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Problem 1.

(a) Since the code corrects up to (and including) e errors, the decoder must decide on
x for all sequences y that differ from x in at most e positions. Since the number of
sequences that differ from x in i places is

(
n
i

)
, we see that the number of such y is

e∑
i=0

(
n

i

)
.

We thus conclude that |S| ≥
∑e

i=0

(
n
i

)
. Note that there might be other sequences

y for which the decoder decides on x. This is the reason for the inequality rather
than equality. [For example, take n = 4 and e = 1. There are a total of 24 = 16
sequences of length n.

∑1
i=0

(
4
i

)
= 5. However, 5 does not divide 16, so there must

be sequences that cannot be accounted for by just considering sequences that differ
from the codewords by at most 1 position.]

(b) Let Sx be the set of sequences for which the decoder decides x. Since these sets are
disjoint (for a given y, the decoder has to know which x to declare), the union of
these sets contains at least

M
e∑

i=0

(
n

i

)
sequences. But the total number of sequences of length n is 2n, thus

M ≤ 2n

/ e∑
i=0

(
n

i

)
.

(c) For the Hamming codes, n = 2m − 1, M = 22m−m−1, e = 1. Thus,

e∑
i=0

(
n

i

)
= 1 + n = 2m

and 2n/
∑e

i=0

(
n
i

)
= 22m−1/2m = 22m−m−1. We thus see that the bound in part (a) is

met with equality.

Problem 2.

(a) This is more or less obvious: any codeword chosen differs from the previously chosen
codewords in more than d places since those sequences that do not were eliminated
in the previous steps. In fact, even though the problem claims that the minimum
distance is at least d, procedure yields a minimum distance of at least d + 1.



(b) It is clear that at each iteration one codeword is added to the list of chosen codewords.
The sequences removed from the candidate list are those that differ from the chosen
sequence in less than or equal to d places. Since some of these sequences might have
been removed in the previous iterations, the number of sequences that differ from the
codeword in d or less places is an upper bound on the number of sequences removed.
But this is

d∑
i=0

(
n

i

)
.

When the algorithm terminates all 2n sequences are removed from the candidate list.
Thus the number of iterations the algorithm makes is at least 2n/

∑d
i=0

(
n
i

)
. Since

the number of codewords chosen is equal to the iterations of the algorithm,

M ≥ 2n

/ d∑
i=0

(
n

i

)
.

Problem 3. Let x and x′ be two different codewords in the extended Hamming code. Let
z and z′ be the parts of x and x′ that come from the Hamming code (i.e., z is all but the
last bit of x, and z′ that of x′), and p and p′ be the bits appended to z and z′ to get x
and x′. Since x and x′ are different then so are z and z′: if z = z′ then p = p′ and x and
x′ would have been the same. Thus, dH(z, z′) ≥ 3 since z and z′ are different Hamming
codewords. On the other hand, if dH(z, z′) = 3, then z and z′ must have different parity:
if they both had an even number of 1’s or both had an odd number of 1’s they would
have differed in an even number of places and dH(z, z′) would have been an even number.
Thus, if dH(z, z′) = 3 then p 6= p′ and we have dH(x, x′) = 4. If dH(z, z′) ≥ 4 then clearly
dH(x, x′) ≥ 4. We thus see that the miminum distance of the new code is 4.

Consider the following procedure to decode

Given a sequence y, compare it to all the codewords and find the number of
positions in which y differs from them. If there is a unique codeword for which
this number is smallest, declare that codeword. If not, declare ‘errors were
detected’.

If the minimum distance d of a code is an even number, d = 2j, then if a sequence
y differs from the transmitted codeword x by up to j − 1 places, then y will be close to
the transmitted codeword than to any other and the decoder will correctly decode x. If
however, y differs from x in j places, then no other codeword will be closer to y, but there
might be a codeword x′ which also differs from y in j places. In such a case the decoder
will not be able to correct but detect the errors. In particular, if d = 4, then all single
errors are corrected and all double errors are detected (may even be corrected).

Problem 4.

(a) Since C is non-empty, it contains some codeword x. By linearity C must contain
x + x. But, for any x, x + x is the all zero sequence since we are doing modulo-2
sums. So, C contains the all zero sequence.

(b) The elements of D′ are those sequences of the form x + y where y is in D. Since x is
in C and D is a subset of C, any x and y are both in C, and so is their sum.

(c) Suppose there was an element z common to D and D’. Then z = x + y where y is
in D. Since we assumed that D is a linear subset, then z + y is also in D. But z + y
equals x, and we arrive at the contradiction that x is in D.
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(d) Since the mapping y 7→ x+y is a bijection, D and D′ are in one-to-one correspondence,
and hence have the same number of elements.

(e) Suppose z1 and z2 are in D ∪D′. There are four possibilities: (1) both z1 and z2 are
in D, (2) both z1 and z2 are in D′, (3) z1 is in D, z2 is in D′, (4) z1 is in D′, z2 is in
D. In case (1), the linearity of D implies that z1 + z2 is in D. In case (2), z1 = x+ y1

and z2 = x+ y2 for some y1 and y2 both in D, then z1 + z2 = x+x+ y1 + y2 = y1 + y2

is in D. In case (3) z2 = x + y2 and z1 + z2 = x + (z1 + y2), which is in D′, and
similarly in case (4). Thus in all cases z1 + z2 is in D ∪D′ and we see that D ∪D′ is
a linear subset of C.

(f) We thus see that if at the beginning of step (ii) D is a linear subset of C, at the
end of step (iii) D ∪D′ is linear, a subset of C because both D and D′ are, and has
twice as many elements of D since D′ has the same number of elements of D and is
disjoint from it. Thus, when the algorithm terminates, D contains all elements of C
and since it is a subset of C it must equal C. Furthermore, its size, being equal to
successive doublings of 1, is a power of 2.

Problem 5.

(a) Note first that the sum of two even weight codewords is of even weight, the sum of
two odd weight codewords is of even weight and the sum of an odd weight codeword
with an even weight codeword is of odd weight.

If the code contains no odd weight codeword then we are done. Otherwise let x be an
odd weight codeword. Then the mapping y 7→ x+y is a bijection between even weight
and odd weight codewords, and we conclude that there must be an equal number of
odd and even weight codewords.

(b) The same proof above applies: either all codewords have a zero at the nth digit, or
there is a codeword x with has a 1 in its nth digit. The mapping y 7→ x + y gives a
bijection between codewords who have a zero at the nth digit and codewords which
have a 1 at the nth digit. In the first case, when all codewords have a zero at the nth
digit, one can improve the code by simply deleting the nth digit from each codeword:
no matter what the message, the same symbol would have been transmitted, giving
no additional information.

(c) To find the average number 1’s per codewords, one would find the total number of
1s in all codewords, and divide this sum by the number of codewords. Suppose there
are M codewords. Arrange the codewords in rows, and count the total number of 1’s
by going over columns one by one. Since each column contains at most M/2 ones,
and there are N columns, the total number of 1’s is less than or equal to MN/2.
Dividing by M we see that the average number of 1’s per codeword is at most N/2.

Problem 6. Let S0 be the set of codewords at Hamming distance n from x0 and S1 be
the set of codewords at Hamming distance n from x1. For each y in S0, note that x1 +y is
at distance n from x1, and thus {x1 + y : y ∈ S0} ⊂ S1. Similarly, {x1 + y : y ∈ S1} ⊂ S0.
These two relationships yield |S0| ≤ |S1| and |S1| ≤ |S0, leading to the conclusion that
|S0| = |S1|.
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