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Figure o.1: Basic point-to-point communications problem.
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Figure o0.2: Basic point-to-point communications problem in view of the source-
channel separation theorem.
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Figure o.7: Venn diagram representation of C.
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Figure 0.8: Encoding corresponding to (xj,x7,x3,x4) = (0,1,0,1). The number
of ones contained in each circle must be even. By applying one such constraint at
a time the initially unknown components xs, x¢, and x; can be determined. The
resulting codeword is (x1, X2, x3, X4, X5, X6, x7) = (0,1,0, 1,0, 1,0).
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Figure 0.9: Decoding corresponding to the received message (0,%?,2,1,0,?,0). First
we recover x; = 1 using the constraint implied by the top circle. Next we determine
x3 = 0 by resolving the constraint given by the left circle. Finally, using the last
constraint, we recover xg = 1.
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Figure o0.10: Decoding corresponding to the received message (?,2,0,?,0,1,0). The
local decoding fails since none of the three parity-check equations by themselves
can resolve any ambiguity.
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Figure 0.14: Generic factorization of g and the particular instance.
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Figure 0.18: Left: Standard FG in which each variable node has degree at most 2.
Right: Equivalent FSFG. The variables in the FSFG are associated with the edges in
the FG.




LIST OF FIGURES 19

A b

Figure 0.19: Representation of a variable node of degree K as an FG (left) and the
equivalent representation as an FSFG (right).




20

LIST OF FIGURES

p()’7|X7) - 1{x4+x5+><7=0}
p(ys | x6) m—
p(ys | xs)m—ro
P(ya|xs)m—sd
p(ys|xs)m—
P(y2]x2)m—o
p(y1|x)m—

A

]]-{x3+x4+x6:0}

4

]]-{xl +x3+x4=0}

P(}/7 ‘X7) 1{x4+x5+x7=0}
p(ys|x6)
p(ys|xs)

p(ya|xs) m—=

p(ys|x3)
N T (s xyavs

]]-{x3+x4+x6:0}

p(y2|x2)

p(yi]x1) =0}

Figure o.20: Standard FG and the corresponding FSFG for the MAP decoding prob-
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Figure o.21: Left: Mapping z = m(x, y). Right: Quantizer y = g(x).
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Figure 0.22: Binary erasure channel with parameter e.
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Figure 0.24: Left: Tanner graph of H given in (3.9). Right: Tanner graph of [7, 4, 3]
Hamming code corresponding to the parity-check matrix on page 15. This graph is
discussed in Example 3.11.
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Figure 0.26: Message-passing decoding of the [7,4, 3] Hamming code with the re-
ceived word y = (0,2,2,1,0,2,0). The vector X denotes the current estimate of
the transmitted word x. A 0 message is indicated as thin line, a 1 message is in-
dicated as thick line, and a ? message is drawn as dashed line. The four rows cor-
respond to iterations 0 to 3. After the first iteration we recover x, = 1, after the
second x3 = 0, and after the third we know that x4 = 1. The recovered codeword is
x=(0,1,0,1,0,1,0).
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edge e is the subtree consisting of edge e, variable node x;, and the two subtrees
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lines indicate double edges.
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Figure 0.30: Examples of basic trees, L(5) and R(7).
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Figure 0.32: Left: Element of C!'(T) for a given tree T € 7;. Right: Minimal such
element, i.e., an element of CL. (T). Every check node has either no connected

variables of value 1 or exactly two such neighbors. Black and gray circles indicate
variables with associated values of 1 or 0, respectively.




