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LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE
DIMENSIONAL SAMPLE COVARIANCE MATRIX

ByZ.D.Barann Y. Q. YIN

Temple University and University of Massachusetts, Lowell

In this paper, the authors show that the smallest (if p < ) or the
(p — n + 1)-th smallest (if p > n) eigenvalue of a sample covariance matrix
of the form (1/n) XX’ tends almost surely to the limit (1 — \/37 Y¥asn—o o
and p/n -y € (0,), where X is a p X n matrix with iid entries with
mean zero, variance 1 and fourth moment finite. Also, as a by-product, it is
shown that the almost sure limit of the largest eigenvalue is (1 + ‘/5'_ )2 a
known result obtained by Yin, Bai and Krishnaiah. The present approach
gives a unified treatment for both the extreme eigenvalues of large sample
covariance matrices.

1. Introduction. Suppose A is a p X p matrix with real eigenvalues
Ay, Ag, ..., A,. Then the spectral distribution of the matrix A is defined by

1
FA(x) = ;#{i <p:A; <x}.

We are especially interested in the matrix of the form S = S, = (1/n)XX’,
where X =X, =(Xij), and where X;,, i=1,...,p; j=1,...,n, are iid
random variables with zero mean and variance o2 We will call it a sample
covariance matrix.

There are many studies on the limiting behavior of the spectral distribu-
tions of sample covariance matrices. For example, under various conditions,
Grenander and Silverstein (1977), Jonsson (1982) and Wachter (1978) prove

that the spectral distribution FS(x) converges to

F(x)=(1-y ' A1)8(x) + [_ f,(w) du,
where é(x) is the distribution function with mass 1 at 0, and
1
f,(x) = { 2myx
0, otherwise,
as p=p(n) > o, n—>oand p/n -y € (0,»). Here
2 2
a=a(y)=(1—\/37)a-2, b=b(y)=(1+\/§)az.

As a consequence of Yin (1986), if the second moment of X, is finite, the
above convergence holds with probability 1. Note that o2 appears in the

V(x—a)(b—x), ifa<x<b,
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1276 Z.D.BAIANDY. Q. YIN

definition of F,(x). Thus, the condition on the existence of the second moment
of X, is also necessary.
It is not hard to see that if F5(x) converges to F,(x) a.s., then

liminf max A; > b a.s.
l<i<p

However, the converse assertion

limsup max A; <b a.s.
l<i<p

is not trivial.
The first success in establishing the last relation (<) was made by Geman
(1980), who did it under the condition that

E|X,,|* < Mk®* for some M > 0,a > 0,andall & > 3.

Yin, Bai and Krishnaiah (1988) established the same conclusion under the
condition that
E|X,|* < o,
which is further proved to be necessary in Bai, Silverstein and Yin (1988) by
showing that

4 .
E|X;jI" = = limsup max A; = © a.s.
l<i<n

It is much harder to study the convergence of the smallest eigenvalue of a
sample covariance matrix. The first breakthrough was given by Silverstein
(1985), who proved that if X;; ~ N(0, 1), then

min A; - a(y) a.s,,
l<i<p

as p > », p/n -y <1l However, it is hard to use his method to get the
general result, since his proof depends heavily on the normality hypothesis.
In this paper, we shall prove the following theorems.

THEOREM 1. Let [X,,; u,v=1,2,...] be a double array of independent
and identically distributed (iid) random variables with zero mean and unit
variance, and let

X=[X,;u=1,...,p;v=1,...,n], S=(1/n)XX".
Then, if EIX,,|* <o, asn - o, p > », p/n—>ye(,1),
—2y/y < liminf A (S — (1 +y)I)
<limsup A, (S — (1 +y)I) <2y a.s.

As an easy corollary of Theorem 1, we have the following.

THEOREM 2. Under the conditions of Theorem 1,asn — ©, p - ©, p/n -
y €(0,1),

(1.1) lim A, = (1 - ‘/5)2 a.s.
(1.2) Hm A, = (1+Vy
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REMARK 1. The assertion (1.1) is trivially true for y = 1. If y > 1, then
p > n for all large p, and the p — n smallest eigenvalues of S must be 0. In
this case, (1.1) is no longer true as it stands. However, if we redefine A_; to be
the (p — n + 1)-th smallest eigenvalue of S, then (1.1) is still true. In fact, for
the case of y > 1, define S* = (1/p)X'X and y* = 1/y € (0, 1). By Theorem
2, we have

2 1 2
)\min(S*)—>(1—\/y_*) =;(1—\/;) a.s.,

Therefore,
2

Ao 8) = Dhin(8%) > (1= ) .

