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Abstract

We reduce the number of open additivity problems in quantfoniation theory by showing
that four of them are equivalent. Namely, we show that thgectures of additivity of the

minimum output entropy of a quantum channel, additivityhef iHolevo expression for the
classical capacity of a quantum channel, additivity of tiéaeglement of formation, and
strong superadditivity of the entanglement of formatiam, &ther all true or all false.

1 Introduction

The study of quantum information theory has led to a numbeseeimingly related open
questions that center around whether certain quantiteesdditive. We show that four of
these questions are equivalent. In particular, we showthiegfour conjectures of

i. additivity of the minimum entropy output of a quantum chah
ii. additivity of the Holevo capacity of a quantum channel,
iii. additivity of the entanglement of formation,
iv. strong superadditivity of the entanglement of formatio

are either all true or all false.

Two of the basic ingredients in our proofs are already knoilne first is an observa-
tion of Matsumoto, Shimono and Wintér [12] that the Stineggpdilation theorem relates a
constrained version of the Holevo capacity formula to thiaeglement of formation. The
second is the realization that the entanglement of formdto the constrained Holevo ca-
pacity) is a linear programming problem, and so there isaldoal linear formulation. This
formulation was first presented by Audenaert and Braungii§invho expressed it in the
language of convexity rather than that of linear prograngnie noted this independently
[L86]. These two ingredients are explained in Sectidns Ihnd 5

The rest of this paper is organized as follows. Sedion 2sgs@me background in
quantum information theory, describes the additivity dioes we consider, and gives brief
histories of them. Sectiofd 3 aflil 5 explain the two ingredigre describe above, and
are positioned immediately before the first sections in Wiy are used. To show that
the conditions (i) to (iv) are equivalent, in Sectidn 4 weymahat (ii) — (iii): additivity
of the Holevo capacity implies additivity of entanglemeftfarmation. In Sectiord6 we
prove (iii) — (iv): additivity of entanglement of formation implies strg superadditivity of
entanglement of formation. This implication was indepamnlyediscovered by Pomeransky
[L3]. In Sectiorl¥ we prove that (i} (iii): additivity of minimum entropy output implies
additivity of entanglement of formation. In Sectibh 8, weeysimple proofs showing that
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(iv) — (i), (iv) — (i), and (iv) — (iii). The first implication is the only one that was not in
the literature, and we assume this is mainly because nolkeudiiried to prove it. The second
of these implications was already known, but for complegsivee give a proof. The third of
these implications is trivial.In Sectior® we give proofs that (ii}> (i) and (iii) — (i): either
additivity of the Holevo capacity or of the entanglement ofnfiation implies additivity
of the minimum entropy output. These implications complbie proof of equivalence.
Strictly speaking, the only implications we need for theqirof equivalence are those in
Section§BH9. We include the proof in Sectidn 4 because & ase of the techniques used
later for Sectioilll7 without introducing the extra complgxif the dual linear programming
formulation. Finally, in Sectioi 10 we comment on the imations of the results in our
paper and give some open problems.

2 Background and Results

One of the important intellectual breakthroughs of the 2f#thtury was the discovery and
development of information theory. A cornerstone of thiddfis Shannon’s proof that a
communication channel has a well-defined information éagrgapacity and his formula for
calculating it. For communication channels that intriaflicincorporate quantum effects,
this classical theory is no longer valid. The search for tteopof the analogous quantum
formulae is a subarea of quantum information theory thatéesntly received much study.

In the generalization of Shannon theory to the quantum rghlerdefinition of a stochas-
tic communication channel generalizes to a completelytpedrace-preserving linear map
(CPT map). We call such a mapgaantum channelln this paper, we consider only finite-
dimensional CPT maps; these takg x d;, Hermitian matrices ta@l,,; X dou¢ Hermitian
matrices. In particular, these maps take density matricasdq 1 positive semidefinite ma-
trices) to density matrices. Note that the input dimensiam lge different from the output
dimension, and that these dimensions are both finite. lafthiihensional quantum channels
(CPT maps) are both important and interesting, but dealitiy ttvem also introduces extra
complications that are beyond the scope of this paper.

There are several characterizations of CPT maps. We neethénacterization given by
the Stinespring dilation theorem, which says that every @GRIip can be described by an
unitary embedding followed by a partial trace. In particuggven a finite-dimensional CPT
mapN, we can express it as

N(p) =TrgU(p)

whereU (p) is a unitary embedding, i.e., there is some ancillary ségesuch thatU takes
Hin to Hout & 7_(B by
Ulp) =VpVT

andV is a unitary matrix mappingt;, torange(V) C Hout ® Hp. We also need the opera-
tor sum characterization of CPT maps. This characterizatys that any finite-dimensional

LIn fact, property (iv), strong superadditivity &, seems to be in some sense the “strongest” of these equiv-
alent statements, as it is fairly easy to show that strongrsudlitivity of entanglement of formation implies the
other three additivity results whereas the reverse doestappear to require substantial work. Similarly, propert
(i) appears to be the “weakest” of these statements.



