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On the concentration of eigenvalues of random symmetric matrices
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Abstract

We prove that the few largest (and most important) eigenvalues of random symmetric matrices

of various kinds are very strongly concentrated. This strong concentration enables us to compute

the means of these eigenvalues with high precision. Our approach uses Talagrand’s inequality and

is very different from standard approaches.

1 Introduction

In this paper we consider the eigenvalues of random symmetric matrices whose diagonal and upper

diagonal entries are independent random variables. Our goal is to study few largest/smallest eigen-

values of such a matrix. Let us begin with a version of Wigner’s famous semi-circle law [12], due to

Arnold [1, 6], which describes the limiting behavior of the bulk of the spectrum of a random matrix

of this type.

Semi-circle law. For 1 ≤ i ≤ j ≤ n let aij be real value random variables such that all aij , i < j

have the same distribution and all aii have the same distribution. Assume that all central moments of

the aij are finite and put σ2 = σ2(aij). For i < j set aji = aij and let An denote the random matrix

(aij)
n
1 . Finally, denote by Wn(x) the number of eigenvalues of An not larger than x, divided by n.

Then

lim
n→∞

Wn(x2σ
√

n) = W (x) ,

in distribution, where W (x) = 0 if x ≤ −1,W (x) = 1 if x ≥ 1 and W (x) = 2
π

∫ x
−1(1 − x2)1/2dx if

−1 ≤ x ≤ 1.

The semi-circle law gives only a limit distribution and does not tell anything about the behavior

of the largest/smallest (and usually most important) eigenvalues. These eigenvalues were studied in

several papers [4, 3, 8, 9]. The method used in these papers is to estimate the expectation of the trace

of a high power of the matrix. This frequently leads to a sharp upper bound on the largest eigenvalue

(see Section 2).

Given a symmetric matrix A, we denote by δ1(A) ≥ δ2(A) ≥ . . . ≥ δn(A) the eigenvalues of A.

Furthermore, let λ1(A) = maxn
i=1(|δiA)|) = max(|δ1(A)|, |δn(A)|) and λ2(A) = max(|δ2(A)|, |δn(A)|).
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The purpose of this paper is to prove large deviation bounds for λ1, λ2, δ1, δ2 and δn. We believe

that these results are of interest for a number of reasons. The first is that our results are obtained

under a very general assumption on the distribution of the entries of a random symmetric matrix.

Secondly, our large deviation bounds turn out to be very strong. Moreover, they are sharp, up to a

constant in the exponent, in a certain deviation range. Also, our method appears to be new; it makes

a novel application of the recent and powerful inequality of Talagrand [10]. Finally, since bounds

on the largest eigenvalues of a symmetric random matrix are widely used in many applications in

Combinatorics and Theoretical Computer Science, we believe that our results have a potential in

these areas. As an example of such an application, we would like to mention a paper [5] of the

present authors, where a version of our theorems has been used to design approximation algorithms

with expected polynomial running time for such important computational problems as finding the

chromatic number and the independence number of a graph.

Our first result involves the following general model. Let aij (1 ≤ i ≤ j ≤ n) be independent

random variables, with absolute value at most 1. A symmetric random matrix A is obtained by

defining aji = aij for all i < j.

Theorem 1 There are positive constants c and K such that for any t > K,

Pr[|λ1(A) − E(λ1(A))| ≥ t] ≤ e−ct2 .

The same result holds for both δ1(A) and δn(A).

The bound in Theorem 1 is sharp, up to the constant c, when t is sufficiently large. The surprising

fact about this theorem is that it requires basically no knowledge about the distributions of the aij .

Our second theorem provides a large deviation result for the second largest eigenvalue of a sym-

metric random matrix A, under the additional assumption that all non-diagonal entries of A have the

same expectation p > 0.

