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Problem 1 [Hypothesis Testing – 20 pts]

(a) The MAP rule for the binary case

pY |X(y|1)
pY |X(y| − 1)

X̂=1
>
≤

X̂=−1

pX(−1)

pX(1)
= 1. (1)

We have,

pY |X(y|1)
pY |X(y| − 1)

=
Pr(Z = W )p(y|1, Z = W ) + Pr(Z = W + 1)p(y|1, Z = W + 1)

Pr(Z = W )p(y| − 1, Z = W ) + Pr(Z = W + 1)p(y| − 1, Z = W + 1)

=
1/2[p(y|1, Z = W ) + p(y|1, Z = W + 1)]

1/2[p(y| − 1, Z = W ) + p(y| − 1, Z = W + 1)]

=
fW (y − 1) + fW (y − 2)

fW (y + 1) + fW (y)
. (2)

By visual inspection of Figure 1, it is seen that the right-hand side of (2) is > 1

when y > 1 (since in this case fW (y + 1) = 0 and fW (y − 1) > fW (y)). Similarly,

the right-hand side of (2) is < 1 when y < 0 (since in this case fW (y − 2) = 0 and

fW (y) > fW (y − 1)). Therefore it is sufficient to consider 0 ≤ y ≤ 1 to find the

threshold. In this case we have

fW (w)

w1 2-1-2

1/2

Figure 1:

1 =
pY |X(y|1)

pY |X(y| − 1)
=

1/2 − |y − 1|/4 + 1/2 − |y − 2|/4
1/2 − |y + 1|/4 + 1/2 − |y|/4 (3)

=
1/2 − (1 − y)/4 + 1/2 − (2 − y)/4

1/2 − (y + 1)/4 + 1/2 − y/4
(4)

=
1 − (3 − 2y)/4

1 − (2y + 1)/4
. (5)

Solving (5) we get y = 1/2.
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p(y|x = 1, Z = W )

fW (w)

p(y|x = −1, Z = W )

Figure 2:

(b) First consider the case Z = W . By symmetry (see Figure 2), it is easy to argue

that in this case the error probability Pe,0(t) is symmetric in t, and the threshold

minimizing the error probability is t = 0. More precisely, Pe,0(t) is given by

Pe,0(t) =
1

2

∫ ∞

t

p(t|x = −1, Z = W )dt +
1

2

∫ t

−∞
p(t|x = 1, Z = W )dt

=
1

2

∫ ∞

t

fW (t + 1)dt +
1

2

∫ t

−∞
fW (t − 1)dt.

Computing this integral for positive values of t we get

Pe,0(t) =















1
16 [(1 − t)2 + (1 + t)2] if 0 ≤ t < 1
1
2 [1 − (3−t)2

8 ] if 1 ≤ t < 3
1
2 if 3 ≤ t

. (6)

(You do not have to the compute (6) exactly, as long as you make the following

w

p(y|x = 1, Z = W + 1)

1 2 3-2 -1

fW (w)

p(y|x = −1, Z = W + 1)

Figure 3:

observations:) By symmetry we have Pe,0(t) = Pe,0(−t). Also note that Pe,0(t) is

increasing in |t|. Now consider the case Z = W + 1. We see in Figure 3 that the

symmetry is preserved and the densities are merely shifted right by 1, therefore

it is easily argued that Pe,1(t) is of the same shape as Pe,0(t), symmetric around

t = 1 and increasing in |t − 1|. Therefore the functions Pe,0(t) and Pe,1(t) take the

form in Figure 4. It is seen in this figure that max{Pe,0, Pe,1} is minimized when

Pe,0(t) = Pe,1(t). Due to symmetry, equality is attained at t = 1/2.

1/2 1 t

Pe,0(t)

Pe,1(t)

Figure 4:
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Problem 2 [Proper Vectors - 20pts]

(a) We can write:

h>,F (f) =
1

2
+

1

2
sign(f)

where

sign(f) =











1 for f > 0

0 for f = 0

−1 for f < 0

Then, we obtain:

x̂F (f) =
√

2xF (f)h>,F (f)

=
√

2xF (f)

[

1

2
+

1

2
sign(f)

]

=
xF (f)√

2
+

xF (f)√
2

sign(f)

The first term of the last line is symmetric in f (Fourier transform of a real-valued

signal is symmetric). So the second term is anti-symmetric, so its inverse Fourier

transform is a purelly imaginary signal. Hence, by taking the inverse Fourier trans-

form, x̂(t) equals x(t)√
2

plus an imaginary term. So x(t) =
√

2Re {x̂(t)}.

