
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 14 Information Theory and Coding
Notes on the Lempel-Ziv Algorithm November 02, 2007

Universal Source Coding — Lempel-Ziv Algorithm

Our experience with data compression so far has been of the following type: We are
given the statistical description of an information source, we then try to design a system
which will represent the data produced by this source efficiently.

In this note we depart from this model, and consider a method which will represent a
sequence efficiently without knowing by which means the sequence was produced. For this
purpose, rather than assuming a statistical model for the sequence, it makes more sense to
imagine that there is only a single sequence: an infinite string u which we wish to represent.

We will first consider the compressibility of an infinite string with a finite state machine.
For our purposes, a finite state machine is a device that reads the input sequence one symbol
at a time. Each symbol of the input sequence belongs to a finite alphabet U with J symbols
(J ≥ 2). The machine is in one of a finite number s of states before it reads a symbol,
and goes to a new state determined by the old state and the symbol read. We will assume
that the machine is in a fixed, known state z1 before it reads the first input symbol. The
machine also produces a finite string of binary digits (possibly the null string) after each
input. This output string is again a function of the old state and the input symbol. That
is, when the infinite sequence u = u1u2 · · · is given as the input, the decoder produces
y = y1y2 · · · , while visiting an infinite sequence of states z = z1z2 · · · , given by

yk = f(zk, uk), k ≥ 1

zk+1 = g(zk, uk), k ≥ 1

where the function f takes values on the set of finite binary strings, so that each yk is a
(perhaps null) binary string. A finite segment xkxk+1 · · ·xj of a sequence x = x1x2 · · · will
be denoted by xj

k, and by an abuse of the notation, the functions f and g will be extended
to indicate the output sequence and the final state. Thus, f(zk, u

j
k) will denote yj

k and
g(zk, u

j
k) will denote zj+1.

To make the question of compressibility meaningful one has to require some sort of
a ‘unique decodability’ condition on the finite state encoders. The decoder, given the
description of the finite state machine that encoded the string, and the starting state z1,
but (of course) without the knowledge of the input string should be able to reconstruct
the input string u from the output of the encoder y. A weaker requirement than this
is the following: for any two distinct input sequences us

r and vt
r, and for any zr, either

f(zr, u
s
r) 6= f(zr, v

t
r) or g(zr, u

s
r) 6= g(zr, v

t
r). An encoder satisfying this second requirement

will be called information lossless (IL). It is clear that if an encoder is not IL, then there is
no hope to recover the input from the output, and thus every ‘uniquely decodable’ encoder is
IL. However, as illustrated in Figure 1, an IL encoder is not necessarily uniquely decodable.
Starting from state S, two distinct input sequences will leave the encoder in distinct states
if they have different first symbols, otherwise they will lead to different output sequences.
Thus, the above encoder is IL. Nevertheless, no decoder can distinguish between the input
sequences aaaa · · · and bbbb · · · by observing the output 000 · · · .

We will first derive a lower bound to the the number of bits per input symbol any IL
encoder will produce when encoding a string u. This lower bound will apply to IL encoders

........

........
.........
...........

.................
..

............
.........
.........
........
.

........

........
.........
...........

.................
..

...........
.........
.........
........
..

...
.......

..................
..................

..................
..................

..................
..................

..................
........................
..........................

...................................
...

.....................
..............

..........
..........
.........
.........
.........
...........
...........
..............
..................

...
...............................
.......

..........
...........
..........
...........
.............
..................

..

..
............
............
..........
...........
.........
.........
........
..........
..........
.............

...
......................................

...
...........
..........
.........
.........
.........
.........
.........
....
........
........
......................

........

........
.........
...........

.................
..

............
.........
.........
........
.

a / λ

b / 1

A

B

S

b / λ

a / 0

b / 0 a / 1

A finite state machine with three states S, A and B. The notation i /output means
that the machine produces output in response to the input i. λ denotes the null
output.

Figure 1: An IL encoder which is not uniquely decodable.

which may have been designed with the advance knowledge about u. We will then show
that a particular algorithm (the Lempel-Ziv algorithm) the design of which does not depend
on u, does as well as this lower bound. That is to say, a machine that implements the LZ
algorithm will compete well against any IL machine in compressing any u. (However, note
that a machine that implements LZ will not be a finite state machine.)