Theorem 2 For every constant p > 0 there exists constants cp,Kp > 0 so that the following holds. If

in addition to the conditions of Theorem 1, the random variables aij, 1 ≤ i < j ≤ n satisfy E[aij ] = p,

then for all t > Kp,

Pr[λ2(A) − E(λ2(A))| ≥ t] ≤ e−cpt2 .

The same result holds for δ2(A).

One particular application of the above theorem arises when all diagonal entries of A are 0, and

each non-diagonal entry of A is a Bernoulli random variable with parameter p, i.e. Pr[aij = 1] = p,

Pr[aij = 0] = 1 − p. In this case A can be viewed as the adjacency matrix of the random graph

G(n, p). Thus Theorem 2 provides in this case a large deviation result for the second eigenvalue of a

random graph. In fact, for this special case, Theorem 2 can be extended for p decreasing in n (see

Section 5).

The rest of the paper is organized as follows. In the next section, we collect some information

about the expectations of the eigenvalues in concern. More interesting, it turns out that our theorems
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can sometimes be used to estimate these expectations. The proofs of Theorems 1 and 2 appear in

Sections 3 and 4, respectively. We end with Section 5, which contains few remarks and open questions.

In what follows, a matrix is always symmetric and of order n, if not otherwise specified. We

assume that n tends to infinity and the asymptotic notations (such as o, O, etc) are understood

under this assumption. The letter c denotes a positive constant, whose value may vary in different

occurrences. Bold lower case letters such as x,y denote vectors in Rn and xy is the inner product of

x and y. Given a matrix A, xAy is the inner product of x and Ay. 1 is the all one vector.

2 Expectations

In this section, we present several results about the expectation of the relevant eigenvalues. We also

show that our theorems can be used to determine these expectations in some cases.

Let aij , i ≤ j be independent random variables bounded in their absolute values by 1. Assume

that for i < j, the aij have common expectation p and variance σ2. Furthermore, assume that

E[aii] = ν for all i. Füredi and Komlós ([3], Theorem 1), showed that if p > 0 then

E[λ1(A)] = (n − 1)p + ν + σ2/p + o(1) . (1)

Also, in this case under a weaker assumption V AR[aij ] ≤ σ2 for all 1 ≤ i ≤ j ≤ n the argument of

Füredi and Komlós gives:

E[λ2(A)] ≤ 2σ
√

n + O(n1/3 log n) . (2)

The situation changes when p = 0. In the same paper, Füredi and Komlós (implicitly) showed

that in this case (again assuming only V AR[aij ] ≤ σ2)

E[λ1(A)] ≤ 2σ
√

n + O(n1/3 log n) . (3)

Füredi and Komlós also claimed that if V ar[aij] = σ2 then with probability tending to 1, λ1(A) ≥
2σ

√
n + O(n1/3 log n).

Using our Theorem 1, we first show that a statement slightly weaker than (1) holds under a more

general assumption that the variances are upper bounded by σ2, but are not necessarily equal. Next,

we prove a lower bound stronger than that stated by Füredi and Komlós.

Corollary 2.1 If all entries aij of the random symmetric matrix A = (aij) are bounded in absolute

value by 1, and all non-diagonal entries have common expectation p > 0, then

E[λ1(A)] = np + O(
√

n) .

Proof. For each entry aij, one can define a random variable cij , satisfying |cij | ≤ 1, E[cij ] = 0,

V AR[cij ] = 1 − V AR[aij ]. Let now bij = aij − cij . Then clearly E[bij ] = p, V AR[bij ] = 1. Denote

B = (bij), C = cij , then A = B + C. Hence λ1(A) ≤ λ1(B) + λ1(C). Applying (1), (3) and Theorem

1, we obtain:

Pr[λ1(B) ≤ np + O(1)] ≥ 3

4
,

P r[λ1(C) ≤ O(
√

n)] ≥ 3

4
,
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and thus Pr[λ1(A) = np + O(
√

n)] ≥ 1/2. Invoking Theorem 1 once again, we get the desired result.

2

By the same argument, one can show that if σ = ω(n−1/2), then E(δn) = 2σn−1/2(1 + o(1)).