LIST OF FIGURES 33

L _ BP
g.gg L 0.00__€=5€7 ~0.4741
: —_ B
-0.02f €= -0.01-
-0.04f -0.02¢
-0.06} €=0.4 -0.03-
0.0 0.1 02 03 0.4 x 0.0 0.1 02 03 04 x

Figure 0.33: Left: Graphical determination of the threshold for (1,p) = (x%,x°).
There is one critical point, x®" ~ 0.2606 (black dot). Right: Graphical determination
of the threshold for optimized degree distribution described in Example 3.63. There
are two critical points, x7% ~ 0.1493,0.3571 (two black dots).
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Figure 0.34: Left: Graphical determination of the threshold for (A(x) = x%, p(x) =
x°). The function v ' (x) = (x/€)"/? is shown as a dashed line for € = 0.35, ¢ = € ~
0.42944, and € = 0.5. The function c¢(x) = 1 — (1 - x)° is shown as a solid line.
Right: Evolution of the decoding process for € = 0.35. The initial fraction of erasure
messages emitted by the variable nodes is x = 0.35. After half an iteration (at the
output of the check nodes) this fraction has evolved to ¢(x = 0.35) ~ 0.88397. After
one full iteration, i.e., at the output of the variable nodes, we see an erasure fraction
of x = v.(0.88397), i.e., x is the solution to the equation 0.883971 = v_!(x). This
process continues in the same fashion for each subsequent iteration, corresponding
graphically to a staircase function which is bounded below by ¢(x) and bounded
above by v (x).
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Figure 0.35: EXIT function of the [3, 1, 3] repetition code, the [6, 5, 2] parity-check
code, and the [7,4, 3] Hamming code.
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Figure 0.36: Epppc(nx2,x5) [Ph (G€ €= 00)] as a function of € for n = 2/, i =
6,...,20. Also shown is the limit Ejppc(co,v2,x5) [Ph' (G, €, € — 00)], which is dis-
cussed in Problem 3.17 (thick curve).
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Figure 0.37: Peeling decoder applied to the [7,4,3] Hamming code with the re-
ceived word y = (0,2,2,1,0,2,0). The vector % indicates the current estimate of
the decoder of the transmitted codeword x. After three decoding steps the peeling
decoder has successfully recovered the codeword.
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Figure 0.38: Evolution of the residual degrees R j( ¥),j=0,...,6, as a function of
the parameter y for the (3, 6)-regular degree distribution. The channel parameter is
€ = €®¥ ~ 0.4294. The curve corresponding to nodes of degree 1 is shown as a thick
line.
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Figure 0.39: Left: BP EXIT function h*"(¢); Right: Corresponding EXIT function
h(e) constructed according to Theorem 3.120.
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Figure 0.40: Left: EBP EXIT curve of the (1 = 3,r = 6)-regular ensemble. Note
that the curve goes “outside the box” and tends to infinity. Right: According to

Lemma 3.128 the gray area is equal to 1 — r(1,r) = 1 = %
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Figure o0.41: Left: Because of Theorem 3.120 and Lemma 3.128, at the MAP threshold
€MAP the two dark gray areas are in balance. Middle: The dark gray area is propor-
tional to the total number of variables which the M decoder introduces. Right: The
dark gray area is proportional to the total number of equations which are produced
during the decoding process and which are used to resolve variables.
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Figure 0.42: M decoder applied to a (1 = 3, r = 6)-regular code of length n = 30.
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Figure 0.44: The subset of variable nodes S = {7,11, 16} is a stopping set.
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Figure 0.46: P(xy = 0,Smin,€) for the ensemble LDPC(nx3, gxé), where n =
500, 1000, 2000. The dashed curves correspond to the case spi, = 1, whereas the
solid curves correspond to the case where s, was chosen to be 12, 22, and 40, re-

spectively. In each of these cases the expected number of ss of size smaller than s,
is less than 1.
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Figure 0.47: P(x = 1,smin = 12, ¢,¢€) for the ensemble LDPC (500x3,250x6) and
the first 10 iterations (solid curves). Also shown are the corresponding curves of
the asymptotic density evolution for the first 10 iterations (dashed curves).
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Figure 0.48: Probability distribution of the iteration number for the
LDPC (nx3 R %xé) ensemble, lengths n = 400 (top curve), 600 (middle curve), and
800 (bottom curve) and € = 0.3. The typical number of iterations is around 5, but,

e.g., for n = 400, 50 iterations are required with a probability of roughly 10717
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Figure  0.49: Derivation of the recursion for A(v,t,s) for

