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Abstract: 
Brain-machine interfaces (BMI) usually decode movement parameters from cortical activity to 
control neuroprostheses. This requires subjects to learn to modulate their brain activity to convey 
all necessary information, thus imposing natural limits on the complexity of tasks that can be 
performed. Here we demonstrate an alternative and complementary BMI paradigm that 
overcomes that limitation by decoding cognitive brain signals associated with monitoring 
processes relevant for achieving goals. In our approach the neuroprosthesis executes actions that 
the subject evaluates as erroneous or correct, and exploits the brain correlates of this assessment 
to learn suitable motor behaviours. Results show that, after a short user's training period, this 
teaching BMI paradigm operated three different neuroprostheses and generalized across several 
targets. Our results further support that these error-related signals reflect a task-independent 
monitoring mechanism in the brain, making this teaching paradigm scalable. We anticipate this 
BMI approach to become a key component of any neuroprosthesis that mimics natural motor 
control as it enables continuous adaptation in the absence of explicit information about goals. 
Furthermore, our paradigm can seamlessly incorporate other cognitive signals and conventional 
neuroprosthetic approaches, invasive or non-invasive, to enlarge the range and complexity of 
tasks that can be accomplished. 

 
Introduction 

Research on brain-machine interfaces (BMI) has demonstrated how subjects can voluntary 
modulate brain signals to operate neuroprosthetic devices1-6. These BMIs typically decode 
cortical correlates of movement parameters (velocity/position1,5-8,9 or muscular activity4) in order 
to generate the sequence of movements for the neuroprosthesis. This control approach directly 
links neural activity to motor behaviour10. Mounting evidence, however, seems to suggest that 
motor control is the result of the combined activity of the cerebral cortex, subcortical areas and 



spinal cord. In fact, many elements of skilled movements, from manipulation to walking, are 
mainly handled at the brainstem and spinal cord level with cortical areas providing an abstraction 
of the desired movement such as goals and movement onset11. A BMI can mimic this principle, 
as studies have shown the feasibility to decode such a kind of cognitive information associated 
with voluntary goal-directed movements3,12,13. As an advantage of this approach over typical 
BMIs, and once the individual decoders are learnt, subjects do not need to learn to modulate their 
brain activity in order to generate all necessary movement parameters to operate the 
neuroprosthesis, which imposes natural limits on the complexity of tasks that can be solved. 
Nevertheless, this approach requires an intelligent neuroprosthesis, emulating the roles of the 
subcortical areas and spinal cord, capable to learn and generate the desired behaviours. 

Here we demonstrate this alternative teaching paradigm (Fig. 1), where the neuroprosthesis learns 
optimal motor behaviours (or control policies) to reach a target location based on the decoding of 
human brain signals that carry cognitive information about the appropriateness of goal-directed 
movements —i.e., the error-related potential (ErrP)14,15, a time-locked potential elicited when 
actions do not match users’ expectations16-21. Error-related signals have been recently used to 
correct or adapt BMI decoders using both invasive22,23 and non-invasive recordings15,24. In our 
paradigm error information is exploited to learn a motor behaviour that accomplishes the user’s 
intended task from a set of basic pre-programmed actions. The user monitors the performance of 
the neuroprothesis as it executes a sequence of these actions. ErrPs are evoked by actions that the 
user considers wrong to achieve his desired goals, decoded online, and employed as a reward 
signal for a reinforcement learning algorithm (RL)25 that improves the neuroprosthesis behaviour. 
We tested this approach in three closed-loop experiments of increasing real-life applicability 
involving twelve subjects (Fig. 2A). They ranged from 1D cursor movement, to a simulated 
robot, and, finally, a real robot arm—both robots operating in a 2D space. 

Each experiment consists of two phases: training the ErrP decoder from the user’s 
electroencephalogram (EEG) signals and online operation of the neuroprosthesis which, using the 
trained decoder, learns different reaching tasks. For training the decoder, each subject observed 
around 350 robot movements (or device actions) while it tries to reach predefined targets with 
20% of wrong actions (i.e., movements away from the target location). During online operation, 
subjects, but not the neuroprosthesis, knew the target location and monitored the performance of 
the device. One run, lasting 100 device actions, was performed for each possible target (i.e., 
circles in Fig. 2A). The device controller was initialized to a random behaviour (i.e., 
equiprobable actions for all states) at the beginning of each run, and updated after each action 
based on the online decoding of the ErrPs. Whenever the device reached the target, the former 
was randomly reset to a new location. For experiments 2 and 3, there were two targets (practice 
targets) that were used during ErrP calibration and online operation; and two targets (new targets) 
that were only used during online operation. 