Corollary 2.2 If all entries aij of the random symmetric matrix A = (aij) have common expectation

0 and variance σ2, then

E[λ1(A)] ≥ 2σn1/2 + O(log1/2 n) .

Consequently, with probability tending to 1,

λ1(A) ≥ 2σn1/2 + O(log1/2 n) .

Proof. For the sake of simplicity, we assume σ = 1/2. Furthermore, set µ = n1/2, k = ⌈µ log1/2 n⌉
and x = a log1/2 n, where a is a positive constant chosen so that the following two inequalities hold:

µk/k5/2 ≥ 2(µ − x/2)k (4)

∞
∑

t= a
2

log1/2 n

e2t log1/2 n−ct2 = o(1), (5)

where c is the constant in Theorem 1. Without loss of generality, we assume that k is an even integer

and let X be the trace of Ak. It is trivial that E[X] ≤ nE[λk
1 ]. On the other hand, a simple counting

argument (see [3]) shows that

E[X] ≥ 1

(k/2) + 1

(

k

k/2

)

σkn(n − 1) . . . (n − (k/2)).

It follows that

E[λk
1 ] ≥ 1

(k/2) + 1

(

k

k/2

)

σk(n − 1) . . . (n − (k/2)) ≥ µk/k5/2 . (6)

Assume, for contradiction, that E(λ1) ≤ µ − x. It follows from this assumption that

E[λk
1 ] ≤ (µ − x/2)k +

∞
∑

t=x/2

(µ − x + (t + 1))kPr[λ1 ≥ µ − x + t] . (7)

By Theorem 1, Pr(λ1 ≥ µ − x + t) ≤ e−ct2 for all t ≥ x/2. Thus (4),(6) and (7) imply

∞
∑

t=x/2

(µ − x + (t + 1))ke−ct2 ≥ µk/k5/2 − (µ − x/2)k ≥ (µ − x/2)k. (8)

Since (µ − x + (t + 1))k/(µ − x/2)k ≤ e(1+o(1))tk/µ = e(1+o(1))t log1/2 n, (5) and (8) imply a contra-

diction, and this completes the proof. 2
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To end this section, let us mention few recent results of Sinai and Soshnikov. In [8], Sinai and

Soshnikov showed that if aij have symmetric distributions and their moments satisfy some mild

assumptions, then Pr[λ1(A) ≤ 2σ
√

n + o(1)] = 1− o(1). They also stated that a similar result would

hold without the symmetric assumption. Furthermore, Soshnikov proved in [So] that under the same

assumptions about aij, the joint distribution of the k dimensional random vector formed by the first

k eigenvalues, scaled properly, tends to a weak limit, for any fixed k.

3 Proof of Theorem 1

The key tool of the proof is a powerful concentration result, due to Talagrand [10]. To state this

inequality, we first need to define the so-called Talagrand distance in a product space. Let Ω1, . . . ,Ωm

be probability spaces, and let Ω denote their product space. Fix a set A ⊂ Ω and a point x =

(x1, . . . , xm) ∈ Ω. We say that x has Talagrand distance t from A if t is the smallest number such

that the following holds. For any real vector α = (α1, . . . , αm), there is a point y = (y1, . . . ym) ∈ A
such that

∑

xi 6=yi

|αi| ≤ t

(

n
∑

i=1

α2
i

)1/2

.

Let At denote the set of all points with Talagrand distance at most t from A. Talagrand proved

that for any t ≥ 0,

Pr[A]Pr[At] ≤ e−t2/4,

where At denotes the complement of At. Remarkably, the rather abstract and difficult definition of

the Talagrand distance suits our problem perfectly, as shown in the proof below.