LDPC (A(x) = nx*, P(x) = nXx) and an unbounded number of iterations.
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Figure 0.50: Scaling of E;ppc(p,v2,45)[Ps(G, €)] for transmission over the BEC(e)
and BP decoding. The threshold for this combination is €** ~ 0.4294. The
blocklengths/expurgation parameters are n/s = 1024/24, 2048/43, 4096/82, and
8192/147, respectively. The solid curves represent the exact ensemble averages.
The dotted curves are computed according to the basic scaling law stated in The-
orem 3.151. The dashed curves are computed according to the refined scaling law
stated in Conjecture 3.152. The scaling parameters are &« = 0.56036 and /Q =
0.6169; see Table 3.154.
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Figure o0.51: Scaling of ELDPC(n,A:%x+%x3,p=x5) [Ps(G,€e)] for transmission over
BEC(e) and BP decoding. The threshold for this combination is €’ ~ 0.482803.
The blocklengths/expurgation parameters are n/s = 350/14, 700/23, and 1225/35.
The solid curves represent the simulated ensemble averages. The dashed curves are
computed according to the refined scaling law stated in Conjecture 3.152 with scal-
ing parameters a = 0.5791 and 3/Q = 0.6887. The two curves are almost on top of

each other and are hard to distinguish.
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Figure 0.52: Evolution of n(1 — r)R; as a function of the size of the residual graph
for several instances for the ensemble LDPC (1, A(x) = x%, p(x) = xs) for n = 2048
(left) and n = 8192 (right). The transmission is over the BEC(e = 0.415).
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Figure 0.53: Growth rate G(w) for the (3, 6) (dashed line) as well as the (2, 4) (solid
line) ensemble.
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Figure 0.56: The L-density agawenc(o) (), the D-density agswanc(o) (), as well as
the corresponding G-density agawonc(s) (%1, y) for o =5/4.
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Figure 0.57: Left: Capacity of the BAWGNC (solid line) and the AWGNC (dashed
line) in bits per channel use as a function of Ey/o*. Also shown are the asymp-
totic expansions (dotted) for large and small values of 5—12” discussed in Problem 4.12.
Right: The achievable (white) region for the BAWGNC and r = % as a function of

(Ep/No)as-
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Figure 0.58: Comparison of the kernels |d|*BEC®) (-) (dashed line) with |d|?BSC®) ()
(dotted line) and |d|*BAWGNC®) (-) (solid line) at channel entropy h = 0.1 (left), h =
0.5 (middle), and h = 0.9 (right).
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Figure 0.59: Performance of Gallager’s algorithm A for the (3,6)-regular ensem-
ble when transmission takes place over the BSC. The blocklengths are n = 21
i =10,...,20. The left-hand graph shows the block error probability, whereas the
right-hand graph concerns the bit error probability. The dots correspond to simula-
tions. For most simulation points the 95% confidence intervals (see Problem 4.37)
are smaller than the dot size. The lines correspond to the analytic approximation of
the waterfall curves based on scaling laws (see Section 4.13).
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Figure 0.60: Performance of the decoder with erasures for the (3,6)-regular en-
semble when transmission takes place over the BSC. The blocklengths are n = 2/,
i =10,...,20. The left-hand graph shows the block error probability, whereas the
right-hand graph concerns the bit error probability. The dots correspond to simu-
lations. The lines correspond to the analytic approximation of the waterfall curves
based on scaling laws (see Section 4.13).
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Figure 0.61: Performance of the BP decoder for the (3, 6)-regular ensemble when
transmission takes place over the BSC. The blocklengths are n = 2 i=10,...,20.
The left-hand graph shows the block error probability, whereas the right-hand graph
concerns the bit error probability. The dots correspond to simulations. The lines

