

ok
(0+ 5+ ae)?

¢, 5 1s decreasin@nd gy, 5(1) < 1. If ¢, 5(0) < 1, theng, s is contractinghenceadmitsa fixed

(P;}ﬁ(@) =

point andits iterationon ary startingpoint corvergesto the fixed point. Supposep;, ;(0) > 1.
Denoteby & the only point of [0,1] suchthat ¢, 4(€) = 1. Set¢, s(e) = d(e)as — . Then
Gap(0) > 0, daps(l) < 0, and ¢, 4 is increasingon [0,¢] and decreasingon [z, 1]. Hence,
$a.5(€) > 0 and ¢, 5 is 0 on exactly one point which is a fixed point for ¢,, 5. We denotethat
fixed point k. 5. If € € [kq 3, 1], SiNCeQ, s is increasingfor all n, 0, (¢e) € [k, 3, 1] and ¢, 5 is
contractingon [k, s, 1] henced,,(e) convergesto k, 5. If e € [0, k5], for all n, ,,(e) € [0, K g,
and &aﬁ is non-n@ative on thatintenal, henced,, (¢) is non-decreasinglherefore,it corverges
and since ¢, g is continuous,the only possiblelimit is x, 3. To prove the uniformity in the

startingpoint, we usethe factthat ¢,, s is increasinghencefor all e € [0, 1] andn,

0,(0) < On(e) < On(1).

That gives the uniformity. Finally, assumen; < ay and 3, > (. ¢, 5(e) is non-decreasingn
a, decreasingn # andnon-decreasingn ¢ henceby induction,¢7; 5 (0) < ¢, 5,(0), whereg™

2,02

is the n-th iteration of the function ¢. Hence,s,, g, < Kay8,- If Koy g = Kas,g., then

Roy,p1 = (balﬁl(malyﬁl) < ¢a2yﬁ2(f€a1yﬁ1) - ¢a2,ﬁ2 (“a2,ﬁ2) = Kag,B2s

which gives a contradiction.
[ |
We continuewith the proof of Lemma8. Recallthat0 < e, < 1, hencep; is stochastically

dominatedby anatomat 1. y; is the invariantmeasuresincethe function ¢, s(-) is increasing
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in e, us is stochasticallydominatedby the law of the chainstartedat 1 after one step:

5 2 2
Y LM Y —
§ + |bo|” + ao |bol|” + [acl

Thus, denotingby 7y the law of _aol® _and using (H1),

bol*+laol*”

/—log(l — z)dus(z) < /—log(l — x)dmy(z) < 0.

Thatis
—log(1— ) € L}(1s). (52)
With Proposition9, we get
1 n+1 1
- Z —log(l —ex) —— | —log(1l — z)dus(x) P., —a.s (53)
n n—oo 0
k=2

With (50), it givesa proof of Lemmas8 a).

Let us prove Lemma8 b). Take » > 0 ande > 0 small.
1
| = 1os1 = 2)ds(a)
0

:/Oa—log(l—x)du(;(:c)+/ _n—log(l—x>dua(:c>+/l —log(l —2)dus(x)  (54)

< —<log(1 — )~ logms(e 1) + |~ log(1 - a)d(a).

By (52), the lastterm cornvergesto 0 asn goesto 0. By (50), (53) and(54), to prove Lemmas8

b), we only have to prove that for ary givene > 0,

pa((e, 1) — 0.

For that, by Proposition9, we needto shav that the proportionof the time that the chaine,
spendsabore = corvergesto 0 asd goesto 0. We take 0 < ¢ < g9 < 1, wheregy will be

chosenlater We considerthe Markov chain z,, =

log e,, and the randomfunction g,, suchthat
Zn = gn(zn_1). It is enoughto shav that the proportionof the time that z,, spendsabove log e
goesto 0 asé goesto 0. Let us couple z, with anotherMarkov chainw,, suchthatw, > z,
a.s.andthat the proportionof the time that w,, spendsabove log s goesto 0 asd goesto 0.

