Random matrix theory: lecture 2

Finite-size analysis (part I)

Problem: let H be a $n \times n$ random matrix with a given distribution; what can be said about the joint distribution of its eigenvalues $p(\lambda_1, \ldots, \lambda_n)$?

Linear algebra reminder (H $n \times n$ complex matrix)

- H is said to be diagonalizable if there exist an invertible matrix S and a diagonal matrix Λ such that $H = S \Lambda S^{-1}$

 In this case, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of H.

- Not every matrix H is diagonalizable, but the following is true in general: there always exist an invertible matrix S and an upper triangular matrix T such that $H = STS^{-1}$

 Moreover, T is block-diagonal, with blocks of the form $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ [Jordan decomposition]

 Again, the elements of the diagonal of T are the eigenvalues of H.
Particular cases:

- If H is normal, i.e. $HH^* = H^*H$, then H is unitarily diagonalizable, i.e. there exist a unitary matrix U (i.e. $UU^* = I$) and a diagonal matrix Λ such that $H = U \Lambda U^*$

NB: This is known as the spectral theorem

- There are three important sub-cases of the above:
 a) If H is Hermitian, i.e. $H = H^*$, then H is normal and $H = U \Lambda U^*$, where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and the eigenvalues $\lambda_1, \ldots, \lambda_n$ are real
 b) If H is non-negative definite, i.e. $x^*Hx \geq 0$ for any vector $x \in \mathbb{C}^n$, then H is normal and $H = U \Lambda U^*$, where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and the eigenvalues $\lambda_1, \ldots, \lambda_n$ are non-negative
 c) If H is unitary, i.e. $HH^* = I$, then H is normal and $H = U \Lambda U^*$, where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and the eigenvalues $\lambda_1, \ldots, \lambda_n$ are of modulus 1 (i.e. $|\lambda_j| = 1 \forall j$)

\(*\) H is Hermitian, so...
For reasons that will become apparent in the class, it is (much) easier to deal with random matrices whose eigenvalues are distributed on a particular curve in the complex plane, and not in the whole plane. We will therefore focus on the last three subcases.

Back to the joint eigenvalue distribution problem.

General strategy: given an ensemble of normal random matrices H, we may interpret the spectral theorem $H = U \Lambda U^*$ as a change of variables $H \mapsto (\Lambda, U)$.

Provided that H is distributed according to $p(H)$, we therefore have $p(H) \, dH = p(U \Lambda U^*) \, |J(\Lambda, U)| \, d\Lambda \, dU,$

where $J(\Lambda, U)$ is the Jacobian of the change of variables. The joint distribution of (Λ, U) is given by

$$p(\Lambda, U) = p(U \Lambda U^*) \cdot |J(\Lambda, U)|$$

eigenvalues \leftrightarrow eigenvectors

And as we will see, this expression simplifies drastically in some particular cases.
Warm-up (case n=1!!)

Let \(x, y \) be iid r.v. \(\sim N_{iR}(0, \frac{1}{2}) \), i.e. their joint density is given by

\[
p(x, y) = \frac{1}{\sqrt{\pi}} \exp(-x^2) \cdot \frac{1}{\sqrt{\pi}} \exp(-y^2) = \frac{1}{\pi} e^{-x^2 - y^2}
\]

NB: the complex r.v. \(z = x + iy \) has therefore a density

\[
p(z) = \frac{1}{\pi} e^{-|z|^2}; \text{ notation: } z \sim N_{iC}(0, 1)
\]

Let us consider the change of variable \(x + iy = re^{i\theta} \).

The Jacobian is given by

\[
J(r, \theta) = \det \left(\begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array} \right)
\]

\[
= \det \left(\begin{array}{cc} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{array} \right) = r
\]

Therefore,

\[
p(r, \theta) = p(x(r, \theta), y(r, \theta)) \cdot r = \frac{1}{\pi} e^{-r^2} \cdot r
\]

\[
= 2r e^{-r^2} \cdot \frac{1}{2\pi} \cdot \frac{1}{\sqrt{\pi}}
\]

(Rayleigh dist.) \(\tilde{p}(r) \) does actually not depend on \(\theta \); this implies:

a) the distribution is uniform in \(\theta \)

b) \(r \) and \(\theta \) are independent (since factorization)

c) for any given \(\theta \), \(z \) and \(ze^{i\theta} \) have the same distribution, deterministic

\(*\) In addition, since \(p(z) \) depends only on \(|z| \),

The r.v. \(z \) is said to be "circularly symmetric"
Gaussian Orthogonal Ensemble (GOE)

Let H be a $n \times n$ real symmetric random matrix such that:

- $\{h_{jk}, j \leq k\}$ are independent r.v. ($h_{jk} \sim N_R(0,1)$)
- $h_{jj} \sim N_R(0,1)$, $h_{jk} \sim N_R(0, \frac{1}{2})$ for $j < k$

Distribution of H:

$$p(H) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{h_{jj}^2}{2}\right) \cdot \prod_{j<k} \frac{1}{\sqrt{\pi}} \exp\left(-\frac{h_{jk}^2}{2}\right)$$

$$= C_n \exp\left(-\frac{1}{2} \sum_{j=1}^{n} h_{jj}^2 + \sum_{j<k} h_{jk}^2\right)$$

$$= C_n \exp\left(-\frac{1}{2} \sum_{j=1}^{n} h_{jj}^2 + \frac{1}{2} \sum_{j<k} h_{jk}^2\right)$$

$$= C_n \exp\left(-\frac{1}{2} \text{Tr}(H^2)\right)$$

since $H = H^T$

By the spectral theorem, there exists an $n \times n$ **orthogonal** matrix V (i.e. $VV^T = I$) and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, with $\lambda_1, \ldots, \lambda_n$ real, such that $H = V \Lambda V^T$

i.e. $h_{jk} = \sum_{\ell=1}^{n} \lambda_{\ell} v_{j\ell} v_{k\ell}$ for $j, k = 1, \ldots, n$

- **Sanity check:** how many free (real) parameters do we have on each side?