By a similar argument, one may easily show that the conclusion (1.2) is also
true for y > 1.

REMARK 2. The conclusion (1.2) has already been proved in Yin, Bai and
Krishnaiah (1988). Here, we prove it by an alternative approach as a by-prod-
uct of our Theorem 1, which is the key step for the proof of the limit of the
smallest eigenvalue.

REMARK 3. From the proof given later, one can see that if the condition
EX{ < « is weakened to

(1.3) n?P(IXy| > Vn) -0,

then the two limit relations (1.1) and (1.2) hold in probability.
In fact, if (1.3) is true, then for each ¢ > 0,

EIX;|*° <
and there exists a sequence of positive constants § = §,, — 0 such that
n*P(IXy| > 8Vn) - 0.

Here, we may assume that the rate of § — 0 is sufficiently slow.

As done in Silverstein (1989) for the largest eigenvalue, one may prove that
the probability of the event that the smallest eigenvalue of the sample covari-
ance matrix constructed by the truncated variables at 8Vn differs from the
original by a quantity controlled by

n?P (X, > 6vn).

Also, employing von Neumann’s inequality, one may conclude that the
difference between the square root of the smallest eigenvalue of the truncated
sample covariance matrix and that of the truncated and then centralized
sample covariance matrix is controlled by

VP | EX 1 I x 557 = O

(For details of the application of von Neumann’s inequality, see the beginning
of Section 2.) Then the truncated and then centralized variables satisfy the
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conditions given in (2.1), and the desired result can be proved by the same
lines of the proof of the main result.

REMARK 4. In Girko (1989), an attempt is made to prove the weak conver-
gence of the smallest eigenvalue under a stronger condition. However, this
proof contains some serious errors. Regardless, the result we get here is strong
convergence under much weaker conditions.

2. Some lemmas. In this section we prove several lemmas. By the trun-
cation lemma proved in Yin, Bai and Krishnaiah (1988), one may assume that
the entries of X, have already been truncated at 6V for some slowly varying
6 =20, > 0. Let

Voo = X, I(X,,| <8Vn) - EX, I(X,,| < 8Vn).

In 1937, von Neumann proved that
p
Y A7 > tr(AB),
i=1

if A and B are p X n matrices with singular values A, > -+ > A, and
Ty > '+ = 1, respectively. Then, using von Neumann’s inequality, we have

A2 (n 1R, Ry - AY2(n VYY) ’

min min

IA

L P 2
Y (A2(n 1R, R) - A A(n VW)
k=1

IA

1 o A ’
~ (R, - V,)(X, - V)

n
= PE2|X11|I[|X11|>3,/E] -0,

where X, and V are n X p matrices with (z, v)-th entries X, olyx,, <5 m and
V.., respectively. In fact, the above convergence is true provided n8% — 0.
Therefore, we can assume that for each n the entries X,, = X,,(n) of the
matrix X, are iid and satisfy

EX,,=0, EX? <1 and EX? -1 asn— o,

(2.1) l s
EX,|' < (8Vn) °, forl=>3,

where 8 = §, — 0 is nonrandom and sufficiently slow.

Replacing all diagonal elements of S by 0, we get a matrix 7. Define
T(0) =1, and T(1) = T, and, for each [ > 2, let T(]) = (T,,(1)) be a p X p
matrix with
(22) Tab(l) = n_l Z,XGUIXZLIUIX X e X

U Vet ugug u;_1v; Xbul’

where the summation L' runs over all integers u,,...,u,_; from the set
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{1,...,p}and vy,...,v, from {1,..., n}, subject to the conditions that
a#u, Uy FUgy...,U;_1 #* Db,

2.3
(2.3) Uy # Vg, Ug # Ug,y...,U;_1 # V.

LeEMMmA 1.
limsup|T(I)l < (21 + 1)(I + 1)y¢~V2 g5,

n-—o

where the matrix norm used here and throughout the paper is the operator
norm, that is, the largest singular value of the matrix.

Proor. For integers u,...,u, from {1,...,p} and integers v,,...,v,
from (1,..., n}, define a graph
Glug, vy, uq,...,0,,u,}
as follows. Let u,,...,u, be plotted on a straight line, and let v,,...,v, be
plotted on another straight line. The two lines are supposed to be parallel.
Ugy--+» Uy, Uy,..., 0, are vertices. The graph has 2r edges: e;, .. ., e,,. The two

ends of ey; ; are u;_,,v; and those of e,; are v;, u;. Two edges are said to be
coincident if they have the same set of end vertices.