(b) Ẑ(f) =
√

2ZF (f)h>,F (f) implies that

Ẑ(t) =
√

2

∫ +∞

−∞
h>(α)Z(t − α)dα

Then, the pseudocovariance of Ẑ(t) is

E

[

Ẑ(t)Ẑ(s)
]

= E

[√
2

∫ +∞

−∞
h>(α)Z(t − α)dα

√
2

∫ +∞

−∞
h>(β)Z(s − β)dβ

]

= 2

∫ +∞

−∞

∫ +∞

−∞
h>(α)h>(β)RZ(t − α − s + β)dαdβ

= 2

∫

α

∫

β

h>(α)h>(β)

∫ +∞

−∞
SZ(f)ej2πf(t−α−s+β)df

= 2

∫

f

SZ(f)ej2πf(t−s)h>,F (f)h>,F (−f)df

= 0,

since h>,F (f)h>,F (−f) = 0 for all frequencies except for f = 0. RZ(·) is the

autocorrelation of Z(t) and SZ(f) is its Fourier transform. We have also used the

fact that h>,F (f) =
∫

α
h>(α)e−j2πfαdα.

Hence the integral vanishes. Thus Ẑ(t) is proper.
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(c)

E [ZE(t)ZE(s)] = E

[

Ẑ(t)e−j2πf0tẐ(s)e−j2πf0s
]

= e−j2πf0(t+s)
E

[

Ẑ(t)Ẑ(s)
]

= 0.

(We could have simply argued that ZE(t) is proper since it is obtained from the

proper process Ẑ(t) via a linear tranformation).

(d) From point (c) we have

0 = E [ZE(t)ZE(s)] = E [Re {ZE(t)}Re {ZE(s)} − Im {ZE(t)} Im {ZE(s)}]
+jE [Re {ZE(t)} Im {ZE(s)} + Im {ZE(t)}Re {ZE(s)}]

implies

E [Re {ZE(t)}Re {ZE(s)}] = E [Im {ZE(t)} Im {ZE(s)}]

(e) We compute the autocorrelation of ZE(t):

E [ZE(t)Z∗
E(s)] = E [Re {ZE(t)}Re {ZE(s)} + Im {ZE(t)} Im {ZE(s)}]

−jE [Re {ZE(t)} Im {ZE(s)} − Im {ZE(t)}Re {ZE(s)}]

and observe that if the power spectral density of ZE(t) is symmetric (that is SZ(f0−
f) = SZ(f0 + f)), the autocorrelation of ZE(t) is real-valued. Thus

E [Re {ZE(t)} Im {ZE(s)} − Im {ZE(t)}Re {ZE(s)}] = 0

On the other hand, from point (d) we have

E [Re {ZE(t)} Im {ZE(s)} + Im {ZE(t)}Re {ZE(s)}] = 0

The last two expressions imply

E [Re {ZE(t)} Im {ZE(s)}] = E [Im {ZE(t)}Re {ZE(s)}] = 0

which says that the real and imaginary parts of ZE(t) are uncorrelated. But since

they are Gaussian, this implies that they are independent.
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Problem 3 [Viterbi Decoder – 20pts]

(a) The MAP rule is given by

arg max
un
1

PUn
1
|Y 2n

1

(un
1 | y2n

1 )

= arg max
un
1

PY 2n
1

|Un
1

(y2n
1 | un

1 )

= arg max
un
1

Πn
i=1PY2i−1,Y2i|Ui,Ui−1

(y2i−1, y2i | ui, ui−1)

= arg max
un
1

Πn
i=1PY2i−1|Ui

(y2i−1 | ui)PY2i|Ui,Ui−1
(y2i | ui, ui−1)

= arg max
un
1

Πn
i=1f(y2i−1, ui)f(y2i, ui + ui−1)

We have used the short notation xn
1 for the vector (x1, x2, ...xn).

(b) Taking the log of the above MAP rule, we get the MAP rule as

arg max
un
1

n
∑

i=1

log(f(y2i−1, ui)) + log(f(y2i, ui + ui−1))

The trellis section for the ith bit is given by
2 log ε

log ε(1 − ε)

log ε(1 − ε)

2 log(1 − ε)

1

0

1

0

Figure 5: Branch metrics for y2i−1 = 0, y2i = 1

(c) If the priors are not uniform then the trellis changes to
2 log ε + log p1

log ε(1 − ε) + log p0

log ε(1 − ε) + log p1

2 log(1 − ε) + log p0

1

0

1

0

Figure 6: Branch metrics for y2i−1 = 0, y2i = 1 with unequal priors
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Problem 4 [Estimation – 20pts]

Let w̃ be any linear estimator and wopt the linear estimator which satisfies the relation

E [eopt(k)y∗(k − n)] = 0, for all n

where eopt(k) = x(k) − x̂opt(k) = x(k) − wopt(k) ∗ y(k) = x(k) −∑n wopt(n)y(k − n).

