ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16	Information Theory and Coding
Homework 7	November 12, 2007

PROBLEM 1. Consider two discrete memoryless channels. The first channel has input alphabet \mathcal{X} , output alphabet \mathcal{Y} ; the second channel has input alphabet \mathcal{Y} and output alphabet \mathcal{Z} . The first channel is described by the conditional probabilities $P_1(y|x)$ and the second channel by $P_2(z|y)$. Let the capacities of these channels be C_1 and C_2 . Consider a third memoryless channel described by probabilities

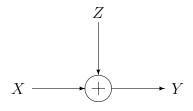
$$P_3(z|x) = \sum_{y \in \mathcal{Y}} P_2(z|y) P_1(y|x), \quad x \in \mathcal{X}, \ z \in \mathcal{Z}.$$

(a) Show that the capacity C_3 of this third channel satisfies

$$C_3 \leq \min\{C_1, C_2\}$$

- (b) A helpful statistician preprocesses the output of the first channel by forming $\tilde{Y} = g(Y)$. He claims that this will strictly improve the capacity.
 - (b1) Show that he is wrong.
 - (b2) Under what conditions does he not strictly decrease the capacity?

PROBLEM 2. Find the channel capacity of the following discrete memoryless channel:



where $\Pr\{Z=0\} = \Pr\{Z=a\} = \frac{1}{2}$ and $a \neq 0$. The alphabet for x is $\mathcal{X} = \{0, 1\}$. Assume that Z is independent of X.

Observe that the channel capacity depends on the value of a.

PROBLEM 3. Consider the discrete memoryless channel $Y = X + Z \pmod{11}$, where

$$\Pr(Z = 1) = \Pr(Z = 2) = \Pr(Z = 3) = 1/3$$

and $X \in \{0, 1, ..., 10\}$. Assume that Z is independent of X.

- (a) Find the capacity.
- (b) What is the maximizing $p^*(x)$?

PROBLEM 4. A source produces independent, equally probable symbols from an alphabet (a_1, a_2) at a rate of one symbol every 3 seconds. These symbols are transmitted over a binary symmetric channel which is used once each second by encoding the source symbol a_1 as 000 and the source symbol a_2 as 111. If in the corresponding 3 second interval of the channel output, any of the sequences 000,001,010,100 is received, a_1 is decoded; otherwise, a_2 is decoded. Let $\epsilon < 1/2$ be the channel crossover probability.

- (a) For each possible received 3-bit sequence in the interval corresponding to a given source letter, find the probability that a_1 came out of the source given that received sequence.
- (b) Using part (a), show that the above decoding rule minimizes the probability of an incorrect decision.
- (c) Find the probability of an incorrect decision (using part (a) is not the easy way here).
- (d) If the source is slowed down to produce one letter every 2n + 1 seconds, a_1 being encoded by 2n + 1 0's and a_2 being encoded by 2n + 1 1's. What decision rule minimizes the probability of error at the decoder? Find the probability of error as $n \to \infty$.

PROBLEM 5. The Z-channel has binary input and output alphabets and transition probabilities p(y|x) given by

$$p(0|0) = 1$$
 and $p(0|1) = \varepsilon$.

Find the capacity of the Z-channel and the maximizing input probability distribution in terms of ε .