correspond to the analytic approximation of the waterfall curves based on scaling
laws.
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Figure 0.62: Evolution of a, (densities of messages emitted by variable nodes) and
be+1 (densities of messages emitted from check nodes) for € = 0, 5, 10, 50, and 140
for the BAWGNC(0 = 0.93) and the code given in Example 4.100. The densities
“move to the right,” indicating that the error probability decreases as a function of

the number of iterations.
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Figure 0.63: Evolution of P(;j"l(x2 x5)(€) as a function of ¢ for various values of e.
14 >
For € = 0.03875,0.039375, 0.0394531, and 0.039462 the error probability converges
to zero, whereas for € = 0.039465,0.0394922,0.0395313, and 0.0396875 the error
probability converges to a non-zero value. For ¢ ~ 0.03946365 the error prob-

ability stays constant. We conclude that €°(3,6) ~ 0.03946365. Note that for

€>€e%(3,6), P;i_azxz ) (€) is an increasing function of ¢, whereas below this thresh-
14 >
old it is a decreasing function. In either case, PS*! (e) is monotone as guaranteed
To(x2,45)

by Lemma 4.104.
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Figure 0.64: Evolution of ng (2 x5)(0) as a function of the number of iterations
12 >

¢ for various values of 0. For o = 0.878,0.879.0.8795,0.8798, and 0.88 the error
probability converges to zero, whereas for 0 = 0.9, 1, 1.2, and 2 the error probability
converges to a non-zero value. We see that 0" (3, 6) ~ 0.881. Note that, as predicted
by Lemma 4.107, P%D (22.5%) (0) is a non-increasing function in £.
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Figure 0.65: Left: f(¢€, x) — x as a function of x for the (3, 3)-regular ensemble and
e = €% ~ 0.22305. Right: f(e, x) — x as a function of x for the (3,6)-regular
ensemble and € = 0.037, € = €°* ~ 0.394, and € = 0.042.
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Figure 0.66: Progress per iteration (change of error probability) of density evolution
for the (3, 6)-ensemble and the BAWGNC(0) channel with o ~ 0.881 as a function
of the bit error probability. In formulae: we plot &(a,;) — &(a,-1) as a function of
Py = €(agawanc(o) ® L(p(ae-1))), where L(x) = x* and p(x) = x°. For cosmetic
reasons this discrete set of points was interpolated to form a smooth curve. The
initial error probability is equal to Q(1/0.881) ~ 0.12817. At the fixed point the
progress is zero. The associated fixed point densities are a (emitted at the variable
nodes) and b (emitted at the check nodes).
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Figure 0.67: EXIT function of the [3, 1, 3] repetition code and the [6, 5, 2] parity-
check code for the BEC (solid curve), the BSC (dashed curve), and also the

BAWGNC (dotted curve).
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Figure 0.68: EXIT function of the (3, 6)-regular ensemble on the BAWGN channel.
In the left-hand graph the parameter is h ~ 0.3765 (0 ~
right-hand graph we chose h ~ 0.427 (o = 0.878).

0.816), whereas in the
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Figure 0.69: Left: For v € [0,3] the function hy(hy' (u)(1 - 2v) + v) is non-
decreasing and convex-U in u, u € [0,1]. Right: Universal bound applied to the
(3,6)-regular ensemble.
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Figure o.70: EXIT (solid) and GEXIT (dashed) function of the [, 1, n] repetition
code and the [n, n — 1, 2] parity-check code assuming that transmission takes place
over the BSC(h) (left) or the BAWGNC(h) (right), n € {2,3,4,5,6}.
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Figure 0.71: BP GEXIT curve for several regular LDPC ensembles for the BSC (left)

and the BAWGNC (right).
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Figure 0.72: Left: BP GEXIT function g°F (h) for the (3, 6)-regular ensemble; Right:
Corresponding upper bound on GEXIT function g(h) constructed according to
Theorem 4.172.
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Figure o0.73: Scaling of Eippc(ny2,5)[Pe(G,h)] for transmission over the
BAWGNC(h) and a quantized version of belief propagation decoding implemented
in hardware. The threshold for this combination is (E,/Ny)jz ~ 1.19658. The
blocklengths n are n = 1000, 2000, 4000, 8000, 16,000, and 32, 000, respectively.
The solid curves represent the simulated ensemble averages. The dashed curves are

computed according to the scaling law of Conjecture 4.176 with scaling parameters
a = 0.8694 and f = 5.884. These parameters were fitted to the empirical data.