Consider the product space spanned by aij , 1 ≤ i ≤ j ≤ n. A vector in this space corresponds to

a random matrix. Let m be a median of λ1 and let A be the set of all matrices (vectors) T such that

λ1(A) ≤ m. By definition, Pr[A] ≥ 1/2. By a well known fact in linear algebra

λ1(A) = max
‖v‖=‖w‖=1

∑

1≤i<j≤n

(viwj + vjwi)tij +
n
∑

i=1

viwitii .

Consider a matrix X = (xij) where λ1(X) ≥ m + t. There are vectors v = (v1, . . . , vn), w =

(w1, . . . , wn) with norm 1 such that

vXw =
∑

1≤i≤j≤n

(viwj + vjwi)xij +
n
∑

i=1

viwixii ≥ m + t .

On the other hand, for any Y = (yij) ∈ A

vY w =
∑

1≤i≤j≤n

(viwj + vjwi)yij +
n
∑

i=1

viwiyii ≤ m .

5



Set αij = (viwj + vjwi) for 1 ≤ i < j ≤ n and αii = viwi for 1 ≤ i ≤ n. It is easy to show that

∑

1≤i≤j≤n

α2
ij < 2(

∑

1≤i≤n

v2
i )(

n
∑

i=1

w2
i ) = 2 .

Since |xij − yij| ≤ 2, we have

∑

xij 6=yij

|αij | ≥ t/2 >
t√
8





∑

1≤i≤j≤n

α2
ij





1/2

.

By definition, it follows that X ∈ At/
√

8. Therefore, by Talagrand’s inequality

Pr[λ1(A) ≥ m + t] ≤ 2e−t2/32 . (9)

Let B be the set of A such that λ1(A) ≤ m−t. By a similar argument, one can show that if λ1(A) ≥ m

then A ∈ Bt/
√

8. Recall that Pr[λ1(A) ≥ m] ≥ 1/2. Thus Talagrand’s inequality implies

Pr[λ1(A) ≤ m − t] ≤ 2e−t2/32 . (10)

¿From here, one can derive that the difference between the median and the expectation of λ1 is

bounded by a constant:

|E(λ1(A)) − m| ≤ E(|λ1 − m|) ≤
∫ ∞

0
tPr[|λ1(A) − m| ≥ t]dt

≤
∫ ∞

0
4te−t2/32dt = 64 . (11)

Inequalities (9), (10) and (11) together imply the desired deviation bound for λ1(A). The statements

involving δ1(A) and δn(A) can be proved in a similar way, using the following equalities:

δ1(A) = max
x,‖x‖=1

xAx.

δn(A) = min
x,‖x‖=1

xAx .

The sharpness of the result. The following example shows that the bound in Theorem 1 is best

possible, up to a multiplicative constant in the exponent.

Assume that aij, 1 ≤ i ≤ j ≤ n, have the following distribution: aij = 1 with probability p and

aij = −p/q with probability q = 1 − p. A matrix is fat if it contains an all 1 principle sub-matrix of

size E[λ1] + t. It is trivial that if A is fat then λ1(A) ≥ E[λ1] + t. On the other hand, the probability

that a matrix is fat is at least p(E[λ1]+t)2 = e−[E(λ1]+t)
2

log 1

p . Thus, if p is a positive constant and t is

of order Ω(E[λ1]), then

Pr[|λ1 − E[λ1]| ≥ t] ≥ e−ct2 ,

for some positive constant c.

6



4 Proof of Theorem 2

Given a symmetric matrix A, λ2(A) can be expressed as follows [2]:

λ2(A) = min
0 6=v∈Rn

max
x,y

‖x‖=‖y‖=1

xv=yv=0

xAy .

Define

µ2(A) = max
x,y

x1=y1=0

‖x‖=‖y‖=1

xAy .

It is clear that µ2(A) ≥ λ2(A) for any matrix A. In the rest of the proof, we use shorthands µ2, λ2 for

µ2(A), λ2(A), respectively, where A is distributed as described in the theorem formulation. Similar

to the previous section, by Talagrand’s inequality we can show

Lemma 4.1 There are positive constants c and K such that for any t > K

Pr[|µ2 − E(µ2)| ≥ t] ≤ e−ct2 .