CPT mapN can be represented as
N(p) = ApAl
k

where thed,; are complex matrices satisfying

> AfA =1

The Holevo informatiofiy is a quantity which is associated with a probabilistic ensem
ble of quantum states (density matrices). If density matrinccurs in the ensemble with
probability¢;, the Holevo informatiory of the ensemble is

X = H(Z 4ipi) — Zqu(pi)

whereH is the von Neumann entrogy (p) = —Tr plog p. This quantity was introduced in
[6}[17,[8] as a bound for the amount of information extraadiy} measurements from this
ensemble of quantum states. The first published proof ofathisnd was given by Holevo
[B]. It was much later shown that maximizing the Holevo catyaaver all probabilistic
ensembles of a set of quantum states gives the informatiosnrission capacity of this set
of quantum states; more specifically, this is the amountaxsital information which can be
transmitted asymptotically per quantum state by usingwodds that are tensor products of
these quantum states, as the length of these codewordsogaésity [9, [15]. Optimizingy
over ensembles composed of states that are potential sutpaiguantum channel gives the
quantum capacity of this quantum channel over a restricedfsprotocols, namely those
protocols which are not allowed to send inputs entangleddsen different channel uses. If
the channel isV, we call this quantityy v ; it is defined as

H(N(Zpilvixvil)) - ZpiH(N(Ivinil)), 1)

XN = Imax
{pi;lvi)}
where the maximization is over ensembies, |v;)} where) ", p; = 1 and|v;) € H,, the

input space of the channal.
The regularized Holevo capacity is

lim —xpyen;
n—oo N,

this gives the capacity of a quantum channel to transmisidakinformation when inputs
entangled between different channel uses are allowed. Téstign of whether the quantum
capacity is given by the single-symbol Holevo capagity is the question of whether the
capacityy y is additive; that is, whether

XN1®@Ny = XN; T XN,-

The > relation is easy; the open question is theelation.

2This has also been called the Holevo bound and the Hotegaantity.



The question of additivity of the minimum entropy output ofjaantum channel was
originally considered independently by several peopleuiding the author, and appears to
have been first considered in print In]10]. It was origingdysed as a possible first step to
proving additivity of the Holevo capacityy. The question is whether

rfldi){lH(Nl ® Na(|¢Xe]) = %?H(MU@@I)) + r‘nqis;ﬂH(Nz(|¢><¢|)),

where the minimization ranges over staté$ in the input space of the channel. Note that
by the concavity of the von Neumann entropy, if we minimizemomixed stateg—i.e.,
min, H (N (p))—there will always be a rank one= |¢)¢| achieving the minimum.

The statements (iii) and (iv) in our equivalence theorenhhisal with entanglement.
This is one of the stranger phenomena of quantum mechanitanglement occurs when
two (or more) quantum systems are non-classically cogélaThe canonical example of
this phenomenon is an EPR pair. This is the state of two quastistems (called qubits, as
they are each two-dimensional):

1
V2

Measurements on each of these two qubits separately cdbitecdrirelations which cannot
be modeled by two separated classical systéims [2].

A topic in quantum information theory that has recentlyaatted much study is that of
quantifying entanglement. The entanglement of a bipaptite state is easy to define and
compute; this is the entropy of the partial trace over on&eftivo parts

(lo1) —1]10)).

Epure([o)v]) = H(Trp[v)v]).

Asymptotically, two parties sharing copies of a bipartite pure state)v| can use lo-
cal quantum operations and classical communication @&l@CC operationsto produce
nEpure(|v)v]) — o(n) nearly perfect EPR pairs, and can similarly forrmearly perfect
copies ofjv)(v| from nE, .. (Jv)v]) + o(n) EPR pairsll4]. This implies that a for pure state
|vXv|, the entropy of the partial trace is the natural quantiéatheasure of the amount of
entanglement contained n)(v|.

For mixed states (density matrices of ranki), things become more complicated. The
amount of pure state entanglement asymptotically extobefaom a state using LOCC op-
erations (thdistillable entanglemeiis now no longer necessarily equal to the amount of
pure state entanglement asymptotically required to ceestigte using LOCC operations (the
entanglement copfL7]. In general, the entanglement cost must be at leastithiable en-
tanglement, as LOCC operations cannot increase the ambentamglement.

Theentanglement of formatiomas introduced inI5]. Suppose we have a bipartite state
o on a Hilbert spacé{4 ® Hg. The entanglement of formation is

Ep(0) = min ZPiH(TYBWiXUiD )

where the minimization is over all ensembles such ¥iap;|v; )(v;| = o with probabilities
p; satisfying) ", p; = 1. The entanglement of formation must be at least the entaregie



cost, as the decomposition of the statgielding Er (o) can be used to create a prescrip-
tion for asymptotically constructing®” from nEr(c) + o(n) EPR pairs. The regularized

entanglement of formation

1
lim —Ep(a®™)
has been proven to give the entanglement cost of a quantten[gfa As in the case of
channel capacity, a proof of additivity, i.e., that

EF(O'1 (39 0'2) = EF(Ul) + EF(UQ)v

would imply that regularization is not necessary.

The question of strong superadditivity of entanglemenbaffation has been previously
considered in[]3, 17, 12] 1]. This conjecture says that fbstatess over a quadripartite
systemH 41 ® Ha2 ® Hp1 ® Hpo, We have

EF(U) > EF(TI‘QU) + EF(Trla)

where the entanglement of formatid}- is taken over the bipartite A-B division, as @ (2).
This question was originally considered in relation to thiestion of additivity ofEr. The
strong superadditivity of entanglement of formation is wnao imply both the additivity
of entanglement of formation (trivially) and the additiviof Holevo capacity of a channel
[L2]. A proof similar to ours that additivity of’» implies strong superadditivity di' » was
discovered independently; it appearsiinl[13].

We can now state the main result of our paper.