 
Results 

Decoding error-related EEG potentials 
ErrPs elicited in all protocols were consistent with previous studies20,21. The difference event-
related potential (ERP) for erroneous and correct actions of the device exhibited a characteristic 
waveform with prominent fronto-central positive and negative peaks at around 300 and 500 ms, 
respectively. Fig. 2B shows these ERPs at electrode FCz for all subjects in the three experiments. 



Statistically significant effects were observed on the latency but not the amplitude of these 
ERPs27,28 (see Supplementary Material). Accuracy of online single-trial decoding of the ErrPs 
was comparable for all experiments, independently of the of the task performed. Classification 
performance (73.8%, 72.5%, 74.3% on average for experiments 1 to 3 respectively) exceeded the 
chance level (except for one subject in experiment 2, see Fig. 3a)	  —a necessary condition for a 
reinforcement learning system to acquire an optimal control policy25. Remarkably, this decoding 
performance remained  similar to the overall accuracy (FDR-corrected two-tailed independent t-
test, p>0.05) during the whole experiment (see Fig. 3B) despite the fact that the neuroprotheses 
move randomly at the beginning of an experiment and the error rate decreases as the devices 
learn an optimal motor behaviour (i.e., control policy). 

To discard the influence of artifacts on the ErrP decoding, the data used to train the classifier 
included all possible movements for each class, thus reducing the possibility that classification 
was biased by their directions. For instance, during experiment 1, both targets are used for the 
classifier training, thus the error and correct assessments are not likely to be correlated with left 
or right eye movements. Moreover, results obtained when testing new targets in experiments 2 
and 3 further support the fact that ErrP classification depends on the movement evaluation and 
not on its direction. Indeed, the training set only contained samples where the target locations 
were Up and Down, while the BMI was also tested on targets Left and Right. Finally, to test 
whether the trained classifier discriminated different directions rather than assessments, we 
computed for each subject the accuracy of decoding the different pairs of movement directions 
(e.g., left versus right, up versus left, ...) from a fixed assessment (either correct or erroneous) 
with the same features and classifier used during the experiments. The mean accuracies obtained 
were of 52.16±5.22, 50.07±5.07, and 49.48± 6.41 for experiments 1 to 3, and thus did not exceed 
the chance levels of 56%, 54% and 54% (see Methods, ‘ErrP classifier’), proving that the 
classifier was not trained to distinguish movement directions or associated ocular artifacts, but 
user’s assessments. Additionally, statistical analysis of grand average ERPs shows significant 
differences only for assessment, but not for movement direction (see Methods and 
Supplementary Fig. S1). 

In summary, our ERP analysis supports the hypothesis that ErrPs reflect a common phenomenon 
across all experiments, where the protocol mainly affects the temporal characteristics of the brain 
response. 
 
ErrP-mediated acquisition of control policies 

During online operation, the device converged to steady performance after 4 targets (Fig. 2C and 
Fig. S2A), thus rapidly acquiring (quasi) optimal policies in all experiments and reaching desired 
targets from any starting position. On average users reached 12.38±5.66, 12.46±5.40 and 
12.75±6.63 targets per run for experiments 1, 2 and 3, respectively (see Fig. 4). In contrast, the 
number of targets reached following a random control policy is 2.27±1.56 for experiment 1, and 
2.32±1.54 for the other experiments. Despite there was a large variability in the convergence rate 
among subjects, most of them reached a number of targets significantly greater than chance 
(α=0.05). (see Fig. 2C, Fig. 4, Supplementary Fig. S2, and Supplementary movie). Figure 2C 
summarizes the performance in the three experiments when the corresponding device was tested 
on the same target locations used for training the ErrP classifier. It shows the number of actions 
required to reach each target within a run. Since the device was initialized at random positions, 



