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Problem 1.

(a) Let p = P (a1), thus P (a2) = P (a3) = P (a4) = (1 − p)/3. By the Huffman construc-
tion (see figure below) we must have p > 2(1 − p)/3, i.e., q = 2/5 in order to have
n1 = 1.
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(b) With P (a1) = q, the figure below illustrates that a Huffman code exists with n1 > 1.
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(c) & (d) For K = 2, n1 is always 1. For K = 3, n1 = 1 is guaranteed by P (a1) > P (a2) ≥
P (a3). Now take K ≥ 4 and assume P (a1) > 2/5. This implies that

K∑
i=2

P (ai) < 3/5 (1)

Also we have P (a1) > P (a2) ≥ · · · ≥ P (aK). Now we claim that P (aK−1) + P (aK) <

2 3/5
K−1

. Indeed, if K−1 is even then we have that P (ai)+P (ai+1) ≥ P (aK)+P (aK−1)
for all 2 ≤ i ≤ K − 3. Thus we have from equation (1)

K − 1

2
(P (aK−1) + P (aK)) < 3/5

which implies that (P (aK−1) +P (aK)) < 2
K−1

3/5. If K − 1 is odd then K − 2 is even

and we have P (ai) + P (ai+1) ≥ P (aK) + P (aK−1) for all 3 ≤ i ≤ K − 3. Also P (a2)
2

≥
P (aK)

2
and P (a2)

2
≥ P (aK−1)

2
. Thus P (a2) ≥ P (aK+P (aK−1)

2
. Thus putting it all we get(

P (aK +P (aK−1)
)
(K−2

2
+ 1

2
) < 3/5 which implies that

(
P (aK +P (aK−1)

)
(K−1

2
) < 3/5.

Thus proving the claim.



Now the Huffman procedure will combine aK−1 and aK to obtain a super-symbol with
probability

P (aK−1) + P (aK) < 2
3/5

K − 1
≤ 2/5.

Thus, in the reduced ensemble a1 is still the most likely element. Repeating the
argument until K = 3, we see that P (a1) > q guarantees n1 = 1 in all cases.

(e) For K ≤ 3 no such q′ exists. For K > 3, we claim q′ = 1/3. Assume a1 remains
unpaired until the 2nd to last stage (otherwise there is nothing to prove). At this
stage we have three nodes, and P (a1) < q′ must be strictly less than one of the other
two (otherwise all three would have been less than 1/3). Thus a1 will be combined
with one of them, leading to n1 > 1.

Problem 2.
It is clear that if x = 1 then K = 2j and the optimal code will assign length j for

all codewords. If x = 2 (I know x = 2 is not allowed, but...) then K = 2j+1 and the
optimal code will assign length j + 1 to all symbols. Now we have K = x2j for 1 ≤ x < 2.
So intuitively we feel that all codewords should be placed either at length j or at length
j + 1. To prove this intuitive fact we prove that the length of the shortest codeword and
the longest codeword can not be greater than 1 bit. Having proved this we see that the
lengths cannot be j − i and j − i + 1 for i ≥ 1. This because the average length of the
codewords is strictly less than j, whereas the entropy of the source is j + log2 x which is
≥ j, thus violating the fact that the average length of a code is greater than or equal to the
entropy of the source. And if the lengths are j + i and j + i + 1 for i ≥ 1 then we can just
shift the codewords up the tree. Hence the optimal code would have lengths j and j + 1.

(a) We prove here that the longest and the shortest codeword differ by at most one bit.
Consider the longest and the shortest codewords. We know that there are at least
two longest codewords, suppose their length is l. Suppose the shortest codewords
has length s. If s and l differ by more than 1, then we can increase the length of
the shortest codeword by 1 (s′ = s + 1) and shorten the two longest codewords by 1
(l′ = l − 1) and still satisfy Kraft inequality:

[2−s′ + 2−l′ + 2−l′ ]− [2−s + 2−l + 2−l] = 2−(l−1) − 2−(s+1) ≤ 0.

But since all the codewords are equally likely, this would have decreased the average
codeword length, contradicting the optimality of the Huffman code. Thus, the longest
and shortest codeword lengths can differ by at most 1, and, again by Kraft inequality,
their lengths must be j and j + 1.

