Advanced Digital Communications EPFL Winter Semester 2005/2006
Prof. Suhas Diggavi Handout # 42, Wed, Feb 1, 2006

MIDTERM SOLUTIONS

Problem 1

(a) Since the prior probability ¢ is known at the decoder, we know from the class that
probability of error is minimized by the maximum a posteriori (MAP) decision rule,
i.e., for a given observation y € {0,1}, we decide

X=0

PIX =0y =y] = P[X=1]Y =y].
X=1
If Y =1, then we have
PX=0Y =1 = 0
PIX=1y =1] = 1,

and one should always decide X=1IfY =0, we use Bayes’ formula
PlY =y|X =z|P[X = 2]

PX =z]Y =y] = Pl =yl
and obtain
P[X =0]Y = 0] ﬁ
P[X =1]Y =0 %.

If ¢ > p(1 —¢) and Y = 0, then we always decide X=0If¢g< p(1—¢) and Y =0, we
always decide X = 1.

(b) Attention: in this scheme, the same input symbol is reapeated n times, i.e.,

X — (0,0,0,...,0) w.p. ¢ (if X =0)
(1,1,1,...,1) wp. 1—q (if X =1).

Again, we apply the MAP rule. Assume that a certain y = (y1,...,¥,) is observed at

the decoder. Note that as soon as y; = 1 for at least one i € {1,...,n}, we have
PX=0Y=y] = 0
PX=1Y=y| = 1,

because if X = 0, we can impossibly have y; = 1 for any 7. Thus, the decision would
be X = 1. The only ambiguous case is when y = 0 = (0,...,0). In this case, we use
Bayes'rule to compute

PIX =0[Y =0 %
PIX -1y =0 - 2=

P[Y = 0]



Therefore, if Y = 0 and p" > 1L_q’ we decide X =1. f Y = 0 and p" < li_q, we rather
decide X = 0.

(c) This time, we ask for the maximum likelihood (ML) decision rule, i.e., for a given
observation y € {0,1}", we decide

H=H

0
P[Y = y|H = Hy) ; P[Y =y|H = H],

H=H,

where H is a random variable that takes values Hy or H;, with equal probability. We
write out the conditional distributions of Y = (Y1,....,Y},):

PIY =y|H=Hy) = P[Y=y|X=1]
_ MW )N

Y

where N;(y) is the number of ones in the vector y.
PlY=y|H=H,] = P[Y=y|X=8]

- HPD/i = yi| X = 8]
i=1

= [P = wilXi = 5]
=1

= ﬁ (P[Y; = gl Xi = 1JP[S; = 1] + P[Y; = 4| X; = 0[P [S; = 0])

i=1

N ﬁ ify; =0 pi+13
ALy =1 (1-p)5+03

= (%(1 +p)>n_Nl(y) G(l - p))Nl(y)-

We take the log of both sides of the ML rule:

A=Ho n—Ni(y) /1 M)
PN 2 (Sasp) T (50-p)
H=H,
I:I:>H0 1
Ni(y)log(1 =p) + (n = Ni(y))logp  Z  (n = Ni(y))log (5(1+p))
H=H,

+ Ni(y)log (%(1 ~p))
Niy)(log(1+p) ~logp) 2 n(logs +log(1 +p) — logp)

H:>H0 nlog% +log(1 + p) — log(1 + p)

Ny (y =
1(y) ﬁ:<H1 log(1 4 p) — logp
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Problem 2

(a) We can write the usual binary MAP decoding rule as

1

P(Y|X = —~1)P[X = —1].

P(Y|X = +1)P[X = +1] I

T

\//\ \‘\

+1

We also know the conditional density function of Y according to the channel model:

Pyl X=2)=PZ=y—o|X=2)=PZ=y—2)=pz(y —2) = %e"y_“

So we have the decision criterion as

1 |
Ze~lv=1l, (1-— < eyt

e q s e q
2 T 2

Assuming ¢ # 0,1 (for the extreme cases the criterion is obtained obviously), we have