Set A′ = A − pJn, where Jn denotes the all one matrix of order n. It is easy to show that

µ2(A) ≤ λ1(A
′). Indeed,

µ2 = max
x,y

x1=y1=0

‖bx‖=‖y‖=1

x(A′ + pJn)y = max
x,y

x1=y1=0

‖bx‖=‖y‖=1

xA′y

≤ max
‖bx‖=‖y‖=1

xA′y = λ1(A
′) ,

where the second equality uses the fact that x and y are orthogonal to the vector of all 1’s and are

thus orthogonal to every row of Jn.

Since each non-diagonal entry of A′ has mean 0 and is bounded in absolute value by 1+ p ≤ 2, by

the result (3) of Füredi and Komlós, E[λ1(A
′)] ≤ 3

√
n. Assume that t ≥ 10

√
n; Theorem 1 implies

then

Pr[|λ2 − E(λ2)| ≥ t] ≤ Pr[λ1(A
′) ≥ E(λ1(A

′)) + t/2] ≤ e−ct2 .

The proof of the case t < 10
√

n is harder and is based on the following two lemmas.

Lemma 4.2 For every constant p > 0 there exist constants cp > 0, Kp > 0 so that for any Kp < t <

10
√

n, there is a positive number ǫt = O(t1/2(np)−1/2) such that

Pr[µ2 − (1 + ǫt)λ2 ≥ t] ≤ e−cpt2 .

Lemma 4.3 For every constant p > 0 there exists a constant Lp > 0 such that

E[µ2] − E[λ2] ≤ Lp .
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Assuming these two lemmas hold, we can finish the proof as follows. First assume, without loss

of generality, that t ≥ 5Lp. Consider the upper tail:

Pr[λ2 ≥ E(λ2) + t] ≤ Pr[µ2 ≥ E(λ2) + t]

≤ Pr[µ2 ≥ E(µ2) + (t − Lp)]

≤ e−Ω((t−Lp)2) = e−cpt2 ,

by Lemma 4.1.

Now consider the lower tail:

Pr[λ2 ≤ E[λ2] − t] ≤ Pr[(1 + ǫt)λ2 ≤ (1 + ǫt)E[λ2] − t]

≤ Pr[µ2 ≤ (1 + ǫt)E[λ2] − t/2] + Pr[µ2 − (1 + ǫt)λ2 ≥ t/2] .

By Lemma 4.2

Pr[µ2 − (1 + ǫt)λ2 ≥ t/2] ≤ e−cpt2 .

On the other hand,

Pr[µ2 ≤ (1 + ǫt)E[λ2] − t/2] ≤ Pr[µ2 ≤ (1 + ǫt)E[µ2] − t/2] .

Given that t is sufficiently large, ǫtE[µt] = O(t1/2) ≤ t/4. So, by Lemma 4.1, the last probability can

also be bounded by e−cpt2 and this completes the proof. 2

To prove Lemmas 4.2 and 4.3 we need three other lemmas. The first two (Lemmas 4.4 and 4.5)

are linear algebraic statements. The last one (Lemma 4.6) is a statement about the concentration of

a certain random variable, which is a function of the entries aij of the random symmetric matrix A.

Lemma 4.4 Let A be an n by n real symmetric matrix. Let a satisfy 0 ≤ a <
√

n. Denote by v1

a unit eigenvector corresponding to λ1(A). Assume there is a number c1, 0 < |c1| ≤
√

n such that

‖1 − c1v1‖ ≤ a. Then

µ2(A) − λ2(A) ≤ 2aλ2(A)√
n − a

+
a2λ1(A)

(
√

n − a)2
.

Proof. Note first that

‖c1v1‖ = ‖(c1v1 − 1) + 1‖ ≥ ‖1‖ − ‖c1v1 − 1‖ ≥
√

n − a .