Theorem 1 The following are equivalent.

i. The additivity of the minimum entropy output of a quantin@rmel. Suppose we have
two quantum channels (CPT mag$) (takingC ?1inXd1in to C 1.0ut X d1,0ut) and Ny
(taking(cd2,in><d2,in to CdZ,out ><d2,out)' Then

I‘n;?H((M ® N2)(loX¢l)) = I(;?H(N1(|¢><¢|)) + IP;§1H(N2(I¢><¢I))

where H is the von Neumann entropy and the minimization is taken aVeectors
| #) in the input space of the channels.

ii. The additivity of the Holevo capacity of a quantum chdnessume we have two
guantum channeld’; and Ns, as in (i). Then

XNi®N2 = XN; T XN2»
wherey is defined as in Eq11).

iii. Additivity of the entanglement of formation. Suppose lave two quantum states
01 € Ha1 ® Hpy andoy € Has @ Hps. Then

EF(O'1 & 0'2) = EF(Ul) + EF(UQ)v

where E is defined as in Eq[02). In particular, the entanglement ofmfation is
calculated over the bipartitel—B partition.



iv. The strong superadditivity of the entanglement of fafoma Suppose we have a den-
sity matrixc over a quadripartite system systéity; ® Has ® Hp1 @ Hpe. Then

EF(O') > EF(TI'QU) + EF(Trla),

where the entanglement of formation is calculated over iparkite A—B partition.
Here, the operatofr; traces out the spack 41 ® Hp1, andTr, traces out the space
Ha2 ® Hpa.

3 Thecorrespondence of Matsumoto, Shimono and Winter

Recall the definition of the Holevo capacity for a chaniel

XN = Inax H(N(Zpl|¢1><¢l Zpl |¢z ¢z|))

{pi, | ¢i)}

Recall also the definition of entanglement of formation. &bipartite state on’H 4 ® Hp,
the entanglement of formation is

Er(o) = min sz (Trp|vi)vi])

{pi|vi)}
T pilvivil=o
Let us define a constrained version of the Holevo capacitychwis just the Holevo
capacity over ensembles whose average inppit is

XN(p) = max H(N(sz|¢z><¢z sz |¢z ¢z|)) (3)

{pir1 &)}
YipiloiXeil=p

The paper of Matsumoto, Shimono and Winterl[12] gives a cotime between this
constrained version of the Holevo capacity and the entamghé of formation, which we
now explain. The Stinespring dilation theorem says thatgrantum channel can be realized
as a unitary transformation followed by a partial trace. gige we have a chann¥ltaking
Hin to H.4. We can find a unitary embeddig(p) = VpV'T that takesH;, to Ha @ Hp
such that

N(u) = TrpU(p)

for all density matriceg. € Hi,. Now, U maps an ensemble of input stafgs, | ¢;)} with
p = Y. piloi)¢i| to an ensemble of statdp;, |v;) = V| ¢;)} on the bipartite system
Ha®Hp such thalzi pi'vi><vi| =0 = U(p)

Conversely, if we are given a bipartite statec H 4 ® Hp, we can find an input space
Hin With dim H;,, = rank o, a density matrip € H;,, and a unitary embeddirg : H;,, —
Hout such that/ (p) = 0. We can then defind” by

N(p) = TrgU(u),

establishing the same relation betweénU, p ando. Note that since we choském H;,, =
rank o = rank p, p has full rank in#;,,.



SinceN (|¢:)¢:|) = Trp|v;Xvi|, we have

xn(p) = H(N(p)) — Er(0).

Now, suppose&r (o) is additive. | claim thatyy (p) is as well, and vice versa. Let us take
Nl(p) = TI‘BUl(p) anle(p) = TI‘BUQ(p). If Ul(pl) = 01 andUg(pg) = 09, then we
have

XNioN. (p1 ® p2) = H(N1® Na(p1 ® p2)) — Ep(01 ® 02)
= H(Ni(p1)) + H(N2(p2)) — Ep(o1 @ 02)

The first term on the right-hand side is additive, so the agitanent of formationEr is
additive if and only if the constrained capacity (p) is

4 Additivity of y impliesadditivity of Er
Recall the definition of the Holevo capacity for a chaniel

xy = max H( (;PM’WZ sz N(|g:)Xei))

where the maximization is over ensemblgs, | #;)} with > .p; = 1. Recall also our
definition of a constrained version of the Holevo capacityioh is just the definition of the
Holevo capacity with the maximization only over ensemblé®ge average input js

XN (P) = {pmﬁf_()} H(N(Z pi|¢i><¢l sz |¢z ¢z|))
i Pil\:bi)(tﬁi,\:ﬁ (
Leto be the state whose entanglement of formation we are tryingrigopute. The MSW
correspondence yields a chanfelnd an input statg so that

N(p) =Trgo

and
xn(p) = H(N(p)) — Er(0)

This is very nearly the channel capacity, the only diffeeebeing that the above is not
necessarily the that maximizesy. Only one element is missing for the proof that addi-
tivity of channel capacity implies additivity of entanglent of formation: namely making
sure that the average density matrix for the ensemble giiegptimum channel capacity
is equal to a desired matrpg. This cannot be done directly [14], but we solve the problem
indirectly.

We now give the intuition for our proof. Suppose we could definnew channeN’
which, instead of having capacity

XN = max xn~(p)



has capacity
XN’ = Max XN (p) +Trpr 4)

for some fixed Hermitian matrix. For a proper choice af, this will ensure that the maxi-
mum of this channel occurs at the desipedConsider two entangled statesando, which

we wish to show are additive. We can find the associated ctgfneand NV}, with the
capacity maximized when the average input density matrpx iand p2, respectively. By
our hypothesis of additivity of channel capacity, the termmduct channeN;] ® N/, has
capacity equal to the sum of the capacities\gfand N. If we can now analyze the ca-
pacity of the channeN; ® N} carefully, we might be able to show that the entanglement
of formation of Er (01 ® o2) is indeed the sum aE'r(c1) and Er(o2). We do not know
how to define such a chann®t satisfying [#). What we actually do is find a channel whose
capacity is close td14), or more precisely a sequence ofreflampproximatind{4) in the
asymptotic limit. It turns out that this will be adequate toye the desired theorem.