For that, we needgoodinformation on the jumpsof z,.
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Lemma 17 AssumgH1) and (H5). Set

jn(znfl) é Zn — Zpn—1

) .
= log ( + |an_1|2> — log (O + |bn_1|2 + \an_l\z ez"‘l) )

e#n=1
(V6 > 0) (3’ > 0) (Vo > loge’)
a) Ejn(z) <0,
b) Var ju(z) <V 2 E ((log(lan-1]” + b)) + (10g(an]*)") +C.
C is a constantindependenbf everything ¢’ is a functionof § but we will not write it to keep

the notation clear Moreover,

lime = 0.
0—0

The proof will be doneat the end of the section.
We continuewith the proof of Lemma8 b). We take § > 0 suchthat0 < ¢’ < ¢ < g9 < 1.
We definew,, in a way that it staysbetweenlogs’ and 0. Setw, = 2z, for 6 small enough,

wp > loge’. For x € [loge’; 0], denote

hn(2) = gn(x) — Ejp(x) > gn(x).

Thatis
5 2
=+ ‘an—l‘
hn(x) =z + log € —
( ) <5+ ‘bn—1‘2+ |an—1|2€x)
5 2 (55)
1 P + |an_1|
og .
° (5 + |bn—1|2 + |CLn_1|2 et
Note that
E(hn<znfl> - anl‘znfl) = 0. (56)

o If hy(w,_1) >0, setw, = 0.

o If hy(w, 1) <logée', setw, = loge’.

. Otherwise,setw,, = hy,(w,—1).

In the first two case we saythatthe chainis truncated Note that for all n, w,, > z,. Indeed,
eitherw, = 0 > z, or w, > hy(w,_1) > gn(wn_1) > gn(zn_1) = 2, by induction and using
the fact that g,, is a.snon-decreasingTherefore,the proportion of the time that the chain w,

spendsabove log ¢ is larger that the proportionof the time that chain z,, spendsabove log e.
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Proposition 18 AssumgH2).
a) TheMarkov chain w,, hasa uniguestationaryprobability, say vs and for s € L!(vs), for
every starting point wy € [log<’, 0], P,,-a.s,
1 n
— ; dvs.
- ; s(w;) — [ sdu;
b) We denoteT the returntime to 0, starting from0. Thenv;s(0) = 1/Ey7".

Proof: See[34] and Definitions 12-15for the theoryof Harris Markov chainsthat we will
use extensvely in the proof. Define the following probability measureon [loge’, 0]. For B a

Borel set,

I(B)£>" 2n1+119>0(wn € B).

e8]
=0

n

Let us prove thatthe Markov chainw,, is [-irreducible,positive Harris with invariantprobability
vs. By [34, Theoreml17.0.1],thatwill prove a). We usethe following lemmathatwill be proved

later on.

Lemma 19 AssumgH?2).

a) Thee existc > 0 and # > 0 sud that for all = € [log¢’; 0],
P (hp(x) > x+c¢) > 0.

b) SetN = [‘1"%1 0 is a recurrent point for the chain w,, and the time betweertwo visits

at 0 is a.sboundedabove by NV timesa geometricrandomvariable of parameter§”.

We continuewith the proof of Lemma18. The setswhich have positive [-measureare exactly
the setsthat have a positive probability to be visited startingfrom 0. Moreover 0 is a recurrent
point. Therefore the Markov chainw,, is l-irreducibleand( is a maximalirreducibility measure.
Moreover, take B with positive [-measure,B is uniformly accessiblérom {0}. Therefore,we
can apply [34, Theorem9.1.3 (i)] and since O is Harris-recurrent,B is also Harris-recurrent,
therefore,the chainw,, is Harris-recurrentBy Lemma19 b), the time betweentwo visits at O
hasfinite expectation(boundedaborve by N/6"). Therefore by [34, Theorem10.2.2],the chain
w, IS positve-Harrisand admitsa uniqueinvariant probability measureThat finishesthe proof

of point a). The point b) is a consequencef
1 =ws([loge’,0]) = vs(0)Eo[T],
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which comesfrom [34, Theorem10.0.1], which we apply to A = {0}, which has positive
I-measure. |