Assume that µ2(A) = xAy, where x,y are unit vectors perpendicular to 1. Then

x(c1v1) = x, (c1v1 − 1 + 1) = x(c1v1 − 1) ≤ ‖x‖ · ‖c1v1 − 1‖ ≤ a .

Notice that as ‖1‖ =
√

ny and a <
√

n, we have c1 6= 0. Define

x′ = x − x(c1v1)

(c1v1)(c1v1)
c1v1 .

8



Then x′ is orthogonal to 1 and satisfies ‖x′‖ ≤ ‖x‖ = 1. Set u = x− x′. Then

‖u‖ =
|x(c1v1)|
‖c1v1‖

≤ a√
n − a

.

Similarly, set

y′ = y − y(c1v1)

(c1v1)(c1v1)
c1v1 ,

then y′ is a vector of norm at most 1 orthogonal to v1. Denoting w = y − y′, we can prove that

‖w‖ ≤ a/(
√

n − a).

By definition, λ2(A) ≥ |x′Ay′|. On the other hand, by the Cauchy–Schwartz inequality

xAy − x′Ay′ = (x′ + u)A(y′ + w) − x′Ay′ = wAx′ + uAy′ + uAw

≤ ‖w‖‖Ax′‖ + ‖u‖‖Ay′‖ + λ1(A)‖u‖‖w‖ .

Recall that x′,y′ are orthogonal to the first eigenvector of A. Therefore, ‖x′A‖ and ‖Ay′‖ are at

most λ2(A). Then

µ2(a) − λ2(A) ≤ aλ2(A)√
n − a

+
aλ2(A)√

n − a
+

a2λ1(A)

(
√

n − a)2
=

2aλ2(A)√
n − a

+
a2λ1(A)

(
√

n − a)2
,

and the lemma follows. 2

Lemma 4.5 Let A = (aij) be an n by n real symmetric matrix. Assume that s and X are positive

numbers satisfying λ2(A) ≤ s/2 and
∑n

i=1(
∑n

j=1 aij − s)2 ≤ X. Then there is a number c1, |c1| ≤
√

n

such that ‖1 − c1v1‖ ≤ 2
√

X/s, where v1 is a unit eigenvector corresponding to λ1(A).

Proof. . Let v1, . . . ,vn be unit eigenvectors of A, corresponding to the eigenvalues λ1(A), . . . , λn(A),

respectively. Since these vectors form an orthogonal basis of Rn, we can express the vector 1 as their

linear combination:

1 =
n
∑

i=1

civi ,

where |c1| ≤ ‖1‖ =
√

n. It is not too difficult to check the following relations:

n
∑

i=1

(λi(A) − s)2c2
i = ‖(A − sI)1‖2 =

n
∑

i=1

(
n
∑

j=1

aij − s)2 .

By the assumptions of the lemma we get then

X ≥
n
∑

i=1

(
n
∑

j=1

aij − s)2 ≥
n
∑

i=2

(λi(A) − s)2c2
i ≥ s2

4

n
∑

i=2

c2
i .

Therefore,

‖1 − c1v1‖2 =
n
∑

i=2

c2
i ≤ 4X

s2
,

as desired. 2
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Lemma 4.6 Let aij, 1 ≤ j ≤ i ≤ n be independent random variables, uniformly bounded by 1 in

their absolute values. Assume that for i > j, the aij have a common expectation p. Define aij = aji

for j > i. Then there exists an absolute constant c > 0 so that for all t > 1,

Pr







∑

i=1





∑

j=1

aij − np





2

≥ tn2






< e−ct2 .

Proof. For 1 ≤ i ≤ n, let pi = E[aii]. We define

Yi = (
n
∑

j=1

aij − np)2 ,

then Y =
∑n

i=1(
∑n

j=1 aij − np)2 =
∑n

i=1 Yi.