An edge e; is said to be single up to e}, j > i, if it does not coincide with any
ey, ...,e; other than itself.

If ey, = u;_; (ey; = v;u;) is such that

v € {vn, o0} (s & {uy, 0w q)),

then e,;,_; (ey;) is called a column (row) innovation. T; denotes the set of all
innovations. If e; is such that there is an innovation e;, i <j, and e; is the
first one to coincide with e;, then we say e; € T5. Other edges constltute the
set T,. Thus, edges are partitioned into three disjoint classes: T, T, T,. Edges
which are not innovations and single up to themselves form a set T,. It is
obvious that T, c T,.

If e; is a T3 edge and there is more than one single (up to e j—l) innovation
among ey,...,e; ; which is adjacent to e;, we say that e; is a regular
Ty edge. We can prove that for a regular T3 edge the number of such inno-
vations is bounded by ¢ + 1, where ¢ is the maximum number of noncoin-
cident T, edges [see Yin, Bai and Krishnaiah (1988)], and the number of
regular T3 edges is bounded by twice the number of T, edges [see Yin, Bai and
Krishnaiah (1988)].

In order to establish Lemma 1, we estimate E tr T2™(l). By (2.2),

tr T2m(1) = ZTblbz(l)szbs(l) Tb2mb1(l)

— pn—2ml
=n Z R , Xblv’IXu’lu’IXulszuzu’z
(2.4) G X1Y5 *** Lom
Xu'l 1V} ngv'l szu’l' t ng,,,vfz’"'I)ngmv(lz'”)Xu(lz’")v(zz’")

b Xu(lz_n;)v?m)XblvEZm) .
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Here the summation Y, is taken with respect to u®,...,u}?, running over
{1,..., p}and v{",.. (‘) running over {1, ..., n} subJect to the condition that
biaéu(li), u(l‘)aéu(z‘),...,u(l‘llaébiﬂ;

v # v, v # o,
for each i =1,2,...,2m; and L, is the summation for b,i=1,...,2m,

running over {1, ... ,p}
Now we can consider the sum (2.4) as a sum over all graphs G of the form
grap
25) G = G[bl,v’l, Uy, U, ... U _1, 0, by, U, U, .., U],
by, b, VE™, u@m™, L u, v b, .

At first we partition all these graphs into isomorphism classes. We take the
sum within each isomorphism class, and then take the sum of all such sums
over all isomorphism classes. (Here we say that two graphs are isomorphic, if
equality of two vertex indices in one graph implies the equality of the corre-
sponding vertex indices in the other graph.)

Within each isomorphism class, the ways of arranging the three different
types of edges are all the same. In other words, if two graphs of the form (2.5)
are isomorphic, the corresponding edges must have the same type. However,
two graphs with the same arrangements of types are not necessarily isomor-

phic.
We claim that
E[tr T?*™(1)]
n-2ml 20+ 1 \\(4ml — k\(4mli
(2.6) = Z (1_[ 2a;+1 k ¢

(k—t—2m)/2 il —2h—
xgAmi=2k (s 4 1)81m—4knk+1(£) \/;5)4 1-2k t’
n

where the summation * is taken with respect to %, ¢ and a;, i = 1,...,2m,
under some restrictions to be specified. Here:

() & (=1,...,2ml) is the total number of innovations in G.

(ii) ¢ (= 0,...,4ml — 2k) is the number of noncoincident T, edges in G.

(iii) a; (= 0,...,1) is the number of pairs of consecutive edges (e, ¢’) in the
graph
(27) Gi = G[bwvg.i)? u(li) . u(L)l Ug )7 z+1]

in which e is an innovation but e’ is not.
Now we explain the reasons why (2.6) is true:

(i) The factor n~2™! is obvious.

(i) If there is an overall single edge in a graph G, then the mean of the
product of X;; corresponding to this graph [denoted by EX(G)] is zero. Thus,
in any graph corresponding to a nonzero term, we have k < 2ml.
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(iii) The number of T edges is also k. Hence the number of T, edges is
4dml — 2k, and t < 4ml — 2k.

(iv) The graph G is split into 2m subgraphs G, ..., G,,, defined in (2.6).
Obviously, 0 < a,; < 1.