Proof: [Proof of Lemmal9] a) We considetheres > 0. We denoteby Supp(X) the support
of the law of a randomvariable X. We take ¢, smallenough.We considerfor x € [log¢’; 0] the

function
¢(x) = max{y; y € Supp(hy(z) — 2)},

which by (H2) and (55) is a continuousfunction of =. Moreover, sinceE(h,(z) —z) =0, ¢ is

strictly positive. By compactnesshereexists ¢ > 0 suchthatfor = € [loge’; 0],
¢(z) > 2c,
P(h,(z) > 2 +¢) > 0.

By (H2) and(55), P(h,(z) > x + ¢) is continuousand onceagain, by compactnesghereexists
¢ > 0 suchthatfor = € [loge’; 0] ,

P(h,(z) > x+¢) > 6.

b) If thereareat leastN stepsin arow suchthath,,(w,_;) > x + ¢, thenthe chainreached).
By the point a), that happenswith probability at leasté” > 0, hence0 is a recurrentpoint for
the chainw,, andthetime betweentwo visits at 0 is a.sboundedabore by N timesa geometric
randomvariableof paramete” . [ |

We continuewith the proof of Lemma8 b). By Propositionl8 a), to prove thatthe proportion

of the time that w,, spendsabove log ¢ goesto 0 asé goesto 0, we only needto prove that

vs([loge, 0]) — 0.

Let usfirst prove that ET P which by Proposition18 b) will prove that

vs(0) — 0.

We usethe following lemma.

Lemma 20 AssumegH2).

a) Thee exist u > 0 and « > 0 dependenbn ¢ and independenf § sud that for all
x € [2loge; 0],
P (hp(z) > 2 +u) > a.
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b) Ther existv > 0 and 5 > 0 dependenbn ¢ and independenbf § sud that
P (loge < hy(0) < —v) > f.

The lemmawill be proved later on.
We continuewith the proof of Lemma8 b). We denote A the eventloge < hy(0) < —v. On

A, we definethe stoppingtime

T=1+inf{n > 1;h,1(w,) >0 0r hy,1(w,) < loge'}.

We now condition on the event 4 and on z, = h(0), denoteby P and E the associated
probability andexpectation.I" < T is the first time the chainis truncated Moreover, for n < T,

wy, = hy(wy,_1), sowith (56), by classicalmartingale amguments,

E (hg(wp_,)) = @o.
We denoteby .4, the event that w, reacheslogs’ before 0, we setp = P(Ay), Xy =
E (hg(wg,)|A5) and Xy = E (hp(wz )| Ao).

o = le + (1 — p)Xo

(57)
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We integrateover z, anduseP(A) > § andE(h;(0)%.A) < (loge)?.

E(7.4) > H18S) B0
v(—loge’) — (loge)?
E(T) zp 7

We have proved that ET o which provesthat v5(0) 7 0.

Using Lemma20 andthe invarianceof vs, let us prove by inductionthat for N < (%}

vs ([-Nwu;0]) < Oé_Nl/g(O).

vs([—(N = D)u; 0]) > /l/g(dw())PwO(wl € [—(N = 1)u;0])
Vs (dwo) Py (w1 € [—(N = 1)u;
2 [ P € [V = 0]
Vs (dwg) Py, (ha(we) > u 4wy
> [ )it 2 0t o

> avs([-Nu; 0]).

Therefore,
vs ([loge; 0]) < al =] v5(0).

So,

vs ([loge;0]) o 0.

