ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 7	Information Theory and Coding
Homework 4	October 19, 2007

PROBLEM 1. A discrete memoryless source has alphabet 1, 2, where symbol 1 has duration 1 and symbol 2 has duration 2. The probabilities of 1 and 2 are p_1 and p_2 respectively. Find the value of p_1 that maximizes the source entropy per unit time, $H(X)/E[l_X]$, where l_x is the duration of the symbol x. What is the maximum value of the entropy per unit time?

PROBLEM 2. A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995. The digits are taken 100 at a time, and a binary codeword is provided for every sequence of 100 digits containing three or fewer 1's.

- (a) Assuming that all the codewords are the same length, find the minimum length required to provide codewords to all sequences with three or fewer ones.
- (b) Calculate the probability of observing a source sequence for which no codeword has been assigned.
- (c) Use Chebyshev's inequality to bound the probability of observing a source sequence for which no codewords has been assigned. Compare this bound to the actual probability computed in part (b).

PROBLEM 3. An *n*-dimensional rectangular box with sides X_1, \ldots, X_n is to be constructed. The volume is $V_n = \prod_{i=1}^n X_n$. The edge length l of an *n*-dimensional cube of the same volume is $l = V_n^{1/n}$. Let X_1, \ldots, X_n be i.i.d. random variables uniformly distributed over the unit interval [0, 1]. Find $\lim_{n\to\infty} V_n^{1/n}$ and compare it to $(E[V_n])^{1/n}$.

PROBLEM 4. Let X_1, X_2, \ldots be i.i.d. random variables with distribution p(x) taking values in a finite set \mathcal{X} . Thus, $p(x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i)$. We know that

$$-\frac{1}{n}\log p(X_1,\ldots,X_n)\to H(X)$$

in probability. Let $q(x_1, \ldots, x_n) = \prod_{i=1}^n q(x_i)$, where q(x) is some other probability distribution on \mathcal{X} .[Note: The random variable X_i has distribution p(x)]

(b) Evaluate the limit of the log-likelihood-ratio

$$\frac{1}{n}\log\frac{q(X_1,\ldots,X_n)}{p(X_1,\ldots,X_n)}$$

PROBLEM 5. In a casino one can bet on the outcome of a random variable X taking values in $\{1, \ldots, K\}$. If X = k, the casino multiplies the money bet on outcome k by $\frac{1}{q(k)}$, the money bet on other outcomes are lost. The values q(k) represent the casino's belief of the probability of outcome k, and thus $\sum_k q(k) = 1, q(k) > 0$. Suppose that the true probability of X = k is p(k) and these true probabilities are known to the gambler. Let

$$R_n = \frac{1}{n} \log \frac{C_n}{C_0}$$

be the "rate of return" for the gambler where C_0 is the gambler's initial capital and C_n is the capital after playing *n* successive independent rounds of the game. The gambler's strategy is to allocate his current capital among different bets, betting a fraction f_k of his capital on outcome k.

(a) Use the law of large numbers to find

$$r = \lim_{n \to \infty} R_n$$

in terms of f, p, q.

(b) Find the f that maximizes the "long term rate of return" r, and the value of r.