74 LIST OF FIGURES

0.0 0.050.10 0.15 0.20 #(0

Figure 0.74: Region of convergence for the all-one weight sequence (indicated in
gray).
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Figure 0.76: Upper bound on 1'(0)p’(1), i.e., 1/ B, for the KSI case (solid curve),
computed according to (5.1), and for the USI case (dashed curve).
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Figure 0.78: Eippc(na,p)[Po(G, Ep/No)] for the optimized ensemble stated in
Example 5.6 and transmission over the BRAYF(E,/Ny) with KSI and belief-
propagation decoding. As stated in Example 5.6, the threshold for this combina-
tion is oge; ~ 0.8028 which corresponds to (Eh/NO)dB ~ 1.90785. The block-
lengths/expurgation parameters n/s are n = 8192/10, 16384/10, and 32768/10, re-
spectively.
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Figure 0.79: Z channel with parameter e.
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Figure 0.80: Comparison of C,¢ () (solid curve) with I,_; (X;Y') (dashed curve),
2
both measured in bits.
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Figure 0.81: FSFG corresponding to (5.13).
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Figure 0.82: Gilbert-Elliott channel with two states.
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Figure 0.83: L-densities of density evolution at iteration 1, 2, 4, and 10. The left
pictures show the densities of the messages which are passed from the code toward
the part of the FSFG which estimates the channel state. The right-hand side shows
the density of the messages which are the estimates of the channel state and which
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are passed to the part of the FSFG corresponding to the code.
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Figure 0.84: Two specific maps y for the 4-PAM constellation.
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Figure 0.85: Transition probabilities py | y] ( y | xll] ) for 0 ~ 0.342607 as a function
1] _

of x!11 = 0/1 (solid/dashed). The two cases correspond to the two maps v shown in
Figure 0.84.
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Figure 0.86: Multilevel decoding scheme. The two decoding parts correspond to the
two parts of (5.25).
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Figure 0.87: BICM decoding scheme. The two decoding parts correspond to
I(X[I]; Y) and I(X[z]; Y), respectively.
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Figure 0.88: BAWGNMA channel with two users.
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Figure 0.89: Capacity region for ¢ ~ 0.778. The dominant face D (thick diagonal
line) is the set of rate tuples of the capacity region of maximal sum rate.
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Figure 0.90: FSFG corresponding to decoding on the BAWGNMA channel.
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Figure 0.91: Four standard signal constellations: 2-PAM (top left), 4-QAM (top
right), 8-PSK (bottom left), and 16-QAM (bottom right). In all cases it is assumed
that the prior on S is uniform. The signal constellations are scaled so that the aver-
age energy per dimension is E.
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Figure 0.92: Multiple-access binary adder channel.
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Figure 0.93: Binary systematic recursive convolutional encoder of memory m = 2
and rate one-half defined by G = 7/5. The two square boxes are delay elements. The
7 corresponds to 1+ D + D?. These are the coefficients of the “forward” branch (the
top branch of the filter) with 1 corresponding to the leftmost coefficient. In a similar
manner, 5 corresponds to 1+ D?, which represents the coeflicients of the “feedback”
branch. Again, the leftmost coefficient corresponds to 1.