That concludesthe proof of Lemmas b).
Proof: [Proof of LemmaZ20] We considerhered > 0. We denoteby Supp(X) the support
of the law of a randomvariable X. We take §, small enough.

a) We considerfor = € [2loge; 0] and0 < 6 < §, the function

P(z,0) = max{y:y € Supp(h,(x) — )},

which by (H2) is a continuousfunction of (z,¢) becauseh,(x) — x) is continuousin (z,0).
Moreover, sinceE(h,(z) — z) = 0, ¢ is strictly positve. By compactnessthereexists u > 0
suchthatfor x € [21loge;0] and0 < § < dy,

b(2,6) > 20,
P(hp(z) > x4 u) > 0.
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By (H2), P(h,(z) > = 4+ u) is continuousand onceaggin, by compactnesghereexists o > 0
suchthatfor x € [21loge;0] and0 < § < dy,

P(h,(z) > x4+ u) > o

b) Forall 0 < § < ¢y, thereexist &, > 0 andv > 0 suchthatP(loge, < hy(0) < —v) > 0. Like
in the proof of a, by (H2), we canchosez, > 0 andv > 0 continuousin 6. By compactnessye
canchosesy, > 0 andv > 0 independenbdf § suchthatfor all 0 < 6 < dy, P(logep < h1(0) <
—v) > 0 andlike in the proof of a), by (H2), that probability can be chosencontinuousin é.
Therefore by compactnesagain, thereexists # > 0 dependenbn ¢ andindependentf § such
that P(log ey < h1(0) < —v) > (3. Take ¢ < ¢y, we have P(loge < hy(0) < —v) > £. u

Proof: [Proofof Lemmal7] Notethatby (H1), V' < occ. j,(x) isanon-increasingontinuous
function of z andso is Ej,(z). Ej,(0) < 0, hencegiven ¢, thereexist 0 < ¢’ < 1 suchthat
Ej,(loge’) <0, andfor z > loge’, Ej,(z) < 0. That gives point 1. For point 2, take C' such
thatfor all z > 0,

(log(z + 1))* < (log(x))* + C.

To prove thatlims_ &’ = 0, it is enoughto prove that for a given L < 0, we canfind § small
enoughsuchthatEj, (L) < 0. Thatis truebecausdor agiven L, Ej,(z) is acontinuousunction

of 4 which, by (H4) is negative for § = 0. [ |

C. Proof of Theoem2

We reformulatethe problemin the spirit of Appendix A. Let K > 1. The q; (resp.b;) are
now independentomplec vectorsof size K whosecoeficients are independenaind distributed
accordingto 7, (resp.m,). We denoteby P the probability associatedwith those random

sequencesind by E the associatedexpectation.We considerthe following A x K(M + 1)

channeltransfermatrix:
a; bl 0 e 0
0
HJ\J ==
0
0 e 0 a b]u

We considerthe following variable
1 P
C]\](P) = M tr {1og <I + EHJ\IHTM> } ,
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where P = Kp. Note that,

ay* + b1 < axb > 0 0
< agb >t |ay]’ +|b]” < asiby > .
HyH' = 0 0 ,
< apy;by_1>
0 0 <au;by 1 >t |ay)? + bl

Where|ai\2 = 22(21 |ai,k\2 and < a;, bj >= Zszl(ai’k)Tbj’k.

Theorem 21 AssumgH1), (H2) and (H4)

a) For everyp > 0, Cy/(P) corvemesP-a.sas M goesto infinity. We call the limit C(P).
b) As P goesto infinity,

2
C(P) = log P + Elog <6 +K|b| ) +o(1),
whele the expectations takenin thefollowingway. ¢ andb are independentb is a comple
K-vectorwhosecoeficientsare independentind distributed accoding to m,. Thelaw of
e is mgp, which is the uniqueinvariant probability of the Markov chain definedby

_ 2 [ €n + |bn—1‘2 Sinz(am bn—l)
eni1 = |Qy| )

ey + ‘bn71|2
The restof this appendixis devotedto the proof of Theorem21.