We now give the definition of our new chanmél. It takes as its input, the input to the
channelVN, along withk additional classical bits (formally, this is actuall%dimensional
Hilbert space on which the first action of the channel is tosneait in the canonical basis).
With probabilityq the channelN’ sends the first part of its input through the chankiedind
discards the classical bits; with probability— ¢ the channelV makes a measurement on
the first part of the input, and uses the results of this measent to decide whether or not
to send the auxiliary classical bits. When the auxiliarysieal bits are not sent, an erasure
symbol is sent to the receiver instead. When the auxiliamgsital bits are sent, they are
labeled, so the receiver knows whether he is receiving tiygubwf the original channel or
the auxiliary bits.

What is the capacity of this new chanmé{? LetE be the element of the POVM mea-
surement in the case that we send the auxiliary bitd (soE is the element of the POVM
in the case that we do not send these bits). Now, we claim thatofine set of vectols; )
and some associated set of probabilifigghe optimum signal states of this new chaniél
will be |v; Xv;| @ |b)(b| with associated probabilities /2%, whereb ranges over all values of
the classical bits.

We now can find bounds on the capacity/éf. Let|wv;) andp; be the optimal signal
states and probabilities fory- (p). We compute

xn(p) = q(H(N(Zpi|vi><vi|)_ZpiH(N(|Ui><Ui|)>

+ (1-9q)k ZpiTrE|vi><vi|

+ (I-9q) (Hz(TYEZMUiXUiU - ZPin(TTEWz'XUiU) ;. (5)

3This just says that we want to use the classical part of thargaas efficiently as possible. The formal proof
is straightforward: First, we show that it doesn't help tagsuperpositions of the auxiliary bits, so we can assume
that the signal states are indeed of the fdt)(v; | ® |b)b|. Next, we show that if two signab; }(v;| ® |b1 (b1 |
and|v; Xv;| ® |b2){b2|, S0 not have the same probabilities associated with themezdey capacity can be achieved
by making these probabilities equal.




whereHs is the binary entropy functiofl;(z) = —zlogx — (1 — ) log(1 — ). The first
term is the information associated with the chanNelthe second that associated with the
auxiliary classical bits, and the third the information@sated with the measuremeiit

Let p = ", pilvi)(v;| and leto be the associated entangled state. We can now deduce
from (@) that

xn(p) = axn(p) + (1 = @)kTrEp+ (1 - q)d (6)
whered is defined as

§ = Hy(Tr Ep) — sz‘f‘b((w | E|vi)).

Note that0 < § < 1, sinced is positive by the concavity of the entropy functiéf, and is
at mostl sinceHz(p) < 1for 0 < p < 1. Similarly, if we use the optimal states gy (p),
we find that

xn(p) = xn(p) + (1 — @)kTrEp 7

From Eq.[[6) and Eq[7), we find that thg that maximizes the quantity

axn(p) + (1 — q)kTr Ep, (8)

we are guaranteed to be within- ¢ of the capacity ofV’.
We next show that we can find a measurent&stich that an arbitrary density matyix
is a maximum of[(B).

Lemma 2 For any probability0 < ¢ < 1, any channelV, and any fixed positive matrix
over the input space dY¥, there is a sufficiently largg, such that fork > ky we can find an

E so that the maximum dil(8) occurs@t (This maximum need not be uniquex if (p) is

not strictly concave apg, thenpg will be just one of several points attaining the maximum.)

Proof: It follows from the concavity of von Neumann entropy that(p) is concave irp.
The intuition is that we must choodso that the derivativé of @) with respect te at pg
is 0. Because we only vary over matrices withp = 1, we can add any multiple dfto E
and not change the derivative. Suppose that in the neigbbdrbrf o,

xn(p) < xn(po) +Tr7(p — po). 9)

That such an expression exists follows from the concavity@fp) and the assumption that
po IS not on the boundary of the state space, i.e., has no zezowtyes. A full ranky, is
guaranteed by the MSW correspondence.
To makepy a maximum for Eq.[{8), we see from Ef] (9) that we need toErsb that
(1-q)

VR =N -7
q

with 0 < E < I. This can be done by choosikgand )\ appropriately. O

4This is the intuition. This derivative need not actuallysgxi



Now, suppose we have two entangled stateandos for which we want to show that
the entanglement of formation is additive. We create thencbls N, and NV} as detailed
above. By the additivity of channel capacity (which we’reaming), the signal states of the

tensor product channel can be taken t¢q%>>| b1) ®]| v§2)>| by) for by, by anyk-bit strings,
with probabilitypl(.l)pf)/?’“. This gives a bound on the channel capacity of at most

xvjeNy, < q(H(Ni(p1)) — Er(o1)) + (1 — Q)kTr E1pr +
+q (H(N2(p2)) — Ep(02)) + (1 = q)kTrEgps +2(1 —q)  (10)

The2(1 — ¢) term at the end comes from the fact that the formidla (8) isiwith- ¢ of the
capacity. Now, we want to show that we can find a larger cap#uin this if there is a better
decomposition of; ® o9, i.e., if the entanglement of formation ef ® o2 is not additive.
The central idea here is to letgo to 1; this forces: to simultaneously go toc. There is a
contribution from entangled states, which goegZas contribution from the auxiliarg-bit
classical channel, which goes(@s- ¢)k, but which is equal in both cases, and a contribution
from unentangled states, which goesjés— ¢). As ¢ goes to 1, the contribution from the
entangled states dominates the difference.