We first estimate from above the expectation of Yi. Set bij = aij for all j 6= i, set also bii =

aii + p − pi. Then E[bij ] = p for all 1 ≤ i, j ≤ n. We obtain:

Yi =





n
∑

j=1

(bij − np) + (pi − p)i





2

= (
n
∑

j=1

bij − np)2 + 2(pi − p)
n
∑

j=1

bij − np) + (pi − p)2 .

Recall that bij are independent random variables with a common mean p. Therefore

E[Yi] = E[
n
∑

j=1

bij − np)2] + (pi − p)2

= V AR[
n
∑

j=1

bij ] + (pi − p)2 =
n
∑

j=1

V AR[bij ] + (pi − p)2 ≤ n(1 − p) + (pi − p)2

≤ n ,

for large enough n. This implies that E[Y ] =
∑n

i=1 E[Yi] ≤ n2.

Now, it is easy to see that for every 1 ≤ j ≤ i ≤ n, changing the value of the random variable aij

can change the value of Y by at most cij = O(n) (recall the assumption |aij | ≤ 1). Then the so called

”independent bounded difference inequality”, proved by applying the Azuma–Hoeffding martingale

inequality (see,. e.g., [7]), asserts that for every h > 0,

Pr[Y − E[Y ] ≥ h] ≤ exp{−h2/2
∑

1≤j≤i≤n

c2
ij} ≤ exp{−h2/O(n4)} .

Substituting h = (t − 1)n2 and using the fact E[Y ] ≤ n2, we get the desired bound on the upper tail

of Y . 2

Proof of Lemma 4.2. Recall that by (2 we have E[λ1[A] = O(
√

n). From the analysis of the case

t ≥ 10
√

n it follows then that Pr[λ2 ≥ np/2] ≤ e−c(np)2 ≤ e−ct2 . Also, by Corollary 2.1 E[λ1(A)] =

np + o(n). Combined with our Theorem 1, this implies that Pr[λ1(A) ≥ 2np] ≤ e−c(np)2 ≤ e−ct2 .

These two facts, together with Lemma 4.6, show that for that if t < 10
√

n, then with probability at

least 1 − e−ct2 , the following three properties hold:
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1.
∑n

i=1(
∑n

j=1 aij − np)2 ≤ n2t;

2. λ2(A) ≤ np/2 ;

3. λ1(A) ≤ 2np .

Assume that a matrix A satisfies conditions 1, 2 and 3 above. Applying (in this order) Lemma 4.5

with X = n2t and s = np and Lemma 4.4 with a = 2X1/2/s = 2t1/2/p, we have that with probability

at least 1 − e−ct2

µ2(A) −
(

1 +
2a√
n − a

)

λ2(A) ≤ a2λ1(A)

(
√

n − a)2
≤ 4X

s2

2np

(
√

n − 2
√

X/s)2
≤ 9t

p
.

Substituting the value of a, we get:

Pr[µ2 −
(

1 +
5
√

t√
np

)

λ2 ≥ 9t

p
] < e−ct2 .

The proof is completed by rescaling, namely, by setting t := t/p. 2

Proof of Lemma 4.3. First notice that

E[µ2] − E[λ2] = E[µ2 − λ2] ≤
∫ ∞

0
tPr[µ2 − λ2 ≥ t]dt .

Moreover,

∫ ∞

0
tPr[µ2 − λ2 ≥ t]dt ≤

∫ Kp

0
tdt +

∫ 10
√

n

Kp

tPr[µ2 − λ2 ≥ t]dt +

∫ ∞

10
√

n
tPr[µ2 ≥ t]dt .

The first integral is clearly bounded by a constant depending on pr only. By Lemma 4.1 and the fact

that E(µ2) ≤ 3
√

n, Pr[µ2 ≥ t] ≤ e−ct2 for t ≥ 10
√

n. Thus
∫∞
10

√
n tPr[µ2 ≥ t]dt ≤

∫∞
0 te−ct2dt = O(1).