As in Appendix A, we definethe sequence:,, asfollows. zy = 0, z; = 1, andfor n > 1,
A —la,|* — \bn|2x < anibpa >1

n = n n—1- 58
ol < a'n+1;bn > < a’n+1;bn > ot ( )
We get, like in (48), for A = —1/p,
Cyu(P) =log(P/K) + 11 | (AN)] + ! il |< ;b >| P—as (59)
M = log Vi Og |Tr+1 M 2 0g [< @41, 04 .
Setc, = x,/x,-1, for n > 2. By (58), we get
A= lan|” = [ba]* < @n;by >
Cnt1 = - .
i < Qp41; bn > Cn < Qpy1; bn >
Letd, = ¢, < a,;b,_1 >. Then,
< ay b, >|?
Qs = A= [an? = [by2 — [ 0niboms
d,
b,_1|* cos®(ay, b,
= A= [buf’ — lau/* <1+ bual o lan ”) ,
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where
cos2(@n, by_1) 2 |< @y byey >/ |an]” |bu|”.
Note that0 < cos? < 1. Lete, = —d,, — \bn,1|2.

en + |bn71‘2 Sin2(a’na bnfl)
en T+ ‘bn—1|2 ’

eni1 = —A+ |ag| ( (60)

wheresin® £ 1 — cos?. With the initial conditions,d; < — \b1|2, hencee; > 0 andfor all n,
e, > 0. Notethat (e,,) is a Markov chainandthatfor all », e, is independentf a,, andb,, ;.
By (59), we get

M+1

M

1 1

Cu (P) = log(P/K) + - g loglei(M)] + 47 ;log |< @iy1; by >
M+1

= log(P/K) + 2= > loa(ldd) + o) (61)

=2

i:l <—+ b1l >+0(1)

We only needto studythe Markov chain (e, b,_1). For corveniencewe seté = —\ andwe
(1,

bo)-

Proposition 22 Assume(H2) and (H4). Take § > 0. The Markov chain (e,(¢),b,_1) hasa

unique stationary probability, say s and for s € L'(us), for every starting point (e;, by) €

allow § = 0. We alsoassumewithout loss of generalitythat the chain startsat

R+ X CK, P(elybo)-a.s,
1 n
- Z s(es, bi—1) 7 sdjus.
" 1=0 e
Moreover, 15 is weaklycontinuousin ¢ = 0.

Proof: We considerthe Markov chain(e,,) on the compact|0, oo]. By (60), for n» > 1 and
e € [0,0], Pe(e,, = o0) = 0. Consider(60), by (H2), for ¢; € [0, ), the law of e, underF,, is
absolutelycontinuouswith respectto the Lebesguemeasureon [§, oco|. Moreover, by (H4), the
law of e, under P., and the Lebesguemeasureon [4, oc| are mutually absolutelycontinuous.
Therefore,for ¢; € [0,00) andn > 3, the law of ¢, under P., and the Lebesguemeasure
on [4, co] are mutually absolutelycontinuous.That fact allows us to prove like in Appendix

B that the Markov chain (e,,) is [-irreducible, positive Harris with invariant probability m,
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where! is the Lebesguemeasureon [, oo]. SinceP, (e, = oo) = 0, ms doesnot chage {oo}.
We identify ms and the measuret induceson R,. We denoteby 11, the law of b. Since for
n > 1, e, andb, , areindependentthe Markov chain (e, b, 1) is [ x Il,-irreducible,positive
Harris with invariant probability s = mgs x 1. By [34, Theorem17.0.1], the Markov chain
(en(N), by_1) hasa uniquestationaryprobability u; andfor s € L'(us), for every startingpoint
(e1,b0) € Ry x CK, Py, py)-aLS,

1 n
- E s(ei, bi 1) —— [ sdps.
=0 e

Let us prove that m;s corvergesweakly to my whend convergesto 0, which will finish the
proof. {ms,0 > 0} are measureson the compact[0, co] henceit is enoughto shav that mg
is the only limit point when ¢ goesto 0. By (H2), for a point z and an interval A in [0, o],
P, (e2(d) € A) corvergesto P, (e2(0) € A). It implies that a limit point mustbe an invariant
measuredor the chainwith § = 0. The only possibility is m. [ |

By (60), m; is stochasticalljdominatedby the law of \an|2 + 9. Therefore by (H1), (z,y) —
log(x +y) € L'(us). (61) and Proposition22 concludethe proof of Theorem21.