(v) The number of sequences of consecutive innovations in G is either a,
or a; + 1 (the latter happens when the last edge in G, is an innovation). Hence
the number of ways of arranging these consecutive sequences in G; is at most

21 2l |\ [(21+1
2a;,] T \2a,+1) = |2, +1
(vi) Given the position of innovations, there are at most (

arrange T; edges.
(vii) Given the positions of innovations and T, edges, there are at most

(4;”1) ways to choose ¢ distinguishable positions for the ¢ noncoincident T,

edges. When these positions have been chosen, there are at most 1,‘4"‘1‘2’z ways
to distribute the 4ml — k& T, edges into these ¢ positions.

(viii) Yin, Bai and Krlshnalah (1988) proved that a regular T, edge e has at
most ¢ + 1 choices and that the number of regular T; edges is dominated by
2(4ml — 2k). Therefore, there are at most (¢ + 1)8™!~** different ways to
arrange the T edges.

(ix) Let r and ¢ be the number of row and column innovations. Then
r+c =k, and the number of graphs G within the isomorphism class is
bounded by n°p™*! = n*+*Y(p/n) 1.

4ml —

k
A ) ways to

Suppose that in the pair (e, '), e is an innovation in G, and e’ is not an
innovation in G;. Then it is easy to see that ¢’ is of type T, and is single up to
itself. Therefore,

2m
(2.8) t> Y a,.
i=1

In each G, there are at most a; + 1 sequences of consecutive innovations.
Therefore,

2m

(2.9) lr—cl< Y a;+2m.
i=1

Since r + ¢ = k, by (2.8) and (2.9) we obtain
r>z(k—t)-m
by which we conclude that (by noticing that we can assume p/n < 1)

(210) nk+1(£)r+1 - nk+1(£)(k—t—2m)/2

n n

(x) By the same argument as in Yin, Bai and Krishnaiah (1988), we have
(2.11) IEX(G)| < (Vo)™ 27"
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The above 10 points are discussed for # > 0, but they are still valid when
t = 0, if we take the convention that 0° = 1 for the term #*™!~2* Thus we
have established (2.6). Now we begin to simplify the estimate (2.6). Note that

(21+1

%a, + 1) < (21 + 1),

By (2.8), we have

2m 2l +1 2¥a;+2m 2t+2m
(2.12) T1|g, 4 1] =@+ <(20+1)
i=1 i

The number of choices of the a,’s does not exceed (I + 1)>™. Therefore, by the
elementary inequality a~‘¢® < (b/loga)®, for all @ > 1, >0, t> 1, and
letting m be such that m/logn — », mé'/3/logn — 0 and m/(8Vn) — 0,
we obtain from (2.6), for sufficiently large n,
2ml 4ml—2k
Eftr>"(1)] < ¥ Y n(2l+ 1)1+ 1)
k=1 t=0

k Vp o

k—2 2
12ml—6k(p)( ™/ sami—2k

X(4ml_k)(4mz(2z+1)2)‘

X (t + 1) -

< n?(2l + 1)*"(1 + 1)2'"(p )_m

n

y 2§l (4ml B k) 12ml — 6k 12ml—6k
he1 k |log[36ml3/(\/178)]|

(2.13)

SRS

k/2
) 54ml—2k

d

< n2((20 + 1)( + 1))2"‘(p )_m

n

x2§1(4ml) 94 mlsl/s | 12mi= 6k B)k/z
o\ 2k slogn n

< n2((20 + 1)( + 1))2"‘(p )_m

B

2amisv2 )"
Llogn )
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Here, in the proof of the second inequality, we have used the fact that

(4ml(21+ 1))‘ (4ml(2l+ 1\

Vp 8 Vp o

If we choose z to be
z= (21 + 1)(1 + 1)y"=b2(1 + €),
where £ > 0, then

Y27 2mE tr T?™(1) < w,

Thus the lemma is proved. O

Lemma 2. Let {X;;, i,j,=1,2,...,} be a double array of iid random
variables and let a > %, B > 0 and M > 0 be constants. Then as n — 00,

n
(2.14) max (n™* ) (X;;—¢)| >0 a.s,
Jj<Mn® i=1
if and only if the following hold:
(1) E|X,,|* TP < oo
.. _ EX:, ifa<l,
(if) €= any number, if a > 1.

The proof of Lemma 2 is given in the Appendix.