= —1

ely+1l=ly=1| < %
x =41 _q
x=—1 q
y+1-ly-1 s ln(l_q)
=41

In the following we consider three cases for ¢ which is constant for the given channel
and give the decision criterion for each of them.
> ¢ < ez In(3h) < -2
ey>l=y+ll-[y—1=2>0>In(L)=2=1

e l<y<l=|y+lf-|y—-1=2y>-2>In(;L)=2=1

ey<-l=y+lf-[y—1=-2>In({L)=2=1
>l << S —2<In(sL) <2

ey>1l=|y+1—[y—1=2>In(;L)

o —1<y<l=ly+l-ly-1=2y =

ey<-l=y+lf-[y—1=-2<In(sL)=2=-1

>q>%:ln(1i_q)>2
ey>l=ly+ll—-ly—1=2<ln(L)=z=-1

1—q

e I<y<l=|y+lf-|y—1=2y<2<ln(L)=1=-1
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ey<—l=ly+l—|y—1=-2<0<ln(%)=&=1

(b) Let H be the optimal decision rule for the channel when ¢ is unknown.
Py = qPle|X = —1] + (1 — ¢)Ple| X = +1]

where Ple| X = —1] and P[e| X = —1] are indepenet of ¢ and depend on the characteri-
zation of the channel of the statistics of the noise. So the average error probability is a
linear function of ¢ and thus takes its maximum in one of its end points.

minmax P, g = max{P[e|X = —1],Ple|X = +1]}

H q

Therefore the best decoder is obtained when Ple|X = —1] = Ple|X = +1]. So we have

0o 6
PElX = 1) = [ (oo =—1)dy = [ plale = +1)dy =PIl X = +1

—0o0

) 0
1
Ze vl gy = e lv=1g 1
/9 5¢ y /oo 5¢ y (1)

In order to solve the above equation, we can consider three cases:

-1 00 0
/ eV ldy + / e~ Whay = / eV tdy
6 -1 —0o0

(1—e")—(0—-1) = ("' =0)
0—1 _ 0+1 _ o9

o < —1:

e

The last equality is impossible because both of the terms in the LHS are positive
and less than 1.

o 0> 1:
o) 1 0
/ e~ Wty = e dy _,_/ e WDy
[% —00 1
—(0 — 04D (1—0)— (e @Y 1)
o= (0+1) _ —(0-1) 9

Here also because of the same reason, we have a contradiction in the last equality.

e —1 <@ <1: In this case we have

[eS) 0
/ e’(yﬂ)dy — / eV ldy
0 —00

01— b1

and so 6 = 0 is the only root of (1). (You could also show this by make an argument
on the symmerty of the tails of the error function around zero.)

Page 4 of 14



(c) We can write the MAP decoder for this case as

x=—1
PO, Y2lX = +1)PIX = +1] S P(¥, %3 X = ~1)P[X = —1].

= +1
where P[X = —1] = P[X = 1] = . We have

pyr,yelz) = p(Zi =y —x, Zy = yo — z|2)
= p(Zi=y —2)p(Z1 =y — 1)

_ Ll

4

where (a) follows from the fact that Z; and Z, are independent from X and each other.
So the dicision rule will be

r=—1

e e

=41
Now, consider the following cases and write the dicision rule for each.

oy > 1y > 1L

= -1 T = —
— et g 2 o 2 g e — =1

x =41 r =41
ey >1,-1<y, <L

r=—1 r=—1

S Yty < eI o720 < e 2 — 4=1
x = +1 r =41
® Yy > 1,y2 < —11:
x=—1 x=—1
= eVt < eVt — 1 < 1 = either choice
z =41 r =41

i —1§?Jl§1792>13

— 1T g e

x=—1 = —1 ~ .
—  ehity2—2 < eV =2 .y oty < 1 = Ax =1 ?f Y1+y2 20
T=-1 ify1 +y2 <0

x = +1 =41
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e 1<y <Ly <L
x=—1 x=—1
— eutT? g eutnz — M g 2 — =1
= +1 =41
oy <—lLy >1
x=—1 x=—1
— ' 5 7" — 1 < 1 = either choice
= +1 =41
ey < -1, —-1<y <L
x=—1 x=—1
— entT? g etz — M g 2 — =1
=41 =41
® y < _17y2 < -1
x=—1 x=—1
. eY1ty2—2 § eY1ty2+2 — e 2 § e2 — F=_1
x=+1 x =41

Finally, we will have the following decision regions on the (y; — y2)-plane.

either choice o

choose X = +1

Y1

choose X = —1 -1

either choice

Figure 1: Decision regions.