Suppose there are a set of entangled states which give aesreathnglement of for-
mation foroy; ® o9 than Eroy + Fros. By the MSW correspondence, this gives a set of
signal states for the ma; ® N, which yield a larger constrained capacity tha, (p1) +
XN, (p2). We define this set of signal states f§f ® N, to be the states; }(¢;|, and let the
associated probabilities be. Now, using the ¢;) as signal states ifv] ® N4 shows that

XnjeN, = @H(N1 @ Na(pr ® ps)) — ¢°Ep (01 @ 02)
+(1 = @)kTr Ezp,

This estimate comes from considering the information traitied by the signal stateg; )¢ |
in the case (occurring with probabilit?) when the channels operate &$ @ N,, as well
as the information transmitted by thkeclassical bits.

We now consider the difference between this lower bolindfdrithe capacity ofV] ®
N/ and the upper bounf{}L0) we showed for the capacity usingtemeduct signal states.
In this difference, the terms containifiy— ¢)k cancel out. The remaining terms give

0 > qFEp(o1)+qEr(os) — ¢*Er(o1 ® 09) —2(1 — q)
—q(1 = q)H(N1(p1)) — q(1 — ) H(N2(p2))-
For ¢ sufficiently close to 1, thél — ¢) terms can be made arbitrarily small, apdnd ¢
are both arbitrarily close to 1. This difference can thus &lepositive if the entanglement

of formation is strictly subadditive, contradicting oursamption that the Holevo channel
capacity is additive.

10



5 Thelinear programming formulation

We now give the linear programming duality formulation foetconstrained capacity prob-
lem. Recall the definition of the constrained Holevo capyacit

xw(p) = max  HNQ_pilé)ail) Zpl N(giXei)) (A1)
T4 ppf\%n@i\:p i

This is a linear program, and as such it has a formulation afa problem that also gives
the maximum value. This dual problem is crucial to severawf proofs. For this paper,
we only deal with channels having finite dimensional inpud antput spaces. For infinite
dimensional channels, the duality theorem fails unlesstagima are replaced by suprema.
We have not analyzed the effects this has on the proof of auivalgnce theorem, but even
if it still holds the proofs will become more complicated.

By the duality theorem for linear programming there is apo#xpression foEr (o).
This was observed in[L_1L6]. Itis

xn(p) = H(N(p)) — f(p) (12)
wheref is the linear function defined by the maximization
max f(p) such that f(|JvXv]) < H(N(Jv)Xv])) forall |v) € Hin, (13)

HereH;, is the input space falV and the maximum is taken over all linear functions

F(p) = Tr7p.

Egs. [I2) and{d3) can be provedifs full rank by using the duality theorem of linear
programming. The duality theorem applies directly if thare only a finite number of
possible signal states allowed, showing the equality ofitbdified version of Eqs[{11) and
(@I3) where the constraints iD{]13) are limited to a finite nendf possible signal statés; ),
which are also the only signal states allowed in the capaaityulation[[TIL). To extend from
all finite collections of signal statés; }(v;| to all |v)(v|, we need to show that we can find a
compact set of linear functionp) = Tr 7p which suffice to satisfy Eq[{13). We can then
use compactness to show that a limit of these functionssxigtere in the limit Eqs[{11)
and [IB) must hold on a countable set of possible signalsstate dense in the set of unit
vectors, thus showing that they hold on the set of all unitwesd v). The compactness
follows from p being full rank, andd (N (|JoXv|)) < logdeut for all |vXv|, wheredoyt is
the dimension of the output space/@f The case wherg is not full rank can be proved by
using the observation that the only values of the funcfiomhich are relevant in this case
are those in the support pf

Equality must hold in[{I3) for thosey) which are signal states in an optimal decompo-
sition. This can be seen by considering the inequalities

xn(p) = sz N(lvi)vil))

< N(p) —Zpi (Jvi)wi])
= H(N(p))— f(p)

11



For equality to hold, it must hold in all the terms in the suntiovg which are exactly the
signal state$v;).

6 Additivity of Er impliesstrong superadditivity of Er

In this section, we will show that additivity of entanglemerf formation implies strong
superadditivity of entanglement of formation. Anothergiravas discovered independently
by Pomeransky 113]; it is quite similar, although it is exgged using different terminology.
We first give the statement of strong superadditivity. Assuae have a quadripartite
density matrixo whose four parts ard1, A2, B1 and B2. The statement of strong super-
additivity is that
Er(c) > Ep(Treo) + Ep(Tri0) (14)

whereEr is the entanglement of formation when the state is congi@sea bipartite state
where the two parts aré¢ and B; that is,

Br(o)=  min Zpl (Trplei)Xeil)- (15)
Y pildiNoil=c 1

First, we show that it is sufficient to prove this wheiis a pure state. Consider the opti-
mal decomposition of = >, m;|¢;)(¢;|. We can apply the theorem of strong subadditivity
to the pure statefs; }(¢;| to obtain decomposition®r:[¢; {¢:| = >_; pl | ( v ffj)| and