values were normalized to the initial distance to the target (i.e., a value of one corresponds to 
optimal performance). For illustration, data from all subjects and all the targets was fitted to an 
exponential function. For all subjects and targets there was a rapid decrease in the number of 
actions that converged towards values close to optimal performance; thus reflecting the 
acquisition of quasi-optimal behaviours (Fig. 4). 
In all experiments, the number of learned optimal actions consistently increased as more actions 
were performed. For experiment 1, the number of optimal actions learned for the visited states 
was significantly above chance level after 10 actions (false discovery rate (FDR)-corrected one-
tailed unpaired t-tests, p < 0.05). Furthermore, it consistently increased as more actions were 
performed (correlation r = 0.74, p < 1×10−8). The number of normalized actions required to reach 
the target converges, to 1.19±0.52 after 9 targets reached, very close to the optimal value (Fig. 
2C; red trace). For experiments 2 and 3, the convergence was slower due to the higher number of 
states and actions: whereas for experiment 1 the number of actions learnt was above chance after 
10 actions, for experiments 2 and 3 it was necessary to execute 15 actions to surpass chance 
level. (FDR-corrected one-tailed unpaired t-tests, p < 0.05). As in experiment 1, there was also a 
high correlation between the amount of performed actions and optimal actions learned (r = 0.84, 
p < 1×10−8 for both experiments). The number of normalized actions required to reach the target 
for experiments 2 and 3 was 2.00±0.76 and 1.97±0.75, slightly worse than for Experiment 1 (Fig. 
2C). In summary, all brain-controlled devices were operational almost from the beginning of the 
run (above chance results after a few actions), improving performance progressively over time 
(significant correlation between time and number of actions learnt) and approaching optimal 
behaviour at the end of each run (number of targets reached increasing throughout time, Fig. 4). 

 
Learning control policies to reach new targets 

Experiments with the robot arms demonstrate that control policies can be easily acquired to reach 
new targets, without the need of retraining the ErrP decoder. Figure 5A shows for the real robot 
experiment the number of actions required for practice and new targets. In both cases, the system 
improves its policy and approaches the optimal behaviour (see Fig. 4 and Supplementary Fig. 
S2). On average, users reached 14.42±7.81 and 12.54±6.44 targets for experiments 2 and 3 
respectively, significantly similar to the ones reached during practice targets (two-tailed paired t-
test, p=0.22 and p=0.90). Figures 5B and C illustrate the optimal policy for one practice and one 
new target, respectively. For experiments 2 and 3, there were no significant differences in the 
number of optimal actions learned between practice and new targets (FDR-corrected two-tailed 
paired t-test, p = 0.47 and p = 0.37, respectively). 
Similarly to the practice targets, the number of optimal actions learned was significantly above 
chance level after 4 and 14 performed actions for experiment 2 and 3, respectively (FDR-
corrected one-tailed unpaired t-tests, p < 0.05); and with a high correlation between the amount 
of performed actions and optimal actions learned (r = 0.80, p < 1×10−8 for both experiments). 
The final number of actions per target for these experiments was 1.81±0.48 and 1.47±1.12. This 
confirms that the ErrP does not depend on targets, as the ErrP classifier maintains its performance 
without needing to be retrained for unseen targets. 
 

 



Discussion 
These experiments illustrate a number of appealing properties associated with the use of error-
related brain signals to allow a BMI to teach neuroprostheses suitable motor behaviours. First, we 
exploit a brain signal naturally elicited by the user, without requiring the explicit learning and 
execution of ad-hoc mental tasks. Moreover, user’s training time is minimal —a calibration 
session is enough to model the user’s ErrP decoder (25 minutes on average for each subject and 
experiment). Second, this paradigm makes it possible to achieve tasks in a user-specific manner 
—the learned control policy depends on the individual user’s assessment. Third, single-trial 
decoding of ErrP does not need to be perfect to maneuver a neuroprosthesis —it suffices that the 
ErrP decoder performs statistically above random to learn the motor behaviour. Furthermore, the 
neuroprosthesis is operational as soon as the accuracy of the ErrP decoder is above chance level 
—which usually takes minutes as reported here— and keeps adapting indefinitely, as it is the 
case of human motor control. Finally, and perhaps more importantly, the ErrP is rather 
independent of the task (e.g., target or action type) —making control of neuroprostheses scalable 
to more complex tasks since the learning burden is on the robot side. 