We can now define the compressibility of an infinite string u. Given an IL encoder
E, the compression ratio for the initial n symbols un

1 of u with respect to this encoder is
defined by

ρE(un
1) =

1

n
length(yn

1),

where length(yn
1) is the length of the binary sequence yn

1 . (Note that since each yi is a
possibly null binary string length(yn

1) may be more or less than n.) The minimum of
ρE(un

1) over the set of all IL encoders E with s or less states is denoted by ρs(u
n
1). Observe

that ρs(u
n
1) ≤ dlog2 Je. The compressibility of u with respect to the class of IL encoders

with s or less states is then defined as

ρs(u) = lim sup
n→∞

ρs(u
n
1).

Finally the compressibility of u with respect to IL encoders (or simply the compressibility)
is defined as

ρ(u) = lim
s→∞

ρs(u).

Note that since ρs(u) is non-increasing in s, the limit indeed exists.
Let us define c(un

1) as the maximum number of distinct strings that un
1 can be parsed

into, including the null string. (Note that c(un
1) ≥ 1.) It turns out that c(un

1) plays a
fundamental role in the compressibility of u.

Suppose un
1 is parsed into c ≥ 1 distinct strings. As any non-negative integer, c can be

written as

c =
m−1∑
k=0

Jk + r

2

with m ≥ 0 and 0 ≤ r < Jm. Since un
1 is a concatenation of c distinct strings, the smallest

value possible for n will result if these distinct strings as the shortest ones possible. Since
there are Jk strings of length k, we see that

n ≥
m−1∑
k=0

kJk + mr.

Since
m−1∑
k=0

Jk =
Jm − 1

J − 1
and

m−1∑
k=0

kJk = m
Jm

J − 1
− J

J − 1

Jm − 1

J − 1
,

we see that

n ≥ m(c− r + 1/(J − 1))− (J/(J − 1))(c− r) + mr

≥ m(c + 1/(J − 1))− (J/(J − 1))c

≥ (m− 2)c

On the other hand, since c < (Jm+1 − 1)/(J − 1), we see that Jm+1 > (J − 1)c + 1 > c,
which implies m + 1 > logJ(c) and see that

n > c(logJ(c)− 3) = c logJ(c/J3),

and so
n > c(un

1)(logJ((un
1)/J3). (1)

Now we can state the following

Theorem 1. For any IL-encoder with s states,

length(yn
1) ≥ c(un

1) log2(c(u
n
1)/(8s2)). (2)

Proof. Let un
1 be parsed into c = c(un

1) distinct words, u = w1 . . . wc, and let cij be the
number of words which find the machine in state i and leave it in state j. Because the
machine is IL, the corresponding output sequences must be distinct, and their total length
Lij must satisfy (from (1), using J = 2 since y is a binary string)

Lij ≥ cij log2(cij/8).

The total length length(yn
1) is the sum of the Lij’s, thus

length(yn
1) ≥

∑
1≤i,j≤s

cij log(cij/8).

Since
∑

i,j cij = c(un
1), and since subject to this constraint the minimum of the right

hand side occurs at cij = c(un
1)/s2, (right hand side is a symmetric convex function) we

get (2).

From (1) one can see that c(un
1) = O(n/ log n). [Proof: Set c′ = c/J3 and n′ = n/J3.

Note that (1) is equivalent to c′ log2 c′ < n′. Take n large enough so that
√

n′ ≤ 2n′/ log2 n′.
Now, either c′ <

√
n′ or c′ ≥

√
n′. In the first case c′ < 2n′/ log2 n′ by assumption. In

the second, by (1), c′ < n′/ log2 c′ ≤ n′/ log
√

n′ = 2n′/ log2 n′. Thus, in either case
c′ ≤ 2n′/ log2 n′, and thus c ≤ 2n/ log2(n/J3).]

3

Using this and (2), we see that

ρs(u) ≥ lim sup
n→∞

1

n
c(un

1) log2(c(u
n
1)/(8s2))

= lim sup
n→∞

1

n
c(un

1) log2 c(un
1)− lim

n→∞

1

n
c(un

1) log2(8s
2)

= lim sup
n→∞

1

n
c(un

1) log2 c(un
1)

and since the right hand side is independent of s,

ρ(u) ≥ lim sup
n→∞

1

n
c(un

1) log2 c(un
1). (3)

Now, let us describe the Lempel-Ziv algorithm. The algorithm proceeds by generating
a dictionary for the source and constantly updating it. It starts up with a dictionary
just consisting of the words of length 1, and operates in the following manner: When the
dictionary has D words, each of its words is assigned a binary codeword of length dlog2 De
in lexicographic order. When a word in the dictionary is recognized in the input sequence,
the encoder generates the binary codeword of that word on its output, and enlarges the
dictionary by replacing the just recognized word with all its single letter extensions. The
dictionary can be represented as a tree, whose leaves are the current dictionary entries.
Figure 2 shows an example of the operation of the algorithm. Since the recognized words
are encoded before the dictionary is modified, the decoder can keep track of the encoder’s
operation. Suppose that the algorithm parses the sequence un