To bound the second integral, note that

∫ 10
√

n

Kp

tPr[µ2 − λ2 ≥ t]dt ≤
∫ 10

√
n

Kp

tPr[µ2 − λ2 ≥ t/2 + ǫtλ2]dt

+

∫ 10
√

n

Kp

tPr[ǫtλ2 ≥ t/2]dt.

By Lemma 4.2,
∫ 10

√
n

Kp

tPr[µ2 − λ2 ≥ t/2 + ǫtλ2]dt ≤
∫ 10

√
n

0
te−cpt2dt = l1 ,

where l1 > 0 is a constant depending only on p.

On the other hand, we know that ǫt ≤ bt1/2(np)−1/2 for some constant b. Using the analysis of

the case t ≥ 10
√

n, assume that Kp > (30b/p)2; for any K ≤ t ≤ 10
√

n we have:

Pr[ǫtλ2 ≥ t/2] ≤ Pr[λ2 ≥ t1/2

2b
(np)1/2] ≤ e−cpt2 .

11



This implies that
∫ 10

√
n

Kp

tPr[ǫtλ2 ≥ t/2]dt ≤
∫ 10

√
n

0
te−cpt2dt = l2 ,

where l2 is a constant depending on p only. This completes the proof. 2

The proof for δ2 is similar. Instead of µ2, consider µ′
2 = maxx,‖x=1‖,x1=0 xAx. Again, using

Talagrand’s inequality one can obtain a version of Lemma 4.1 for µ′
2. The rest of the proof is similar

and we omit the details.

5 Concluding remarks

• Unfortunately, we are unable to extend Theorem 2 to the case when the expectation p of the

non-diagonal entries of a random matrix An is a function of n and tends to zero as n tends

to infinity, without imposing additional restrictions of the distribution of entries. However,

Theorem 2 can be extended in the following special but important case: the diagonal entries of

An = (aij) are all zeroes, and the entries above the main diagonal are i.i.d. Bernoulli random

variables with parameter p = p(n), i.e., Pr[aij = 1] = p and Pr[aij = 0] = 1 − p for all

1 ≤ i < j ≤ n. In this case the random matrix An can be identified with the adjacency matrix

of a random graph G(n, p), and the eigenvalues of An are the eigenvalues of a random graph on

n vertices. Under these assumptions we have the following result.

Theorem 3 There are positive constants c and K such that if p = ω(n−1) then for any t > K,

Pr[|λ2(A) − E[λ2(A)]| ≥ t] ≤ e−ct2 ,

where A is the adjacency matrix of G(n, p). The same result holds for δ2(A).

This theorem can be proved by repeating the arguments in the proof of Theorem 2 under

the new assumptions. We have to make some significant changes only in the proof of Lemma

4.6. The method of bounded difference martingale (Azuma-Hoeffding’s inequality) seems not

powerful enough to prove the the statement Lemma 4.6 when p is decreasing in n, and we need

to invoke a recent concentration technique presented in [11]. The details are omitted. Notice

that in many graph theoretic applications the eigenvalue λ2(A(G)) is of special importance as

it reflects such graph properties as expansion, convergence of a random walk to the stationary

distribution etc.

• Though we could show the tightness of our main result (Theorem 1) in some cases and for

some values of the deviation parameter t, it will be extremely interesting to reach a deeper

understanding of the tightness of Theorem 1 for the whole range of t and for some particular

important distributions of the entries of A.
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• Theorem 1 is obtained under very general assumptions on the distribution of the entries of a

symmetric matrix A. Still, it will be very desirable to generalize our result even further, in

particular, dropping or weakening the restrictive assumption about the uniform boundness of

the entries of A. This task however may require completely different tools as the Talagrand

inequality appears to be suited for the case of bounded random variables.

• Finally, it would be quite interesting to find further applications of our concentration results in

algorithmic problems on graphs. The ability to compute the eigenvalues of a graph in polynomial

time combined with an understanding of potentially rich structural information encoded by the

eigenvalues can certainly provide a basis for new algorithmic results exploiting eigenvalues of

graphs and their concentration.
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