Problem 3

(a) Note that x/(t) and zg(t) are colored Gaussian processes. The baseband representation
is given by
wp(t) = 21(t) + jg(t)
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and is very useful for the following reason. If we pass xy,(t) through a linear filter h(t),
then the resulting process will be

xpp(t) * h(t) = xr(t) * h(t) + jrg(t) * h(t),

i.e., the filter will apply independently to the in-phase and to the quadrature-phase
component and the resulting process will still be baseband. In addition, we know that
z;(t) and z¢(t) have the same auto-correlation function ¢x, (1) = ¢x, (1) = e 2"l We
wish to find a process y,(t) that is baseband and whose in-phase and quadrature-phase
components are white zero-mean random processes. To find such a process, it suffices
to apply a whitening filter to xy,(t), i.e., to find a filter h(t) that is a whitening filter for
both z(t) and zg(t). Note that since we have continuous-time processes, the frequency

domain is the Fourier-domain. The condition
1
Elyr(t)y:(t —7)] = 55(7)

(meaning that y;(t) should be white) corresponds to

1
Suw) = 5

in the frequency-domain. To whiten x;(t), we first compute its power-spectral density
Sep(w):
Se;(w) = FElzr(t)x(t — )]

= Fe 2l
1

(1+ 3jw)(1 = gjw)’

where the last equality comes from the hint on the first page of the exam (note that
w =2xf). If we filter z;(t) by h(t) to obtain y;(t), then the output will be

yi(t) = z7(t) * h(t)
and the power spectral densities behave like
Sy (W) = |H(w)]*Se; (w),

where H(w) is the Fourier transform of h(t). To achieve the desired power spectral
density of y;(t), we set

\H(w)\Q — Sy[(w)

= H(w)HW)".

Note that the complex conjugate of %(1 + 1jw) is %(1 — Ljw). Therefore, we identify

the whitening filter

H(w) = %(H— %jw).

The same whitening filter also works for the quadrature-phase part z¢(t).
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(b) The procedure is as follows. We follow part (a) to get from z(¢) to its baseband equivalent
xw(t) and then to the white baseband process yp,(t). Now, we color the in-phase and
quadrature-phase parts of yu(t) to get a baseband process zy(t). The coloring procedure
is the exact opposite of the whitening procedure, i.e., zy,(t) = yp(t) * g(t), where g(t) is
a coloring filter that should be such that

G(W)[2Sy, (W) = S.,(w)
= FE[z(t)z(t —7)]
Fedll
T (U L) = L)’

where the last equality again comes from the hint on the first page. Hence,

G = Gw)Gw)
S

3(1+ 3jw)(1 — $jw)3’

and we find 5

V3(1+ jjw)
By filtering vy, (t) with g(t), both the in-phase and the quadrature-phase component of

yps(t) get colored. Now, from the colored baseband process zy(t), we can construct a
passband process

Gw) =

2(t) = z1(t) cos(Wet) — zg(t) sin(@,t).

Problem 4

(a) We have to find {a,}°2, such that E[|z; — #4|?] is minimized. Using the orthogonality
principle, the error of estimition should be orthogonal to our observation, i.e.,

El(zy — Zk)yi ] = 0 m=1,2,3,...
E (fﬂk - Z anyk:—n) yz_m] =0
n=1
]E[xkyltfm] - Z anE[yk*nyzfm] =0
n=1

rey(m) = ) aur,(m—n) (2)

n=1
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According to the channel model, we can relate all the auto-correlations to S,(D) and
S.(D):

ry(0) = Elyryr_]

E[(zx + 21)(T)_¢ + 25_0)]

Elzsri_o] + Elzrzi_i

= r.(0)+d(¢) (note that 2z, and z;_, are independent unless for £ = 0)(3)

rey(0) = Elzgyp_,]
= ]E[il?k(.%’;:,_g + ZZ—Z)]
]E[Ikl‘]:_g] = Tx(g) (4>

Replacing (3) and (4) in (2), we have

re(m) = Y an[ra(m—n)+8(m—n)] m=1,23,...