94 LIST OF FIGURES

N

gnx"
\Xsn*m’
"
Zotm P gnx"
Konx 1™

p(xi+m)p(yf,+m |x;+m) 7 P(}’ﬁm ‘xr1:+m)

X:H'm =0 X£+m

Zntm-1
>
2 K?’07‘\)&)(5\\
s S S ? E
p(x)p(yilx) m——p——= p(y]x7)
2 X2
>
1 bc? ’O\\stdn\
s S S ? >
P(xl)P()’l \xl) P(Yll7 \Xf)
X3 x?
2o
p(00)

Figure 0.94: FSFG for the MAP decoding of C(G, n).
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Figure 0.95: Trellis section for the case G = 7/5. There are four states. A dashed/solid
line indicates that x; = 0/1 and thin/thick lines indicate that x” = 0/1.
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Figure 0.96: BCJR algorithm applied to the code C(G = 7/5,n = 5) assuming
transmission takes place over the BSC(e = 1/4). The received word is equal to
( ¥, yP ) = (1001000,1111100). The top figure shows the trellis with branch la-
bels corresponding to the received sequence. We have not included the prior p(xf),
since it is uniform. The middle and bottom figures show the a- and the - recursion,
respectively. On the very bottom, the estimated sequence is shown.
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Figure 0.97: Performance of the rate one-half code C(G = 21/37,n = 2') over
the BAWGNC under optimal bit-wise decoding (BCJR, solid line). Note that
(Ep/No)as = 10log,, ﬁ Also shown is the performance under optimal block-
wise decoding (Viterbi, dashed line). The two curves overlap almost entirely. Al-
though the performance under the Viterbi algorithm is strictly worse the difference
is negligible.
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Figure 0.98: Viterbi algorithm applied to the code C(G = 7/5,n = 5) assuming
transmission takes place over the BSC(e = 1/4). The received word is (y°, y¥) =
(1001000, 1111100). The top figure shows the trellis with branch labels correspond-
ing to —log,, (p(¥%|x5)p( v |«F )). Since we have a uniform prior we can take out
the constant p(x;). These branch labels are easily derived from Figure 0.96 by ap-
plying the function —log,,. The bottom figure show the workings of the Viterbi
algorithm. On the very bottom the estimated sequence is shown.




LIST OF FIGURES 99

X X
xP1
®
] ] ] [l
“ D] /LIEI /Llﬂl /J\Iﬂl
& & &
permutation
e
xP?
®
‘ﬁ) D] /L@ /J\@ /]\@
& & &

Figure 0.99: Encoder for C(G = 21/37,n,n = (n', n*)), where 7' is the identity
permutation.
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Figure 0.100: Encoder for C(G° = 21/37,G' =21/37,n, ).
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Figure 0.101: FSFG for the optimum bit-wise decoding of an element of P(G, n).
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Figure 0.102: Ep(G-21/37,n,r-1/2) [Pv(C, Ep/No)] for an alternating puncturing pat-
tern (identical on both branches), n = 2'1,...,2! 50 iterations, and transmis-
sion over the BAWGNC(E,/Ny). The arrow indicates the position of the thresh-
old (E,/No)5t ~ 0.537 (6°F ~ 0.94) which we compute in Section 6.5. The dashed
curves are analytic approximations of the error floor discussed in Lemma 6.52.
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Figure 0.103: Computation graph corresponding to windowed (w = 1) iterative de-
coding of a parallel concatenated code for two iterations. The black factor nodes
indicate the end of the decoding windows and represent the prior which we impose
on the boundary states.
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Figure 0.104: Definition of the maps ¢ = I';.(a,b) and d = Fg(a, b). We are given a
bi-infinite trellis defined by a rational function G(D). Associated with all systematic
variables are iid samples from a density a, whereas the parity bits experience the
channel b. The resulting densities of the outgoing messages are denoted by c and d,
respectively.
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Figure 0.105: Evolution of ¢, for € = 1,...,25 for the ensemble P(G = 21/37,r =
1/2), an alternating puncturing pattern of the parity bits, and transmission over the
BAWGNC(0). In the left picture o = 0.93 (E; /Ny ~ 0.63 dB). For this parameter
the densities keep moving “to the right” toward A. In the right picture o = 0.95
(Ep/No ~ 0.446 dB). For this parameter the densities converge to a fixed point
density.
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Figure 0.106: EXIT chart method for the ensemble P(G = 21/37,r = 1/2) with
alternating puncturing on the BAWGN channel. In the left-hand picture the pa-
rameter is ¢ = 0.93, whereas in the right-hand picture we chose o = 0.941.
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Figure 0.107: BP GEXIT curve for the ensemble P(G = 7/5,r = 1/3) assuming that
transmission takes place over the BAWGNC(h). The BP and the MAP thresholds
coincide and both thresholds are given by the stability condition. We have hMA?/?
0.559 (MAP/PP ~1.073).
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0.0 04 08 12  w/n