D. Productof randommatrices

We prove Lemma8 a) assumingonly (H1) and(H2). We usethe theoryof productof random
matricestheory For a generalintroductionto the aspectsf the theory we usehere,the reader
may consult[25], [26], [35]-[37].

Let ustake || ary normon C? and||-|| the associate@®peratomorm on matrices.For a given
A,

. Alan=loul® bl .
ntl — an+1b""- an+1b" n
Tn 1 0 Tn—1

For a,d’,b, b’ € C — 0, we definethe following invertible matrices

Alal®=p'[* _ abt
i i
g()\,a,a’,b, b/) é a’Ty a’ty
1 0
Finally, we define
A—lan>=|bal®  anbl_,
A T T
gn()‘) = g()\, Apy Ap—1, b1, bn) = Gntabn OO )
1 0

Octoberl1, 2007 DRAFT



38

Sothat

Set& = (C — 0)* which is a Borel setof a separableand completemetric space.X, =
(Gny1, Gn, by, by—1) is @ Markov chainon £, with invariantmeasurdl £ 7, x m, X m, X 1. With
(H1),

Ky, (1og+ lg(\, @, d’, b, )| + log* Hg()\, a,d b b))

) <o

Notice that g, (\) is a continuousfunction of X ,,, therefore((X,, M,,),II) is a multiplicative
Markovian processBy [38, Example1 and Proposition2.5], 1/nlog || M, (\)| corvergesP-
almostsurelyandin L, (2), we set

.1
1) = i~ log | M, (V) 62

~(A) is the first Lyapune exponent.
The L, (2) corvergencealready gives an easy upper bound for v(\). By the property of

operatornorm,
v(A) < Enlog g, (V)]

Moreover, we canrefine that boundinto a whole family of upperbounds,for £ € N,

10N < TEnlog gy (4)--g, (V] (63)

Note that this upperboundis getting betteras k increasesandtight ask — oc.

Let us now prove that

1
Slog [z (A)] ——— 7 (A).

n—oo

Definition 23 Themultiplicativesystem((X,,, M), II) is irreducibleif there is no measuable

non-randomfamily {V (X)), X € E} of proper subspace®sf C? sud that

M,V(Xo)=V(X,), P-asVneN.

Lemma 24 AssumgH2). The multiplicative system((X,,, M), 1I) is irreducible

The proof is an adaptationof the proof of [39, Proposition6.1.1].
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Proof: Theproofis by contradiction Assumethatthereis ameasurabléamily {V(X), X €

E} of propersubspacesf C? suchthat

g;V(X,) =V(X;), DP-as, VneN

C
We parameterizehe propersubspacesf C? by for ¢ in (—oo, 0o]. Thereis a measurable

1
. C(Xz) C(Xs) . .
family {¢(X), X € E} suchthat g, and are P-a.s. collinear A direct
1 1
computationgives
c(ay, az, by, by) = A ‘QB‘Z — |b3‘2 - asb; P-a.s
Cljlb3 C(Clg, as, bg, bl)ajlbg,
thatis ,
. = IP)' .
C(a37a27b2abl) a],‘b A—‘a3‘2—‘b3‘2 B ( b b 3 a.s
abs (T — claa, as, by, b)

Note thatthe RHS doesnot dependon a, andb;, hence(a, d’,b,b’') doesnot dependon «’ and
V. Settingd(a,b) = a'b ¢(a,b), we get

2 2
bs|
dan bs) = A — |asl® — [of? — 1B g 64
(a4a 3) ‘GJ‘ | 3| d(ag,b2> ) ( )
The RHS doesnot dependon a4, hence,d(a, b) doesnot dependon a. From (64), we get
d(bz) _ Jas” P,-a.s.

[bs]” d(bs) — A+ |as|” + |bs|*’
The RHS doesnot dependon b,, hence(b)/ |b|* doesnot dependon b, setd(b) = L |b|?, where

L is a fixed constant.Then,

1
(L+1)|bs]> = X — |as]? (1 + Z) . P,-as.