Tra|pi) il = >; Pl )| so that

H(Trp|¢:)al) = > ol H(Trp o) o)) + 3 i H(Trplof) X)),
J J
Summing these inequalities oviegives the desired inequality.
We now show that additivity o' implies strong superadditivity ofr. Let|¢) be
a quadripartite pure state for we wish to show strong supitiaily. We defines; =
Tro|p)¢| andos = Tr1|p)p|. Now, let us use the MSW correspondence to find channels
N; and N> and density matrices; andps such that

Ni(p1) =Trgor and Na(p2) = Trpos
and

xni (1) = H(Ni(p1)) — Er(o1)
XN, (p2) = H(Na(p2)) — Er(o2)

We first do an easy case which illustrates how the proof woriksowt introducing ad-
ditional complexities. Letl; andds be the dimensions of the input spaces\afand Ns. In
the easy case, we assume that thereladéearly independent signal states in an optimal
decomposition of; for yn, (p1), andd3 linearly independent signal states in an optimal

decomposition op for xn,(p2). Let these sets of signal states|b§al)><vfl)| with prob-
ab|I|t|e5p( ) and|v(2)>< §2)| with probabilitie5p§2), respectively. It now follows from our

12



assumption of the additivity of entanglement of formatioattan optimal ensemble of signal
states fory v, g n, (P1 ® p2) IS | v§1)> ® |v§2)> with probabilitypz(.l)pf).

Now, let us consider the dual linear functign for the tensor product chann&l ® N,.
Since we assumed that entanglement of formation is additivehe MSW correspondence
xn (p) is also additive. We claim that the dual functifin must satisfy

Jr(o Yol @ o o)) = HOV (o )Xol D) + H(Na(|of (o)) (26)
for all signal state$v§1)>| v§2)>. This is simply because equality must hold in the inequality
(@3) for all signal states. However, we now have tfiatis a linear function in al?d3 — 1
dimensional space which has been specifiedas linearly independent points; this implies
that the linear functiorfr is uniquely defined. It is easy to see that it thus must be the ca
that

fr(p) = fi(Trzp) + f2(Tr1p), (17)

as this holds for the?d3 signal states We now lét)(z/| be the preimage 6fr | p) 6| under
the channelV; ® N,. We have, from the equatior[s{13) afdl(17), that

Sir(Tra X)) + fa(Trofg)e]) < H(N1 ® Na([¢)])- (18)

But recall that

Si(Trofy)¥]) = Er(o1),
fo(Tra[)¥]) = Er(o2), (19)
becausd(13) holds with equality for signal states, and that

N1 @ No(|¢)0]) = Trp|p)dl.
Thus, substituting intd{18), we find that

Er(01) + Er(o2) < H(Trg|¢)X9l),
which is the statement for the strong superadditivity ofaegtement of formation of the

pure statég)(¢.

We now consider the case where there are fewer tasignal states fog v, (p:), i =
1, 2. We still know that the average density matrices of the digtaes forV; and N, are
p1 andp,, and that the support of these two matrices are the enting Bgaces+; ;, and
H2.in. The argument will go as before if we can again show that tta function f7 must
be f1(Trap) + f2(Tr1p). In this case we do not know#d3 points of the functionfz, and
thus cannot use the same argument as above to shoy;tietetermined. However, there
is more information that we have available. Namely, we knbat in the neighborhood
of the signal statesv,"), the entropyH (N (Ju)v|)) must be at least the dual function
f1 = Trm|v)v|, and that these two functions are equal at the signal stitee assume
that the derivative of (V1 (|v){(v])) exists at|v§1)><v§1) |, then we can conclude that this is
also the derivative off; = Tr|v)(v|. For the time being we will assume that the first
derivative of this entropy function does in fact exist.

We need a lemma.

5In fact, | believe the function is smooth enough that thesivakives do exist. However, we find it easier to

deal with the cases whe®¥1 (Jv)(v|) has zero eigenvalues by expressiNg and N2 as a limit of nonsingular
completely positive maps.
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Lemma 3 Suppose that we have a set of unit vectars that span a Hilbert spacé(. If
we are given the value gf at all the vectorg v;) as well as the value of the first derivative
of f,

tim L (F(Jeaoil) — £ (VT i) + € (VI =€ (] + i )

e—0 €
at all the vectorg v;) and for all orthogonal w), thenf is completely determined.

Proof: Let us use the representatigiip) = Tr7p (we do not need a constant term on
the right hand side because we need only spefifyn trace 1 matrices). Suppose that
(v;|w) = 0. We compute the derivative at;) in the | w) direction:

(\/1 —e2(v; | + e{w |) T (\/1 —e2|v;) + € w>) — (v || vi)
~e((ui|Tlw) + (w|T]|vi)). (20)
The derivative in the | w) direction gives
i((i| T |w) = (w7 |vi), (21)

so a linear combination of{P0) arf{d{21) shows that the value;d 7 | w) is determined for
all | w) orthogonal td v;). We also know the value of

(vi |7 [ vi),

it follows that the value of
{vi |7 | w)

is determined for allw). Since the(v; | span the vector space, this determines the value of
(u|7|w)

for all (x| and all| w), thus determining the matrix O
We now need to compute the derivative of the entropivef Let

Ni(p) =) AipAl

with 37, ATA; = I. Thenif Tro = 0,
H(Ni(p+e0)) — H(Ni(p)) ~ —€Tr[(I+1log(N(p))Ni(o)]
= —¢Ir <a > Al (log Ny (p))Ak> (22)

k

Now, if the entanglement of formation is additive, then tleeichtive of H (N, ® N») at the

tensor product signal statﬁé”>(v§1)| ® |v§.2)><v§2)| must also match the derivative of the
function f at these points. We calculate:

H(N1® Na(p+eo)) — H(N1 @ Na2(p))

z%ﬁ(aZX&T@AQWMWW@M@mM@®AQJ-
k1,k2
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Now at a point = p; ® pa,

3 (AP @ AP (log Ny ® Na(p)) (ALY © AP)
k1,k2

= (A o Na(p)ALY) © 1+ 1 & (30(A42 og Nato) A2).
k1 ko

showing that at the stat¢$§1)> ® |vj(-2)>, we have not only thafr = f1 + fo, but that
the first derivatives (for directions with Tro = 0) are equal as well. Since the states
| vfl)) ®]| v§.2)> span the vector space, Lemfda 3 shows that f; + f» everywhere, giving
us the last element of the proof.