Scalability is indeed a crucial property of the teaching BMI approach since, as the experimental 
results demonstrate, ErrPs reflect a common error processing mechanism in the brain across 
tasks18, and this was confirmed by our latest results, which showed that ErrP decoders can 
generalize across different tasks27,28. Importantly, error processing information from the brain can 
be observed using different recording signals such as human electroencephalogram (EEG)17-21, 
electrocorticogram (ECoG)23 and intracortical recordings29. ErrPs have also been reported and 
decoded in patients with severe motor disabilities30. Noteworthy, the development of adaptive 
mechanisms for BMIs is gaining increased attention31-33. ErrPs offer a natural alternative to drive 
adaptation in the absence of explicit information about goals for both invasive and non-invasive 
conventional control neuroprosthetic approaches.  
As a first demonstration of the proposed paradigm, we have made use of one of the most 
straightforward and simple RL algorithms, Q-learning. However, this approach—as many other 
RL algorithms- suffers from two main problems: task generalization and scalability. It is then an 
open question how the proposed BMI paradigm may generalize across tasks or scale to more 
complex scenarios. Notwithstanding, current state of the art on reinforcement learning offers very 
promising alternatives for the tractability of generalization and high-dimensional spaces, such as 
the use of transfer learning or prior knowledge via demonstration among others34. 
ErrPs have been exploited to correct and adapt BMIs as well as to improve human-computer 
interaction20,23,24,30. Along this line, a possibility that has been explored in rodents is to extract 
information from the reward-processing brain areas (i.e., nucleus accumbens)22 for RL-based 
adaptation of the BMI decoder35. Here we go beyond this BMI adaptation framework and, 
extending our previous 1D works21,26, demonstrate for the first time in humans how the teaching 
BMI paradigm enables the acquisition of suitable control policies, scales to neuroprostheses with 
a task complexity similar to state-of-the-art BMIs, and generalizes across different targets. 

In the experiments reported here, it is assumed that the neuroprosthesis owner wishes to initiate a 
voluntary, goal-directed movement whose low-level execution is delegated to subcortical, spinal 
cord and musculoskeletal structures. In our case, this lower level of motor control is emulated by 
an intelligent controller able to learn and to reuse control policies via ErrPs. Although a full 
demonstration of this extension to the teaching BMI approach remains to be proven, evidence 



suggests its feasibility. Firstly, cortical cognitive signals indicating goals3,12, self-paced onset of 
movements13, or anticipation of purposeful actions36,37 can be decoded at the single-trial level. 
Secondly, several control policies can be learned as demonstrated here and stored to form a 
repertoire of motor behaviours (i.e., to reach different targets within the environment). 

Note that, while in the current manuscript one control policy was associated with a specific 
target, one target could have several ways of being reached depending on the user’s preferences. 
Once the control policies are stored, the decoding of the error-related signals can be exploited to 
infer the desired behaviour from this repertoire rather than being used to learn a new control 
policy. This possibility has been recently explored in38. 
We postulate that the combination of all these sorts of cognitive brain signals would be sufficient 
for chronic operation of neuroprostheses, whose range of tasks may change over time. Such a 
possibility is critical for patients —especially if suffering from neurodegenerative diseases— as 
they must rely upon neuroprostheses for extended periods of time. Despite remaining hurdles 
such as large clinical studies, further research will uncover additional cognitive brain signals that 
will enrich this initial basic set, thus enlarging the repertoire of decision-making processes 
available for natural, intuitive control of neuroprostheses to perform goal-directed movements 
and bringing BMI closer to therapeutic reality. 

 
Methods 

All experiments were carried out in accordance with the approved guidelines. Experimental 
protocols were approved by the Commission Cantonale (VD) d'éthique de la recherché sur l'être 
humain (protocole 137/10). Informed written consent was obtained from all participants that 
volunteered to perform the experiments. 
 

Subjects and data recording 
Twelve able-bodied volunteers (four females, 23-24 years) participated in the study. EEG signals 
were recorded from 16 active electrodes located at Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, 
C2, C4, CP3, CP1, CPz, CP2, and CP4 (10/10 international system). The ground was placed on 
the forehead (AFz) and the reference on the left earlobe. EEG was digitized at 256 Hz, power-
line notch filtered at 50 Hz, and band-pass filtered at [1, 10] Hz. To reduce signal contamination, 
participants were also asked to restrict eye movements and blinks to indicated resting periods. 
 