If L # —1, |bs|” is a measurabldunction of a; andsinceit is also independenbf as, it is a
constantwhich is in contradictionwith (H2). HenceL = —1, which givesa contradictionwith
A <0. [ |

By [38, LemmaZ2.6], irreducibility implies that

.1 Tp+2
lim —log " =7y P-as
neo InJrl

The following lemmacompletesthe proof.
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Lemma 25 AssumgH1).

Tn
hm — A - log|zp1] | =0 P—as
n—oo 1 xn+1
Proof:
x C
"2 = 1og |2n41| = log " >o.
Tnt1 1
Let us prove thatfor ¢ > 0, P %log o > ¢ | is a summableseries,which by the Borel-

1
CantelliLemmawill prove the lemma.We have

1 Cp, 1
P | =log > e §P<—log(\cn|—|—1)2€>
n 1 n
<P (|ea| 2 €™ —1)
<P (Jeo| > %)
<P ol 1 >e?
- lan| 1—e, —
bn_ ne 1 ne
<P gzef +P >e1 |, (65)
|| 1—e,

We analyzethe right side of (65). We usethe fact that log |a,,| and log |b,,_1| have a second

momentby (H1) andthatit doesnot dependon n. By the Bienayne-Tchebichdfinequality we

p(loaal o =P (1og\bn_1| — loga,| = E)
Tanl = .
_ 16E ((10g [bus| — log |au)*)

n?e?
implying that the first termin the right side of (65) forms a summableseries.Moreover

get

(66)

?

N | e P

—€n |bn,1|2

3

1
log T o < log

which hasa secondmomentby (H1), hence,by a computationlike (66) and the Bienaye-
Tchebicheff inequality P ( > et ) Is asummableseries The Borel-CantelliLemmaapplied

to the right side of (65) concludesthe proof. [ |
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E. Determinantsof Jacobi Matrices

An interestingand useful characterizatiorof an M x M Jacobimatrix is thatits determinant

can be expresseduy the following recursve formula[40]

det Gm == [Gm]m,m det Gm,1 — [Gm]m,mfl[Gm]mfl,m det Gm,Q ) m = 3, .. M s (67)

°

with
det G1 = [Gm]l 1

)

(68)
det Gy = [G)11[Gml22 — [Giml1,2|Gm)21
where G,, is the principle submatrixof G, obtainedby deletingits last (M — m) columns.
This characterizatioralready usedby Narula [14], can be easily proved by straight forward
calculationof the determinanof G, startingfrom its last row.
Examining(67), it is obsered thatthe determinanbf a squareJacobimatrix is dependenbn
a weightedsumof its two largestprinciple matrices’determinantonly. Furthermoredet G,,,_;
anddet G,,_, areindependentf the entries|G,,|im m, [Gimlmm-1, aNA [G]mt1.m-
It is worth mentioningthat this approachcannot be extendedfor matriceswith a numberof
non-zerodiagonalhigher than 3. Hence,a similar formula, can not be obtainedeven for five-
diagonalmatricesand the resulting formula involves O(M) determinantf submatricegnot

necessarilyprinciple submatrices).
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Fig. 1. Soft-Handof setup(M = 3)

High—-SNR Power Offset (K=2)

-0.3 T T T T T T
—~— Upper bound
—A— | ower bound
= = = Previously known lower bound|
Asymptotic (K=co)
o #* %
8 J
-
_09 - -
-1
-11 | | | | | |
1 2 3 4 5 6 7 8

Bounds Order

Fig. 2. High-SNR power offset boundsfor Rayleighfading, K = 2, andboundsordern = 1,2--- ,8

Octoberl1, 2007 DRAFT



-0.85

-1.05
1

Fig. 3. High-SNR power offset boundsfor Rayleighfading, K = 10, andboundsordern = 1,2--- ,8
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2,3,4,6,8,10. Note that for K = 1,
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