1 into clz(u
n
1) words w1, . . . ,

wclz
. Then we can write:

un
1 = λw1w2 · · ·wclz

,

where λ denotes the null sequence. By construction, the first clz − 1 of the parses are
distinct. (The last word wclz

may not be distinct from the others.) If we concatenate the
last two parses, and count in λ we get a parsing of un

1 into clz(u
n
1) distinct words. Thus

clz(u
n
1) ≤ c(un

1). Since each parse extends the dictionary by J − 1 entries, the size of the
dictionary at the end of parsing un

1 is

1 + (J − 1)clz(u
n
1) ≤ 1 + (J − 1)c(un

1) ≤ Jc(un
1).

Thus, the number of bits the LZ algorithm emits after seeing un
1 is

Llz(y
n
1) ≤ clz(u

n
1)dlog2(Jc(un

1))e ≤ clz(u
n
1) log2(2Jc(un

1)) ≤ c(un
1) log2(2Jc(un

1)).

Dividing by n, and taking the lim sup as n gets large we see

lim sup
n→∞

1

n
Llz(y

n
1) ≤ lim sup

n→∞

1

n
c(un

1)[log2 c(un
1) + log2(2J)]

= lim sup
n→∞

1

n
c(un

1) log2 c(un
1)

so that the LZ algorithm will achieve the lower bound previously derived (3) in the limit of
n → ∞. (However, the algorithm uses up infinite memory, since it keeps track of an ever
growing tree.)

One can perhaps express the tradeoff we have seen as follows: suppose we want to
compress an infinite string u, and we were given the choice of using the ‘off the shelf”

4

...

.........
.........
.........
.........
.........
.........
.........
..

..
.........
.........
.........
.........
.........
.........
..

...
..........

..........
..........

..........
..........

..........
...

.........
.........
.........
.........
.........
.........
.........
. ...

..
.........
.........
.........
.........
.........
.........
..

...
..........

..........
..........

..........
..........

..........
.....

..........
..........

..........
..........

..........
..........

..........
... ...

...
..........

..........
..........

..........
..........

..........
...

..........
..........

..........
..........

..........
..........

..........
.... ...

...
..........
..........
..........
..........
..........
..........
.... ...

..........
..........
..........
..........
..........
..........
..........
...

..........
..........

..........
..........

..........
..........

..........
.... ..

..........
..........
..........
..........
..........
..........
...

..........
..........

..........
..........

..........
..........

..........
...

cbccbbcba

(e)(d)
..........

..........
..........

..........
..........

..........
..........

......

ca

a

cb cc

b

abac

aaa aab aac aac

ac

b

cccaab

aaa aab

(c)(b)(a)

acab

cc bb

aacaabaaa

acabaa

cb

The parsing of the sequence aaaccb with the Lempel-Ziv algorithm. The figure shows
the evolution of the dictionary. The sequence is parsed into the phrases a, aa, c and
cb. Figure 2(a) shows the initial dictionary. In 2(b) we see the dictionary after
reading a, 2(c) shows after aaa has been read, etc. At each stage one might assign
each dictionary entry a fixed length binary codeword. If the assignment is done in
lexicographic order, at stage (a) it will be {a → 00, b → 01, c → 10}, at stage (b)
{aa→ 000, ab→ 001, . . . , c→ 100}, at stage (c) {aaa→ 000, aab→ 001, . . . , cc→
110}, and at stage (d) {aaa→ 0000, aab→ 0001, aac→ 0010, . . . , cc→ 1000}, and
the output sequence will be 00,000,110,0111. (Commas are put in to aid the reader,
they will not appear at the output.)

Figure 2: Operation of the Lempel-Ziv algorithm

Lempel-Ziv, versus designing a machine tuned to u with a finite (but arbitrary) number of
states. Then, we might as well pick the Lempel-Ziv: In the long run (i.e., for long strings)
the Lempel-Ziv algorithm will do as well as the best finite state machine.

In particular, if one knew that the string u is the output of an information source which
is stationary and ergodic, one could have designed a finite state machine that implements,
for example, the Huffman algorithm designed for this source for a large enough block length
that will compress the source output with high probability, arbitrary close to its entropy
rate. Combined with the above paragraph we see that for such sources, the Lempel Ziv
algorithm will compress them to their entropy rate too.

5