The estimator w̃ has an estimation error:

ẽ(k) = x(k) − w̃(k) ∗ y(k) = x(k) −
∑

n

w̃(n)y(k − n).

Then

E
[

|ẽ(k)|2
]

= E
[

|ẽ(k) − eopt(k) + eopt(k)|2
]

= E
[

|ẽ(k) − eopt(k)|2
]

+ E
[

|eopt(k)|2
]

+ 2Re {E [(ẽ(k) − eopt(k))∗ eopt(k)]}
= E

[

|ẽ(k) − eopt(k)|2
]

+ E
[

|eopt(k)|2
]

+2Re

{

E

[(

x(k) −
∑

n

w̃(n)y(k − n) − x(k) +
∑

n

wopt(n)y(k − n)

)∗

eopt(k)

]}

= E
[

|ẽ(k) − eopt(k)|2
]

+ E
[

|eopt(k)|2
]

+2Re

{

∑

n

(wopt(n) − w̃(n))∗ E [eopt(k)y∗(k − n)]

}

= E
[

|ẽ(k) − eopt(k)|2
]

+ E
[

|eopt(k)|2
]

≥ E
[

|eopt(k)|2
]

.

where we have used the property of the optimal estimator, that is, E [eopt(k)y∗(k − n)] = 0

for all n.

Therefore we get the “if” part directly due to the inequality E
[

|ẽ(k)|2
]

≥ E
[

|eopt(k)|2
]

.

We get the “only if” part noticing that we need for optimality of any other estimator

E
[

|ẽ(k) − eopt(k)|2
]

= 0, which means ẽ(k) = eopt(k). This implies that
∑

n w̃(n)y(k −
n) =

∑

n wopt(n)y(k − n), resulting in w̃(n) = wopt(n) for all n.
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Problem 5 [Equalization – 20pts]

(a)

rxy(n) = E [x(k)y∗(k − n)]

= E

[

x(k)

(

||p||
∑

s

x∗(s)q∗(k − n − s) + z∗(k − n)

)]

= ||p||
∑

s

E [x(k)x∗(s)] q∗(k − n − s) + E [x(k)z∗(k − n)]

= ||p||E
[

|x(k)|2
]

q∗(−n)

= ||p||Exq(n)

since E [x(k)x∗(s)] = Ex for k = s and 0 otherwise.

ryy(n) = E [y(k)y∗(k − n)]

= E

[(

||p||
∑

l

x(l)q(k − l) + z(k)

)(

||p||
∑

s

x∗(s)q∗(k − n − s) + z∗(k − n)

)]

= ||p||2
∑

l

∑

s

E [x(l)x∗(s)] q(k − l)q∗(k − n − s) + E [z(k)z∗(k − n)]

= ||p||2
∑

l

E [x(l)x∗(l)] q(k − l)q∗(k − n − l) + q(n)N0

= ||p||2
∑

l

Exq(k − l)q(n − (k − l)) + q(n)N0

= ||p||2
∑

l

Exq(l)q(n − l) + q(n)N0

= ||p||2Exq(n) ∗ q(n) + q(n)N0.

(b)

Sxy(D) = D{rxy(n)}
= D {||p||Exq(n)}
= ||p||ExQ(D)

Syy(D) = D{ryy(n)}
= D

{

||p||2Exq(n) ∗ q(n) + q(n)N0

}

= ||p||2ExQ(D)Q(D) + Q(D)N0

= ||p||2ExQ
2(D) + Q(D)N0
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(c)

0 = E [eopt(k)y∗(k − n)] = E [(x(k) − wopt(k) ∗ y(k))y∗(k − n)]

= E

[

(x(k) −
∑

l

wopt(l)y(k − l))y∗(k − n)

]

= E [x(k)y∗(k − n)] −
∑

l

wopt(l)E [y(k − l)y∗(k − n)]

= rxy(n) −
∑

l

wopt(l)ryy(n − l)

= rxy(n) − wopt(n) ∗ ryy(n)

So rxy(n) = wopt(n) ∗ ryy(n). Or in D-domain Sxy(D) = Wopt(D)Syy(D). The

optimal filter Wopt(D) is

Wopt(D) =
Sxy(D)

Syy(D)

=
||p||ExQ(D)

||p||2ExQ2(D) + Q(D)N0
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