Experimental setup 

All participants performed three experiments of different complexity, evaluated using the NASA-
TLX questionnaire (28.44±14.01, 42.33±23.31 and 46.92±22.19 for experiments 1 to 3) in a 
different age-matched set of nine subjects. Each experiment was carried out on a different day, 
lasting around 2.5 hours. The time elapsed between two consecutive experiments was 
17.58±10.09 days. In all experiments, subjects were instructed to monitor the device while it tried 
to reach a target (only known by the subject) and to assess whether the device actions were 
correct or incorrect. Each experiment was divided into two phases: training and online operation 
of the neuroprosthesis. Each phase was composed of several runs, each run consisting of 100 
device actions. During each run the target location remained fixed and, whenever the device 



reached that location, its position was randomly reset to a location at least two positions away 
from the target, see Fig. 2A. Target location was randomly chosen between runs.  

The training phase aimed at building a classifier able to detect error potentials. In the initial runs, 
the device performed erroneous actions with a fixed probability (20%). For all experiments, two 
target locations were used in this phase. After each run, all the collected data was used to train the 
ErrP classifier27,28. Once the decoding accuracy was above 80%, or four runs were elapsed, an 
additional run was executed where the output of the classifier was used to adapt the device 
controller using RL (see below). Thus, in this RL run the error probability was variable. If the 
accuracy in this RL run was below random, the classifier was retrained with additional RL runs 
until the criterion (accuracy above random) was reached. Subjects needed a median (± mean 
absolute deviation) of 1.00 ± 0.51 additional RL training runs. The mean duration of the entire 
training phase for all subjects and experiments was 25 minutes. The maximum length was 45 
minutes. 

In the online operation phase, the information decoded from the EEG (indicating whether the 
subject considered the action as correct or erroneous) was used as a reward signal to learn the 
behaviour through RL. One run was performed per target location (2 runs in the case of 
experiment 1, and 4 runs for experiments 2 and 3). In the last two experiments we tested the 
generalization capabilities of the proposed approach by including target locations that were not 
used in the training phase. In all RL runs, the device controller was initialized to a random 
behaviour where all actions at a given location are equiprobable. 
Experiment 1: Moving Cursor21 (Fig. 2A, Left). Participants faced a computer screen showing 
a horizontal grid with nine different positions (states; c.f., squares in Fig. 2A), including one blue 
moving cursor (device) and one red square (target). The cursor could execute two actions: move 
one position to the left or to the right. When the cursor was at the boundaries (i.e., at the left-or 
right-most states), actions that moved it out of the state space were not allowed. The time 
between two consecutive actions was drawn randomly from a uniform distribution within the 
range [1.7, 3.0] s. Only states at the left-most and right-most positions were used as targets. 
Experiment 2: Simulated Robotic Arm (Fig. 2A, Center). Subjects faced a computer screen 
displaying a virtual robot (device). We simulated a Barrett whole arm manipulator (WAM) with 
7 degrees of freedom using the RobotToolkit framework developed by the LASA laboratory at 
EPFL (http://lasa.epfl.ch). The robot could place its end-effector at 13 different positions (states; 
c.f., orange squares in Fig. 2A), with one position in green (target). It could perform four actions: 
moving one position to the left, right, up, or down. As before, when the device was at a boundary 
state, actions that moved the robot out of the state space were not allowed. In contrast to the first 
experiment, the robot movements between two states were continuous; lasting ~500 ms. The time 
between two consecutive actions was randomly distributed within the range [2.5, 4.0] s. During 
the training phase, the targets were located at up-and down-most positions (i.e., practice targets). 
For the online operation phase, the up-, down-, left-, and right-most positions were tested as 
targets. 

Experiment 3: Real Robotic Arm (Fig. 2A, Right). This experiment followed the same design 
as experiment 2 but involving a real robotic arm (Barret WAM). The robot was two meters away 
from the user and was pointing at states on a Plexiglas transparent panel between the two. The 
distance between two neighbor states was 15 cm. 
 