The one thing remaining to do to show that the assumptionttigafirst derivative of
entropy exists everywhere is unnecessary. It suffices ter shat there are dual functions
fr = f1+ f2 such that EqI{A8) holds. We do this by taking limits. Eot 1,2 let N pe
the quantum channel

NP (p) = Nu(p) + (1 —q) I

dout,m

which averages the majg, with the maximally mixed staté/do,; .. Let N}‘Z) = Nl(‘” ®
Néq). We need to show that some limits of the dual functig&‘f@, féq) andf}q) exist. By
continuity of N9, they will be forced to have the desired propertied (17)),(a8d [I9). Let
pr = p1 ® pa. Now, f}‘” is a linear function Withf}‘” (pr) >0 andf}Q) (p) < logdout,T
for all p, so thef}q) lie in a compact set. Thus, some subsequencﬁ}?ﬂfhas a limit as
g — 1. The same argument appliesﬁ&) andfz(q), so by taking these limits we find that
the functionsfgﬁl) have the desired properties, completing our proof.

7 Additivity of min H(N) implies additivity of Ep.

Suppose that we have two bipartite states for which we wighidge that the entanglement
of formation is additive. We use the MSW correspondence toved this problem to a
question about the Holevo capacity with a constrained aeesignal state. We thus now
have two quantum channel§, andN,, and two statep; andp,. We want to show that

XNi@N2 (01 @ p2) = XN, (1) + X, (p2)-

In fact, we need only prove the€ direction of the inequality, as the direction is easy.
Let| v§1)> and| v§2)> be optimal sets of signal states Kk, (p1) andxn, (p2), so that

xowi(pr) = H(N1(p1) = > N (1o o)

wherep; = 3. pM o), and similarly forN,. By the linear programming dual
formulation in Sectiofl5, we have that there is a matyisuch that

xn: (p1) = H(Ni(p1)) — Trmips
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and
Trrip < H(N1(p)

forall p, with equality for signal statgs = |v§1)><v§1)|, and similarly forr, andNy. Suppose
we could find a channéV] and N} such that

H(Ni([v)v])) = H(N(Jo)v]) + Cr = (v]T]v) (23)

for all vectors| v) (similarly for N»). We know from the linear programming duality theorem
that

H(Ni{(p)) = H(Ni(p))+Ci—Trmp
>

for all input states, with equality holding for the signal states= |v§1)><v§1)|. Thus, the
minimum entropy output o] is Cy and of NV} is Cs. Also,

(o) = HN{(p1) = 3o H N (o e ))

= H(N{(Pl))) - Ch,

and similarly forNj. Now, if we assume the additivity of minimum entropy, we knthat
the minimum entropy output d¥; ® N} has entropy’; + C>. We have for some probability
distribution; on signal statesg; ), that

XNeNy(p1 @ p2) = H(Ny® Ny(p1 ® pa)) — ZWiH(N{ ® Na(|¢iXoil))

< H(Ni(p1)) + H(N3(p2)) = C1 — Co
= xn(p1) + xwy(p2)

Now, if we can examine the construction of the chanm€]sand N} and show that the
additivity of the constrained Holevo capacity fdf and N} implies the additivity of the
constrained Holevo capacity fé¥; and N,, we will be done.

We will not be able to achieve Eq{[23) exactly, but will beaatdl achieve this approxi-
mately, in much the same way we defin¥din Sectiorl#.

Given a channelN, we define a new chann@l’. On inputp, with probability ¢ the
channelN’ outputsN (p). With probabilityl — ¢ the channel makes a POVM measurement
with element& and] — E. If the measurement outcomels N’ outputs the tensor product
of a pure state signifying that the result wasind the maximally mixed state énqubits. If
the resultisf — E the channelV’ outputs only a pure state signifying this fact. We have

H(N'(p)) = ¢H(N(p)) + Ha(q) + (1 — @)k Tr Ep + (1 — q) H2(Tr Ep).
If we choosek andE such that

1—
(St FY Y
q
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we will have
H(N'(Jv)v])) = ¢H(N([o)v])) — g (v |7 [v) + g\ + Ha(q) + (1 = @) H2((v| E | v)).

The minimum entropyH (N’ (|v)Xv|)) is thus at leasg\ + H»(q). For signal statepv;) of
N, H(N'(Jv;Xv;])) is at leasyg) + Hz(g) and at mosg\ + Ha(q) + 1 — g. Asq goes to 0,
this is approximately a constant. We thus see that

H(Ni(p1)) = g\ — Ha(q) = (1 — q) < xni(p1) < H(Ni(p1)) — gh1 — Ha(q)  (24)

Now, given two channeld/; andN,, we can prepard/; and NV} as above. If we assume
the additivity of minimum entropy, this implies the condtied channel capacity satisfies,
for the optimal input ensemblé®; ), 7;,

XNjeng (p1 @ p2) H(Ni(p1)) + H(N3(p2)) — ZWiH(N{ ® N3(|pi)eil))

H(N{(p1)) + H(N3(p2)) — ah1 — gh2 — 2H>(q)

<
< xwy(p1) + xavy(p2) +2(1 = q)

where the first inequality follows from the assumption of itidily of the minimum entropy
output, and the second from Ef124).