LemMa 8. If f> 0 is an integer and X7 is the p X n matrix [ X/, then

limsup A (n TXDXD} <7 a.s.
Proor. When f = 1, we have

H XOxay diag| —

<||T(1)||+ Z'le,i ’ ’p

1
< IT(Dll + — max ¥ X
L<p Jj=1

So, by Lemmas 1 and 2, we get

limsup|ln I XOXY|| <7 as.
n



1284 Z.D.BAIANDY. Q. YIN
For f = 2, by the Ger§gorin theorem and Lemma 2, we have

n n
Amad P 2XPX®) < maxn™? Y XY + maxn™? Y} ) X2 X2
i j=1 i ki j=1

n
< maxn~? ) X! +
i J=1

n p
maxn ! Xizj)(mg:lxn_1 Y X,fj)
t j=1 J k=1
-y as.

For f> 2, the conclusion of Lemma 4 is stronger than that of this lemma.
O

REMARK 5. For the case of f = 1, the result can easily follow from a result
in Yin, Bai and Krishnaiah (1988) with a bound of 4. Here, we prove this
lemma by using our Lemma 1 to avoid the use of the result of Yin, Bai and
Krishnaiah (1988), since we want to get a unified treatment for limits of both
the largest and the smallest eigenvalues of large covariance matrices, as we
remarked after the statement of Theorem 2.

In the following, we say that a matrix is o(1) if its operator norm tends to 0.

LeEMMA 4. Let f > 2 be an integer, and let X/ be as defined in Lemma 3.
Then

ln=772X D) =0o(1) a.s.

Proor. Note that, by Lemma 2, we have
In=2XD2 <n~ Y X2 -0 as.,
u,v

since E|XZ/1*/ = EX%, < ». The proof is complete. O

LEMMA 5. Let H be a p X n matrix. If |H|| is bounded a.s. and f > 2, or
H =0(1) a.s. and f = 1, then the following matrices are o(1) a.s.:

Ak, ) = (f/ Y H, K[ K. Xx)

aFUF  FUL_1#b
U1 0 #F Uy

B(k’ f) = (n_k+1_f/2 Z Ha01XL{1v1Xu102Xu2vz T vak)'
Up# - %u;_l#b
V1#F o F U

Proor. For the case of £ = 1, by Lemma 3, we have

B(1,f) = (n—f/z EHalebfvl) = n~//?HX" = Hn 172X = o(1)

Uy
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and
AL f) =B(L, f) —n” diag[ZHmXaf,,X]

= B(1, f) - diag( B(1, f)) = o(1),

where diag(B) denotes the diagonal matrix whose diagonal elements are the
same as the matrix B. Here, in the proof of diag(B(1, f)) = o(1), we have used
the fact that |diag(B)|| < || BI|.

For the general case £ > 1, by Lemma 1 and the assumptions, we have

_ —k+1-f/2 cen
(Bab) =\|n v Z HaUIleuIXulvz‘Xuzvg vak)
Uy # o FUp_ #b
vy F o FUy
_ —-k+1-f/2 e
=|n t/ Z (ZHalezflvl) Xuluquzuz Xbuk
U # o FUp_#b vy
Ug# * " ivk
—k+1-f/2 +1 v
i R s Z Hav2X1{1v2Xuzu2 Xb"k)
Uy# o Fup_1#b
Ug# **° #FUy

= nf2HEK O T(k - 1) - C = o(1) - C.

However, the entries of the matrix C satisfy

— g —k+1-f/2 f+1
Cab =n Z Hav2ZXu1v2Xu2v2 ‘va,¢
Ug# - #FUp_1#b u,
Ug# *** FUy
—pkt1-f/2 f+2
n Z Havzxu2v2Xu2v3Xu3v3 Xbuk
Ug#  r FUp_1#b
Ug#E U

= Ugp — Eab'

Note that the matrix E is of the form of B with a smaller k-index. Thus, by
the induction hypothesis, we have E = 0o(1) a.s. The matrix D also has the
same form as B with

Lk =1, H* =m0, Y X0
u
in place of f, k, H,,. Evidently, by Lemma 2, we have
H* = Hdia\g{n“(f‘“l)/2 Y X[ty = 1,...,n> =0(1).
» ,

Thus, D = o(1) and hence B(k, f) = o(1).
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For matrices A, it is seen that

— —k+1-f/2
Aab - Bab -n “ Z (EH avl) ZXuzuz T vak
aFUg# " FUp_1#b
Ug# ' #Uy
—k+1-f/2 +1
tn £/ Z H Xafuz Xu2u2 T vak
aFUug# - FUy_1#b
Ug# '+ #Uy