ErrP classifier 
EEG signals were spatially filtered using common-average-reference and downsampled to 64Hz. 
Features were extracted as the signal from eight fronto-central channels (Fz, FCz, Cz, CPz, FC1, 
FC2, C1, and C2) within a time window of [200, 800] ms from the device movement onset and 
concatenated to form a vector of 312 features. These vectors were normalized and decorrelated 
using principal component analysis39. The most discriminant features were selected based on the 
r2 score using a five-ten-fold cross-validation on the data of the training phase. On average, 
36±13 features were selected per subject. ErrPs were decoded using a linear discriminant analysis 
(LDA) classifier. 
To assess the statistical significance of the ErrP classifier accuracies during online operation, we 
compute the chance levels (α =0.05) according to the available number of trials using the 
binomial cumulative distribution40. The estimated chance levels were 56% for Experiment 1 and 
54% for Experiments 2 and 3. 

 
Reinforcement learning (RL) with ErrPs 

The RL strategy25 was modeled by a Markov decision process, denoted by the tuple {S, A, r, γ} 
with S being the state space (the possible positions of the device), and A the action space (the 
possible actions of the device). The reward value r represented the goodness of the executed 
action at a given state and γ is a time discount factor. The goal of RL was to obtain a control 
policy π:S→A mapping the state space into the action space (i.e., which action had to be 
performed at each state) so as to maximize the expected return R = Σ∞k=0

 γkrk+1 at time k. The RL 
implementation was the Q-learning iterative algorithm25: 
 

Qk+1(sk, ak) = Qk (sk, ak) + α[rk+1(sk, ak)+ γ maxa'∈A Qk (sk+1, a') − Qk(sk, ak)],  (1) 

 
where k is the current step and α is the learning rate. Parameters γ and α were set empirically to 
0.4 and 0.1, respectively. During online operation, at time k, the device executes an action ak that 
takes it from state sk to state sk+1, according to its current policy. The output of the ErrP classifier 
is then used to obtain the reward value rk+1(sk, ak); it takes a value of -1 if the action is classified 
as error, otherwise is set to +1. This reward was used to update the RL policy after each action. 
All Q-values were set to zero at the beginning of each run (k=0), corresponding to a random 
control policy. At the end of the run, the final policy π was computed as the policy that, at each 
state s, always followed the action aʹ′  with the maximum Q-value, π(s) = arg maxa'∈A Q(s, aʹ′). 

At each step k, a ε-greedy strategy was used to select the next action ak to be executed. This 
policy selected the action with highest Q-value (best action) for (100−ε) % of the times, while a 
random action was selected the remaining times. The experiments started with a completely 
exploratory behaviour (ε = 100%), and every time an exploratory action was chosen ε was 
decreased by a constant factor (5%) until reaching a minimum value (20%) to always maintain a 
small percentage of exploration. 

 
 



Acquisition of control policies (or behaviours) 
We evaluated the acquisition of control policies using the number of optimal actions (i.e., those 
leading to the target location, c.f. arrows in Fig. 5B, and Fig. 5C) learned by the controller at a 
given time. Only states already visited were considered in this measure. We also compared the 
number of optimal actions learned to the chance level, computed as the number of actions learned 
with random rewards (i.e., ±1 with equal probabilities). Statistical tests were corrected with the 
false discovery rate, FDR41. 
Learning of the control policies was also assessed in terms of the number of actions required to 
reach the target location within a run. To account for the different initial states, the number of 
actions is divided by the initial distance to the target. For illustration purposes, we fitted the data 
of each experiment to an exponential curve, y =a + be−cx, where y is the normalized number of 
actions required to reach the target for the x-th time (c.f., Figs. 2C, 5A and Supplementary Fig. 
S2). 

 
Analysis of ocular artifacts 

We assessed the possibility of EEG signal contamination by movement-related ocular artifacts. 
We computed the grand average ERPs (correct and error) of all channels separately for each 
different action (moving left, right, up, or down). No substantial differences were found among 
these ERPs, suggesting little influence of eye movements. This is illustrated in Supplementary 
Fig. S1 that shows the averages of three fronto-central electrodes (FC3, FCz and FC4), separated 
by assessment (correct or error) and movement direction (left, right, up or down). As can be seen, 
the differences among assessments were larger than the differences among directions. This is 
consistent with previous studies that found no influence of this type for experiment 120,21. 
To evaluate the existence of statistical differences due to both assessments and movement 
directions, we performed 2 (factor assessment: error or correct) x 4 (factor movement direction: 
left, right, up or down) within-subjects ANOVAs on the values of the most prominent positive 
and negative peak amplitudes of the grand averages of channel FCz (note that for experiment 1 
the ANOVA was 2 x 2 since there were only two possible movement directions). When needed, 
the Geisser-Greenhouse correction was applied to assure sphericity. The assessment and direction 
main effects and the assessment x direction interaction were studied. 