(b) Let the number of codewords of length k be mk, k = j, j+1. Since Huffman procedure
yields a complete tree all intermediate nodes have two children. Thus, the 2j nodes
at level j of the tree are either codewords (mj of them) or each of their two children
are codewords (mj+1/2 of them). Thus

mj + mj+1/2 = 2j,

and also mj + mj+1 = x2j. From these two equations we find

mj = (2− x)2j and mj+1 = (x− 1)2j+1.
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(c) By the result above the average codeword length is

[jmj + (j + 1)mj+1]/(x2j) = j + 2(x− 1)/x.

Problem 3.

(a) {00, 01, 100, 101, 1100, 1101, 1110, 1111}.

(b) For i > j observe that

Qi −Qj =
i−1∑
k=j

P (ak) ≥ P (aj) ≥ 2−lj .

So, the binary expansion of Qi and Qj must differ somewhere in the first lj bits (if
they did not the difference between Qi and Qj would have been less than 2−lj). Since
codewords for i and j are at least lj bits long, this implies that neither codeword can
be a prefix of the other. The bound on the average codeword length follows from

− log2 P (ai) ≤ li < − log2 P (ai) + 1.

This method of coding is also known as Shannon coding and predates Huffman coding.

Problem 4.

(a) H(X) = 2
3
log 3

2
+ 1

3
log 3 = 0.918 bits = H(Y ).

(b) H(X|Y ) = 1
3
H(X|Y = 0) + 2

3
H(X|Y = 1) = 0.667 bits = H(Y |X).

(c) H(X, Y ) = 3× 1
3
log 3 = 1.585 bits.

(d) H(Y )−H(Y |X) = 0.251 bits.

(e) I(X; Y ) = H(Y )−H(Y |X) = 0.251 bits.

Problem 5.

(a) Let X be the number of tosses until the first head appears in a sequences of inde-
pendent coin tosses, suppose the coin lands heads with probability p, and tails with
probability q. Then X = n if and only if the first n − 1 tosses are tails and the last
one is a head. Thus Pr(X = n) = pqn−1, n = 1, 2, . . . . Then

H(X) = −
∞∑

n=1

pqn−1 log(pqn−1)

= −

[
∞∑

n=0

pqn log p +
∞∑

n=0

npqn log q

]
=
−p log p

1− q
− pq log q

p2

=
−p log p− q log q

p

= H(p)/p bits.

If p = 1/2, then H(X) = 2 bits.
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(b) One possible questioning strategy is to ask the questions ‘Is X = 1?’, ‘Is X = 2?’,
‘Is X = 3?’, . . . , stopping whenever a ‘yes’ answer is given. The number of questions
asked when X = n is exactly n, and thus the expected number of questions asked is∑∞

n=1 n(1/2n) = 2.

Since this equals H(X) this strategy cannot be improved upon.

Problem 6.

H(X) = −
M∑

k=1

PX(ak) log PX(ak)

= −
M−1∑
k=1

(1− α)PY (ak) log[(1− α)PY (ak)]− α log α

= (1− α)H(Y )− (1− α) log(1− α)− α log α

Since Y is a random variable that takes M − 1 values H(Y ) ≤ log(M − 1) with equality if
and only if Y takes each of its possible values with equal probability.

Problem 7.

(a) Using the chain rule for mutual information,

I(X, Y ; Z) = I(X; Z) + I(Y ; Z | X) ≥ I(X; Z),

with equality iff I(Y ; Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(b) Using the chain rule for conditional entropy,

H(X, Y | Z) = H(X | Z) + H(Y | X, Z) ≥ H(X | Z),

with equality iff H(Y | X, Z) = 0, that is, when Y is a function of X and Z.

(c) Using the chain rule for mutual information,

I(X; Z | Y ) + I(Z; Y ) = I(X, Y ; Z) = I(Z; Y | X) + I(X; Z) ,

and therefore
I(X; Z | Y ) = I(Z; Y | X)− I(Z; Y ) + I(X; Z) .

We see that this inequality is actually an equality in all cases.

(d) Using first the chain rule for entropy and then the definition of conditional mutual
information,

H(X, Y, Z)−H(X, Y ) = H(Z | X, Y ) = H(Z | X)− I(Y ; Z | X)

≤ H(Z | X) = H(X, Z)−H(X) ,

with equality iff I(Y ; Z | X) = 0, that is, when Y and Z are conditionally independent
given X.
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