=B,,—F,, +K,_,
Note that
IF|| = |[diag( Hn~f/2X )] T(k — 1)
<[ H(n=2X D) [IT (k = 1)ll = o(1).
It is easy to see that the matrix K is of the form of A with
Lk = 1,8 = (X

in places of f, k and H. Note that H = H o (n'/*D/2X(f*1') where Ao B =
(A,,B,,) denotes the Hadamard product of the matrices A and B. By the fact
that ||[A° Bl < [|Alll|Bll [when A and B are Hermitian and positive definite,
this inequality can be found in Marcus (1964); a simple proof for the general
case is gwen in the Appendix], we have H = o(1). Hence, by the induction
hypothesis, K = o(1). Thus, we conclude that A = o(1) and the proof of this
lemma is complete. O

LEMMA 6. The following matrices are o(1) a.s.:

= k-1 3 .
Al =\|n Z Xav1Xu1v1Xu1v2 Xuk_lkabvk)’
uyF o Fup_#b
ULE e E U
= k-1 4 PN
A2 =\|r Z XaulXau2Xu2v2 Xbuk)’
aFug# c FUy 1#b
vlaé F#Uy
— —k—1 3 ce
A3 =\|n Z XaulXululXuluquzvz Xbuk)’
uy# e #b
Up#F 0 #FUy
= —k e
A4 =1|n Z Xaulz Xu1u1Xu1v2Xu2u2 vak)’
U #
Uy E aev,,
= —k oo
A;=|n Y Wo X0, X0, X0, vak),

aFug# - #b
Up#F * 00 #Uy

where Z = diaglZ,,...,Z,] = 0o(1) and W = diag{W,,..., W,1 = 0o(1).
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Proor. All are simple consequences of Lemmas 2-5. For instance, A, is a
matrix of type B as in Lemma 5, with f=1and H = n~3/2X® = (1) a.s.

LEmMmA 7. Forallk > 1
TT(k) =T(k +1) +yT(k) +yT(k - 1) +0o(1) a.s,
where T = T(1) and T(k) are defined in (2.2).

Proor. Recall that T(0) = I and T(1) = T. We have

= —k—1
TT(k) - Z X XuouoXuoulXulul Xuk_lukvak
aFug# 0 FuUp_1#b
Vg, V1% " #Uy
= T(k+1)
—k—-1 2
t+|n Z X XuoulXulul Xuk_lkabukl
aFug# 0 FuUp_1#b
Uy# 0 #FUp
=T(k+1)+n*!
X{ Z ‘wlzX“O”l( uoa)(l - 6“0“1)Xu101 T XbUk
UyF o FUp_1#b
U1#F v FU

= T(k + 1) + n_k I[Z Xaulquvl ww, Xbuk]

—k 1 * )X .
[ Z aul ulvl Xbuk]

—n T K X Xy K, K]

U UM U ‘T ugug

avi“tavg“ruguy
aFUgF o FUp 1 #b
Up#F o FUy

—h—
+n 1[ Y X: X, X X,

where 8,, is the Kronecker delta and

Y * stands for Y

Uy# o FUp_1#b
v #E e FU



1288 Z.D.BAIANDY. Q. YIN

By Lemmas 1 and 6, and the fact that EX? — 1, we obtain

1
Rl = n_k_lp Z*Xalq; Z(X3U1 - l)X X X T XbUk

U7 UV " Ul
u

— k- %
tn k lpE Xaulxulvl vak]

=o0(1) +yT(k) +n *1p Y X2 X Xy " i,

avi“ravg“uguy
aFuUg# c FUp_1#b

U1# 0 #FUy
=0(1) +yT(k) + n™*p
X[ Z n_l Z(Xful - 1)Xav2Xu2U2 Xbuk
aFUg#  FUp_1#b vy
Ug#* * ' #Uy
—n*1p Y X2 XKy " Kow, | T T (k= 1) +0(1)

a#Uug# " #b
Ug# " #Uy

=yT(k) +yT(k — 1) +0(1)
and

R, =0(1), Ry =0(1), R, =0(1).