S
I

aprz(m —n) + ap,

I
2 1[M]8

Gm = a,re(m—n)+a, =0 m=1273,...
1

S
Il

where aj = 1 and a}, = —a,, for n > 0. Note that g,, = 0 for m = 1,2,3,..., thus it is
an anti-causal sequence. In the other hand, we know that by definition a/, is a causal
sequence. Going to the D domain we have

G(D) = A(D)S.(D)+ A(D)

where I'L(D)L*(D~*) is the spectral factorization of S,(D) 4+ 1. So we have

G(D)

N A'(D)L(D)

where the LHS and RHS are respectively anti-causal and causal sequences and thus
both should be constant. Accoding to the monicity of A’(D) and L(D), we have

A(D)L(D) = 1

= A(D) = !

L(D)
=>{an}oe, = {-a )y, =-D! {ﬁ}
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(b)
ra(0) = e 2

= 5:(D) = D{r.(0)}

fe'e) —1
= > (0D + > r(0)D"

(=0 l=—00

o) -1

—20 yt 20 M/t

- Y 3

(=0 f=—00

1 25

PR g

and

S.(D)+1 = <! +1

(1-2) (1~ 2p)

=T

where ' =1+ & + /1 + % + & ~ 20276 and § = e* + 5 — /et + 1+ & ~ 0.0667.

So, we have

1— 3D
L<D>=_—§D
and
/ 1 _e%D
AD) = L(D)  1-3D

1
= (1—?D)(1+6D+62D2+63D3+---)
1 1
= 1+(ﬁ—§)D+ﬁ(5—;)D2+”'
in general for n > 1 we have
a, = "1 (B —e7?).
Finally, we have

a, = 3" (e ? - p) n=123,....

Problem 5

(a) Bob receives

ys(t) = x[n]é(t — nT) + 2p(1),

n
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and therefore, projecting yg(t) onto ¢(t — kT') is a sufficient statistics for detecting x[k].
This projection (matched filter) yields

yplk] = yB(t)*¢(_t)*|t=kT
= [ wwotyar

= x[k]+/0 zp(t)o(t)*dt.

Thus, zg[k] is equal to the last integral. To find its power spectral density, we first
compute its auto-correlation function.

rzplm] = E[zp[k]zplk —m]"]

_ EUT ()qﬁ(t—kT)*dt/s 25(5)*6(s — (k — m)T)ds

=0

[o/‘ ”¢“—MU¢@—%—nwm@ﬁ

N06

_ [ Ns(t— kT ¢( (k —m)T)dt
t=0
= N05WL7

where the last equality follows from the fact that {¢(t — nT)},ez is an orthonormal
basis. The power spectral density is the D-transform of r,[k], which is

S.,(D) = Np.
(b) Carol receives

ye(t) = Y a[n]o(t —nT) +Zy3 ot — (n+ 1T + 20(t)

n

— Z [](¢(t—nT)+¢(t— (n+1)T ) ZZB — (n+1T) + zc(t).

n

Note that the expression ¢(t — nT) + ¢(t — (n + 1)T) is exactly as in an inter-symbol
interference (ISI) channel, since

o(t) +o(t —T)

(>l
]
—~

~
N—

where h(t) = §(t) + 0(t — T'). We therefore proceed as for an ISI channel. Define

<o p(t)
*0 = o

5 (0(0) + 6(t - T)),

iS]

Sl

because ||p(t)|| = (p(t), p(t), )2 = v/2. We know that in an ISI channel, we should use
¢(t) as a basis function for the matched filter. If we just used ¢(t), we would not end
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up with a sufficient statistics. Projecting yc(t) onto the kth basis function yields

yelk] = /0 yo(t)o(t — kT)*dt

— % > z[n] /O (p(t —nT) +¢(t — (n+ 1)T)) (¢t — KT)* + ¢(t — (k+ 1)T)")dt

+ S Z zp[n] /0 o(t— (n+ 1T (ot — kT)" + ¢(t — (k+ 1)T)")dt

n

+— | zet)(6(t —kT)* + ot — (k+1)T)")dt
2 1 1
= Ex[k‘]+7§m[k3—1] ok zlk + 1]
1
+ E(ZB[/C— ” +ZB[/€])
+ 2c|K]
= V2q[k] x a[k] + Zp[K] + 2c[K],

where we defined z¢[k] \f fo zo(t) (¢t — KT)* + ¢(t — (k+ 1)T)")dt, and where

/¢ o(t — kT) = &, + 5k 1+ (5k+1

One can easily verify that z¢[k] has autocorrelation-function

relml = Elzolkzclk —ml)
_ %N0(25m+5m—1+5m+1)
= Nog[m].