 - **On the left:** n diag. parameters $+ \frac{n(n-1)}{2}$ upper diag. parameters

 $$= \frac{n(n+1)}{2} \text{ parameters}$$
on the right: \(n \) diag. parameters in \(\Lambda \)

\((\Lambda, V)\) + \(\frac{n(n-1)}{2}\) parameters in \(V \) (see construction below)

= \(\frac{n^2-n}{2}\) parameters \(V \)

Aside: how many free parameters are there

in an orthogonal matrix \(V \)?

Reminder: \(V V^T = I \) means the rows of \(V \) are orthonormal

Vectors \(v_1, \ldots, v_n \) in \(\mathbb{R}^n \)

So:

• for the first row \(v_1 \), there are \(n-1 \) free parameters
 (since \(v_1 v_1^T = I \))

• for the second row \(v_2 \), there are \(n-2 \) free parameters
 (since \(v_2 v_2^T = I \) & \(v_2^T v_1 = 0 \))

• etc.

In total, this leads to \((n-1) + (n-2) + \ldots + 1 + 0 = \frac{n(n-1)}{2} \) parameters.

Jacobian:

The Jacobian of the change of variables \(\mathbf{H} \rightarrow (\Lambda, V) \)

is given by:

\[\begin{vmatrix} \frac{\partial \Lambda}{\partial \lambda_j} & \frac{\partial \Lambda}{\partial \lambda_k} \\ \frac{\partial V}{\partial \lambda_j} & \frac{\partial V}{\partial \lambda_k} \end{vmatrix} \]

Result of the computation:

\[\begin{vmatrix} \frac{\partial \Lambda}{\partial \lambda_j} & \frac{\partial \Lambda}{\partial \lambda_k} \\ \frac{\partial V}{\partial \lambda_j} & \frac{\partial V}{\partial \lambda_k} \end{vmatrix} = \mathbf{H} \begin{pmatrix} \Lambda & -I \end{pmatrix} \]

[Homework 1: explicit simple case \((n=2)\)]
Heuristics for the above computation:

- \(h_{jik} = \sum_{e=1}^{n} \lambda_e V_{je} V_{ke} \)

\[\Rightarrow \begin{cases} \frac{\partial h_{jik}}{\partial V_{em}} = V_{je} V_{ke} = \text{cst} \quad \forall \ i \neq j \neq k \\ \frac{\partial h_{jik}}{\partial V_{em}} = (\delta_{je} V_{km} + \delta_{ke} V_{jm}) \lambda_e = \text{linear fn in } \lambda_e \end{cases} \]

\[\Rightarrow \{ \frac{\partial}{\partial \lambda_e} \frac{\partial h_{jik}}{\partial V_{em}} = \frac{\partial^2 h_{jik}}{\partial V_{em} \partial V_{pm}} \} \quad \text{i.e. } \beta = 0 \]

so the only polynomial satisfying these two conditions is of the form \(\prod_{j<k} (\lambda_j - \lambda_k) \)

NB: a remarkable fact is that \(\beta \) does not depend on \(V \) (similar to the polar coordinates example)!

Conclusion for the GAE:

\(\tilde{p}(\Lambda, V) = p(V \Lambda V^T) \prod_{j<k} (\lambda_j - \lambda_k) \)

\[
= C_n \exp \left(-\frac{1}{2} \text{Tr} \left((V \Lambda V^T)^2 \right) \right) \prod_{j<k} (\lambda_j - \lambda_k) \\
= \text{Tr} (V \Lambda V^T) \\
= \text{Tr} (V \Lambda^2 V^T) = \text{Tr} (\Lambda^2 V^T V) \\
= \text{Tr} (\Lambda^2) \\
= C_n \exp \left(-\frac{1}{2} \sum_{j=1}^{n} \lambda_j^2 \right) \prod_{j<k} (\lambda_j - \lambda_k)
\]
Same remark as before:

\(\tilde{\rho}(\Lambda, V) \) does not depend on \(V \) at all.

\(\Rightarrow \)

a) the distribution of \(V \) is uniform over the set of orthogonal matrices ("Haar distribution")

b) \(\Lambda \) and \(V \) are actually independent, i.e.

the eigenvalues of \(H \) are independent from its eigenvectors!

c) for any given deterministic orthogonal matrix \(W \), one obtains that \(H \) and \(WTHW \)
have the same distribution, i.e. the distribution of \(H \) is invariant under orthogonal transformations, therefore the name of the ensemble.

NB: the above computation was made possible by the fact that the distribution of \(H \) only depends on \(Tr(\Lambda^2) = Tr(\Lambda^2) \).