LEmMMa 8. (T — yD* = T¢_ (= D" ()Tt P7AC (R, r)y* "7 + o(1)
a.s., where

(2.15) IC,(k,r)l < 2%,

Proor. We proceed with our proof by induction on 2. When %k = 1, it is
trivial. Now suppose the lemma is true for k. By Lemma 7, we have

k
(T-yD)* = L (-1)"YT(r + 1) +yT(r) +yT(r - 1)}
r=1

[k =r)/2] Ik .
X Y Ck,r)y*77 =T Y Ci(k,0)y*™
i=0 i=0

[(k-r)/2]

k
~ Y (-1)IT(r) X Ci(k,r)yt T 4 0(1)
r=0 i=0
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k+1 [(k+1-r)/2]

= X (-)"7'T(r)y X (-Ci(k,r— 1))yt
r=1 i=0
k—1 [(k+1—r)/2]
+ X (-D)T(r) X (=Ciy(k,r+ 1))yhrror
r=0 i=1
(k/2) _
+1) Ci(k,0)y* ¢ +0(1)
i=1
kE+1
= X (-1)'T(r)
r=0
((k+1-r)/2] .
X Y, Cuk+1,r)y* '+ 0(1) as.
i=0

Here C,(k + 1,r) is a sum of one or two terms of the form —C,(k,r + 1) and
—Ci(k,r — 1), which are also quantities satisfying (2.15). By induction, we
conclude that (2.15) is true for all fixed k. Thus, the proof of this lemma is
complete. O

3. Proof of Theorem 1. By Lemma 2, with « = 8 = 1, we have
(3.1) IS—-I-TI= max n~1 i§1(Xi2j - 1) >0 as.
Therefore, to prove Theorem 1, we need only to show that
(3.2) limsuplT — yIll < 2y aus.

By Lemmas 1 and 8, we have, for any fixed even integer £,

k
limsup||T — yII* < Y CE2y"/2[(k — r) /2] 2ty

n—o r=0
< Ck42*y*/2 as.

Taking the k-th root on both sides of this inequality and then letting 2 — oo,
we obtain (3.2). The proof of Theorem 1 is complete. O

APPENDIX

Proor oF LEmMMA 2 (Sufficiency). Without loss of generality, assume that
¢ = 0. Since, for e >0and N > 1,

1 » n
p -——Z >¢,i0.) < Y P{ max Z > g'2ke
J<Mnﬁ n® E>N 2k- 1<n<2"_1<M2’”’ =
n
Z M2*Ep max Z X, | = 2k},
k>N 2¢l<n<ot|i_y
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where ¢ = 27 %, to conclude that the probability on the left-hand side of this
inequality is equal to zero, it is sufficient to show that

(A1) i 2kBP{ max
R=1

n<2*t

2 X
=1

> 2’“’.9} < o,

i

Let Y;, = X;,I (IX;,| <2**) and Z;, =Y, — EY,;. Then |Z;,| < 2***! and
EZ, = 0.

Let g be an even integer such that g(a — 1) > B8 + 2a. Then, by the
submartingale inequality, we have

2k &

Y Zy,

n
max | Y, Z;,
i=1 i=1

d
(A2) n<2*|;

> 32”“} < C2 k&2

< C27hs(2hEIZf,| + 24e/%(EZ2,)*7),

where the last inequality follows from Lemma A.1, which will be given later.
Hence

X Zy

i=1

(A.3) i 2kBP{ max
k=N

n<2*k

> 82’“'} < o,

which follows from the following bounds:

<]

Y 2k-keatkp|ZE | < C ) 2HE-s2+DE|IXE |I[|X,,| < 2k2]
k=1 k=1

<C Y okb-ga+D
k=1

k
X| ¥ EIX;,fI[20¢7Y < X, < 2] +1
=1

< C Y EIX|®*P/e1[20CD < X < 29] + €, < o
=1

[note that ga — B — 1 > g(a — 3) — (B + 2a) > 0] and, when (1 + B)/a > 2
(hence EZ2, < EX? < ),

Z 2k/3—kgcv+kg/2(EX12k)E/2 <C Z Qk(B+2a—g(a=1/2) < o
k=1 k=1
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If(1 + B)/a < 2, we have

o

Z okB—kga +gk/2(EZ12k)g/2
k=1

™s

< Y gtBhserha/2 Bz p)/arz-arp/a)8/ Y (Fz2 )

k=

[y

s

C 2kB—kga+kg/22ka(2—(1+B)/a)(g/2—I)E[XIZII(IXHI < 2ka)]