The first noise term is defined as Zg[k] = %(23[16 — 1] + zp[k]). Remember that

zplk] has autocorrelation function r,,[m] = Nyd,. One can again easily verify that
r:5|m] = Nog[m]. Hence

SZ(,'(D) = SiB(D) = N0Q<D)>
i.e., the noise is no longer white.

(c) It suffices to find the D-transform W (D) of the optimal filter w[k]. We write the orthog-
onality principle in the D-notation:

E [(X(D) = W(D)Ye(D)Y5(D™)] = Suye (D) = W(D)S,. (D) = 0.

Hence,

W(D) =

V2Q(D)E,
2Q2(D)E, + NoQ(D) + NoQ(D)"
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Problem 6

(a) From

1

OOV N B

=G (D)G (D7) ()

we know that the constant terms (the coefficient of D) are the same in both sides. We
also know ¢o = 1, and so the constant term in LHS of (5) is 1 + 1/SNRyrp. G(D)
is causal and can be written as G(D) = go + 1D + g2D* + gsD* + -+ = > g, D",
Thus, we also can write G*(D™*) as

0o * 0o 0
G (D7) = <Z gn(D*)”> =Y gD =) g.D"
n=0 n=0 —00

where g/, = g*,,. Therefore the constant term in oG (D)G*(D~*) £ A(D) = >.>° __a,D"

n=-—00
1S

o0 o0 [o¢]
@W="0Y_ g 0 =70 90 =" lol" =l gl
n=0 n=0 n=0

So,

1

1+ ——— = 2
t v =wll

(b) We know that G(D) is monic, and so gy = 1. Thus,

o0 o
1g 1P=>lgnl® = lgol* + > lgal”> > 1 (6)
n=0 n=1

where the inequality follows from the fact that all the terms in the summation are
non-negative. In order to obtain the equality condition,

(i) assume that || g [|[?= 1. From (6), we see that all the terms in the summation should
be zero, i.e., g, = 0 for n > 0. and therefore G(D) = 1 and G*(D~*) = 1* = 1. So,
the RHS of (5) is a constant and the LHS is, i.e., Q(D) is a constant polynomial.
From the fact go = 1, there is no choice for Q(D) unless Q(D) = 1.

(i) assume that Q(D) = 1, i.e., the LHS of (5) is a constant.and has no zero or pole
and its spectral factorization is just some constant. Assuming G(D) is monic, we
have G(D) = 1, and therefore || g ||>= 1.

Combining || g [|*> 1 with the fact 1 + gzr— =0 || ¢ 1%, we have

1
<1+ —-.
Y=t SNRyrFB
(c) G(D) is monic and causal, so is L(D) = ﬁ. L*(D™) = W is also monic and

anti-causal, because G*(D~*) is monic and anti-causal. So, the constant term in the
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inverse D-transform of L(D)L*(D~*) is 1. Thus,

— D' [BL(D)L*(D™)] ‘0

1
p-1
[Q(D) + SNRIMFB] 0

= BD ' [L(D)L*(D™)]
1 - 2

= %;Mﬂ

- (Hfjwnﬁ)

Yo

1
>

Yo

0

(d) We know that the signal energy, &,, is the same in MMSE-LE and MMSE-DFE. So we
just have to comprise the noise energies in the equlizers.

9 Ny 1
OMMSE-DFE — W%
N, 1
< D! - (7)
| p |l QD) + 5575 | 1y
)
= OMMSE-LE
So,
Ex Ex
SNRyMSE-LE = — < — = SNRyMsE-DFE
OMMSE—-LE OMMSE—-DFE
and

SNRymse-rey = SNRymse—1e —1 < SNRyymsep-re — 1 = SNRymse—LE-

Note that the inequality in (7) follows from the inequality of part (c¢) with the quality
condition ¢, = 0 for n > 0. This condition is equivalent to L(D) = 1, which is also
equivalent to G(D) =1 and so Q(D) = 1.

(e) The first inequality is already proved in (d) and we just have to show

SNRymse-prey < SNRypp

Ee
SNRyyse-prey = SNRymsg-pre—1= ———— —1
OMMSE-DFE

0 &
-

lIp[l?
' snr 1+ 1
- e SNRyrs
= SNRMFB

where (%) and (xx) follow from (d) and (b), respectively.
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