We now need to relatg v, (p1) andx, (p1). Suppose we have an ensemble of signal
stategv; )(v;| with associated probabilitigs, and such tha} ", p;|v; )(v;| = p. DefineCly,
(Cny) to be the information transmitted by chandél (V1) using these signal states. We
then have

Cny =4qCn, + (1 = )61

where
61 = Ha(TrEp) = Y piHa((vi | E|v3)).

This shows that

axn, (p1) < xny(p1) < axn, (p1) + (1 —q)

Also, by using the optimal set of signal states fo¥,s v, (p1 ® p2) as signal states for the
channelV] ® N, we find that

XNy (P1 @ p2) > @ Xnyen, (p1 © p2)
since with probability;?, the channeN| @ N} simulatesNV; ® N,. Thus, we have that

< ¢ *xwveny(p @ p2)
< ¢ 2 (xwi(p1) + xvy(p2)) +2(1 = q)g 2
< g e (o) + xva (p2) +4(1 = g)g 2

XN N, (p1 @ p2)

holds for allg, 0 < ¢ < 1. Lettingq go to 1, we have subadditivity of the constrained Holevo
capacity, implying additivity of the entanglement of fortioa.
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8 Implications of strong superadditivity of Er.

All three additivity properties (i) to (iii) follow easilyrbm the assumption of strong su-
peradditivity of Er. The additivity of E follows trivially from this assumption. That the
additivity of xy follows is known [12]. We repeat this argument below for cdetgness.
Recall the definition of¢y:

v = max HNG pilda)oid) = 3 sl (N (1giXei]) (25)

Suppose that this the maximum is attained at an ensepnlle;) that is not a tensor prod-
uct distribution. If we replace this ensemble with the prctchf the marginal ensembles, the
concavity of von Neumann entropy implies that the first temeréases, and the superaddi-
tivity of entanglement of formation implies that the sectan decreases, showing that we
can do at least as well by using a tensor product distribugéiod thaty x is thus additive.
Finally, the proof that strong superadditivity Bf- implies additivity of minimum output
entropy is equally easy, although | am not aware of its beinlge literature. Suppose that we
have a minimum entropy outputv, o v, (|¢)X¢|). The strong superadditivity df » implies

that there are ensemblgf’ . | v{") andp?, | v{?) such that
H(Ny @ Na(lo)el) = > pVH(N: (ol Yol )+ pl H(Na(jof Yol

But the two sums on the right hand side are averages, so theste®m one quantum state in
each of these sums have smaller output entropy than thegavetdput entropy; this shows
additivity of the minimum entropy output.

9 Additivity of x or of Er impliesadditivity of min H (V).

Suppose we have two channélg and N, which map their input ontd-dimensional output
spaces. We can assume that the two output dimensions arariels/ embedding the
smaller dimensional output space into a larger dimensionaf We will define two new
channelsN; and N}. The channelV; will take as input the tensor product of the input
space of channéV; and an integer betweeghandd? — 1. Now, let X, ... X_; be the
d-dimensional generalization of the Pauli matricé&;, , = T°R’, whereT takes| j) to

| j + 1(mod d)) and R takes] j) to 277/ | 5). Let

Ni(p® [i)i]) = XiNi(p) X].

Now, suppose thdb; )v: | is the input giving the minimal entropy outpidd; (|v1 Y(v1 |).
We claim that a good ensemble of signal states for the chawhi |v1 }(v1| ® |i)i|, where
i=0,1,...,d* — 1, with equal probabilities. This is because for this set ghal states,
the first term in the formula for Holevo capacify (1) is maxaed (taking any statgp and
averaging over aIJXZ-pXQ' gives the maximally mixed state, which has the largest ptssi
entropy ind dimensions), and the second term is minimized. The same fidhe channel

6This is not necessary for the proof, but it reduces the nurabsmbscripts required to express it.
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NJ. Now, suppose there is some stat&w| which has smaller output entropy for the chan-
nel Ny ® Ny thanH (N7 ([v1)v1]) + H(N2(Jv2)Xv2])). We can use the ensemble containing
statesw)(w| ® |i1, i2)i1, 2], forii,ia =0 ... d*> — 1, with equal probabilities, to obtain a
larger capacity for the tensor product changl® V3.

The above argument works equally well to show that addjtieftentanglement of for-
mation implies additivity of minimum entropy output. We kmdhat to achieve the maxi-
mum capacity, the average output state must be the maximadd state, so we can equally
well use the fact that the constrained Holevo capagityp) is additive to show that the min-
imum entropy output is additive.

10 Discussion

We have shown that four open additivity questions are etpriva This makes these ques-
tions of even greater interest to quantum information tistsrUnfortunately, our techniques
do not appear to be powerful enough to resolve these qusstion

The relative difficulty of the proofs of the implications giv in this paper would seem
to imply that of these equivalent conjectures, additivityr@nimum entropy output is in
some sense the “easiest” and strong superadditivitl/;ofis in some sense the “hardest.”
One might thus try to prove additivity of the minimum entrapytput as a means of solving
all of these equivalent conjectures. One step towardsraplbiis problem might be a proof
that the tensor product of states producing locally minimurtput entropy gives a local
minimum of output entropy in the tensor product channel.
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