1

I\

k

2k(B—ga+g/2+ga—2a—(1+ﬂ)g/2+1+B)

s

o

IA

k=1

k

x| ¥ B(XAZI(2079% < [Xy,] < 2)) + 1
=1

o0 k )
< C ) 2kF-2a—pg/2+1+p) Y E(IX11I21(2”‘1)‘* < 1X;,l < 2“’)) +C
k=1 -1

=C Z 21(3—204—Bg/2+1+B)E(|X11|2I(2(l—l)a < |X11| < 2la)) + Cl
=1

0
<C E 21(3~2a—3g/2+1+3)E|X11|(1+ﬁ)/a+2—(1+B)/a
=1
XI(2¢7D < |Xy| < 2) + ¢,
0
<C Z 2l(B~—2a—Bg/2+1+,B)2lcv(2—(1+B)/a)E|X11|(1+l3)/a
=1
XI(2¢7P* < |X,| < 2') + ¢
< oo,

Now we estimate EY;, for large k. We have

max Y EY,;, | < 2*|EY,,
n<2®|;-1

2*EIX I [1X | = 2%
(A4) 11 [ 11 ]

<( <2 PEIX PV [1X)| = 2ke], ifa <1,
2" log k + 2*=PE|X,,|®*V/I[|X,,| > log k], ifa> 1,

< 27 1g2ke,

Because (A.3) and (A.4) are true for all ¢ > 0, the inequality (A.3) is still true if
the Z,,’s are replaced by Y, ’s.
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Finally, since E|X;|**"/* < «, we have

zk
U {X.1l > 2%

i=1

(A5) Y 2tp
k=1

< Z 2k(B+1)P[|X11| > 2ka] < .
k=1

Then, (A.1) follows from (A.3)-(A.5).

(Necessity.) If B = 0, then it reduces to the Marcinkiewicz’s strong law of
large numbers, which is well known. We only need to prove the case of g > 0.
By (2.14) we have

n
max n¢ )y X, | =0 as.
Jj<M(n-1)"# i=1
and
n—1
max n~ ¢ ZXij -0 as.
j<M(n—-1)7" i=1

By changing to a smaller M, we may change (n — 1)? to n? for simplicity.
Thus, we obtain

max n” %X, .| >0 as,
Jj<Mn#P

which, together with the Borel-Cantelli lemma, implies

ZP[ max |X, | > n®| < .

n jSMnﬂ

By the convergence theorem for an infinite product, this above inequality is
equivalent to

nlp[ max |X, | < ne (P(Xy] < no)) M
e

Jj<Mn?

(1 - P(IXyl = n®))™ > 0,

I'1
n=1
I'1
n=1
which, by using the same theorem again, implies that

Y., MnPP(Xy| > n®) < .

n=1

This routinely implies E|X11|(B+1)/a
condition (ii) in Lemma 2 follows. O

< o, Then, applying the sufficiency part,

LEmMma A.l. Suppose X,,..., X, are iid random variables with mean 0
and finite g-th moment, where g > 2 is an even integer. Then, for some
constant C = C(g),

8
(A.6) E < C[nEX¢ + ner(EX?)™".

X
i=1
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Proor. We need only to show (A.6) for g > 2. We have

n g g/2 n!g!EIX |i1 . ElX Iil
(A7) EIYX | <Y = 1'.' 1'
i=1 I=1i+ - +i;=¢g l.(n—l)_ll_-.. i;!

1122,...,;>2
By Hélder’s inequality, we have
EIXi < (EXlg)(i,—1)/(g—2)(EX12)(g—i,)/<g—2),
which, together with (A.7), implies that

- ¢ &2 (g-20)/(g-2) g-1/(g-2)
E| Y X;| <CY (nEX§)* ™€ 2(nEX?)
i=1 =1

C(nEX2)**, if (nEX2)¥“® > (nEX§)*?,
CnEXE, otherwise.

This implies (A.6), and the proof is finished. O

<

LemMMA A2, Let A and B be two n X p matrices with entries A,, and B,
respectively. Denote by A o B the Hadamard product of the matrices A and B.
Then

A Bl <[AlllBII

Proor. Let x = (x;,...,x,) be a unit p-vector. Then the lemma follows
from

n P 2
”A° BX”2 = Z ( Z AuvBuvxu)
u=1\v=1

A
g
7

n n P 2
( Z Akauvxv)

k=1u=1\v=1
tr( BXA'AXB')

= tr(XA'AXB'B) < | AlPIBI? tr( X2) = || AlI2| BII?,
where X = diag(x). O

Recently, it was found that this result was proved in Horn and Johnson
[(1991), page 332]. Because the proof is very simple, we still keep it here..
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