Figure 0.108: Exponent * log,(a,,,) of the regular weight distribution of the code

n

C(G =7/5,n) as a function of the normalized weight w/n for n = 64, 128, and 256
(dashed curves). Also shown is the asymptotic limit (solid line).
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Figure 0.109: Exponent + log, (py,.) as a function of the normalized weight w/n for
the ensemble P(G = 7/5,n,r = 1/3) and n = 64,128, and 256. The normalization
of the weight is with respect to #, not the blocklength.
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Figure o.110: Bipartite graph corresponding to the parameters n =19,d = 2, A = 3,
and 7 = {12,1,4,18,17,4,3,19,5,13,2,6,16,7,15,14,9,8,10}. Double edges are
indicated by thick lines. The cycle of length 4, formed by (starting on the left) S —
Sg = S4 — Sy, is shown as dashed lines.
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Figure o.111: EXIT chart for transmission over the BEC(h » 0.6481) for an asym-
metric (big-numerator) parallel concatenated ensemble.
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Figure o.112: Alternative view of an encoder for a standard parallel concatenated
code.
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Figure 0.113: Alternative view of the FSFG of a standard parallel concatenated code.
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Figure 0.114: FSFG of an irregular parallel concatenated turbo code.
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Figure o0.115: Binary feed-forward convolutional encoder of memory m = 2 and rate
one-half defined by (p(D) =1 + D + D?,q(D) = 1 + D?).
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Figure 0.116: FSFG for the optimal bit-wise decoding of S(G°, G', n, 7).
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Figure o.117: Tanner graph of a standard irregular LDPC code.
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Figure 0.118: Encoder for an RA code. Each systematic bit is repeated 1 times; the
resulting vector is permuted and fed into a filter with response 1/(1 + D) (accumu-

late).
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Figure 0.119: Tanner graph of an RA code with 1 = 3.
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Figure 0.120: Tanner graph corresponding to an IRA code.
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Figure o0.121: Tanner graph of an ARA code.
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Figure 0.122: Tanner graph of an irregular LDGM code.
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Figure 0.123: Tanner graph of a simple LDGM code.
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Figure 0.124: Tanner graph of an MN code.
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Figure 0.125: Base graph.
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Figure 0.126: Left: m copies of base graph with m = 5. Right: Lifted graph resulting
from applying permutations to the edge clusters.
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Figure 0.127: Q-network for 8 elements. It has log, (8) = 3 stages, each consisting of
a perfect shuftle.




128 LIST OF FIGURES

n1213t45 L 5P B5 33BA5 o 3adS

1 2 3 4
1 2 121345 2P PS5 5132333435

3
base graph with one multiple edge lifted base graph

Figure 0.128: Left: Base graph with a multiple edge between variable node 1 to check
node 1. Right: Lifted graph.
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Figure 0.129: FSFG of a simple code over [F4 and its associated parity-check matrix

H. The primitive polynomial generating Fy is p(z) = 1+ z + 2%,
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Figure 0.130: FSFG of a simple code over [F4 and its associated parity-check matrix
H. The primitive polynomial generating Fy is p(z) = 1+ z + 2%,




Figure 0.31: Left: Performance of the (2,3)-regular ensemble over Fym, m
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1,2,3,4 of binary length 4320 over the BAWGNC(0). Right: EXIT curves for the
(2,3)-regular ensembles over Fom for m = 1,2, 3,4, 5, 6, and transmission over the

BEC(e).
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Figure 0.132: EXIT chart for the LDGM ensemble with A(x) = 1x*+1x’and p(x) =

2x + tx* + 2x® and transmission over the BEC(e = 0.35).
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Figure 0.133: Value of a as a function of y for 1 =2, 3,4,5and r = 6.
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Figure 0.134: H in upper triangular form.
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Figure 0.135: H in approximate upper triangular form.
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Set Hy=Hand t = g = 0. Go to CONTINUE.

If t = n—k— g then stop and output H;. Otherwise, if the minimum
residual degree is 1 go to EXTEND, else go to CHOOSE.

Choose uniformly at random a column ¢ of residual degree 1in H;.
Let r be the row (in the range [¢ + 1, n — k — g]) of H, that contains
the (residual) non-zero entry in column c. Swap column c with
column ¢ + 1 and row r with row ¢ + 1. (This places the non-zero
element at position (¢ +1, t + 1), extending the diagonal by 1.) Call
the resulting matrix H;,. Increase ¢ by 1 and go to CONTINUE.

Choose uniformly at random a column ¢ in H; with minimum pos-
itive residual degree, call the degree d. Letr;, r,, ..., r; denote the
rows of H, in the range [t+1, n—k—g| which contain the d residual
non-zero entries in column c. Swap column c with column ¢ + 1.
Swap row r; with row ¢ + 1 and move rows r;,r3,...,r  to the
bottom of the matrix. Call the resulting matrix Hy,;. Increase t by
1 and increase g by d — 1. Go to CONTINUE.

Figure 0.136: Greedy algorithm to perform approximate upper triangulation.
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Figure 0.137: Tanner graph corresponding to Hy.
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Figure 0.138: Tanner graph after splitting of node 1.
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Figure 0.139: Tanner graph after one round of dual erasure decoding.
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Figure 0.140: 1 —z — p(1 - A(2)).
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Figure 0.141: Element chosen uniformly at random from LDPC (1024, A, p), with
(A, p) as described in Example A.19, after the application of the greedy algorithm.
For the particular experiment we get ¢ = 1. The non-zero elements in the last row
(in the gap) are drawn larger to make them more visible.
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Figure 0.142: Element chosen uniformly at random from LDPC (2048, x?, x°) after
the application of the greedy algorithm. The result is g = 39.
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Figure 0.143: Evolution of the differential equation for the (3, 6)-regular ensemble.
For u* ~ 0.0247856 we have A’(0)r = 1, L, ~ 0.2585, L3 ~ 0.6895, and g ~ 0.01709.
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Figure 0.144: Left: Example K(x), 0
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Figure 0.145: Exponent G(r = 1/2,w) of the weight distribution of typical ele-
ments of G(n,k = n/2) as a function of the normalized weight w. For w/n €

(8gv, 1 —08gy) the number of codewords of weight w in a typical element of G(#, k)
is 2n(G(r,w/n)+o(1)).
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Figure 0.146: Left: Graph G from the ensemble LDPC (10, x%, x° ); Middle: Graph H
from the ensemble G (G, 7) (note that the labels of the sockets are not shown - these
labels should be inferred from the order of the connections in the middle figure); the
first 7 edges that H has in common with G are drawn in bold; Right: the associated
graph ¢7 30(H). The two dashed lines correspond to the two edges whose endpoints
are switched.
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Figure 0.147: Left: Two |D|-distributions || (thick line) and |B| (thin line). Right:
Since le || (x)dx < le |B|(x)dx we know that || — |B].
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Figure 0.148: Definition of g on (zss, zg) pair.