Regarding the main effects, statistical differences were found for the assessment for all the 
experiments, for the positive (F1,11 = 17.277, p = 0.002, F1,11 = 15.567, p = 0.002, and F1,11 = 
14.202, p = 0.003 for experiments 1 to 3) and negative (F1,11 = 10.087, p = 0.009, F1,11 = 14.658, 
p = 0.003, and F1,11 = 11.581, p = 0.006) peaks. On the contrary, no significant differences were 
found for the direction main effect (p > 0.1). Regarding the assessment x direction interaction, 
significant differences were found during experiment 2 (F3,33 = 3.721, p = 0.02 and F3,33 = 3.903, 
p = 0.02 for the positive and negative peak); and during experiment 3 for the negative peak (F3,33 
= 3.461, p = 0.03) but not for the rest of the cases (p > 0.35). These results indicated that the 
largest differences on the potentials were due to the different assessments (error / correct), 
whereas the movement directions of the device affected less the potentials. 
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Figures:  

 
 

Fig. 1. Teaching BMI paradigm. In contrast with the standard control approach, in this 
paradigm users assess the actions performed by the neuroprosthesis as erroneous or 
correct. This information is decoded from the user’s brain signals, and exploited by the 
reinforcement learning algorithm embedded in the neuroprosthesis controller to learn 
appropriate motor behaviours (or control policies) to perform different reaching tasks. See 
also Supplementary movie. 



 
Fig. 2. Learning optimal behaviours from error-related brain activity. [A] Experimental 

setup. In experiment 1, the device (blue square) can move one position to the left or to the 
right in order to reach the target (red square). In experiments 2 and 3, the robot moves 
left, right, up, or down across 13 states (orange squares) to reach a target (green square). 
Solid and dashed circles denote practice and new targets, respectively. [B] Grand-average 
difference event-related potentials (ERP) for each experiment during the training phase at 
channel FCz (N = 12); t=0 ms represents the action onset. This difference ERP is 
computed as the difference of the subjects’ evoked EEG response after erroneous and 
correct actions of the device. [C] Normalized number of actions needed to reach the 
targets within a run. Lines correspond to the fitting of an exponential function to the data 
of each experiment, with the 95% confidence interval shown as shadows of the fitting line 
(all subjects combined). The horizontal line (Y =1) indicates the optimal performance 
(See Methods). The inset shows the mean (± the 95% confidence) convergence value of 
the curve for each experiment. 



 

 
Fig. 3. Online classification accuracy. (a) For each subject and experiment, ErrP online 

classification accuracy. The x-axis and y-axis represent the correct and error accuracies, 
respectively. Each dot corresponds to the average online accuracy achieved by each 
subject. (b) Decoding performance throughout the RL execution. For each experiment, 
decoding performance (mean ± SEM, thick ± thin red lines) throughout one run, where x-
axis represents the actions along the run. The performance is computed as the accuracy 
obtained in a sliding window of 10 actions. The black horizontal line indicates the 
accuracy for each experiment, with the SEM shadowed. Results are averaged across runs 
(2 and 4 for experiments 1 and, 2-3 respectively), and across subjects (N=12). Confidence 
intervals (α=0.05) for the accuracies throughout the run were of [71.30, 80.47], [70.93, 
77.84], [68.67, 81.52] for experiments 1 to 3, respectively. The results showed no 
substantial differences in the accuracy variability throughout the runs. 

 



 

 
 
Fig. 4. Number of reached targets within a run. Each subfigure corresponds to either practice 

or new targets for each experiment. For each subfigure: (Top) Raster Plot, where x-axis 
represents time within a run (from 1 to 100 actions performed by the device), and each 



row in the y-axis represents one of the 12 subjects for each of the two targets. Every tick 
corresponds to the moment a target is reached. (Bottom) Histogram (bin size of 10 
actions) associated with the upper raster plot. Each bar represents the number of times a 
target was reached for the corresponding bin. Additionally, the trend line is also plotted in 
red. (Right) Histogram for each subject and target with the number of times a target was 
reached. Red dots indicate above chance results (confidence 95%). Results show how the 
time required for reaching the targets decreases as the run goes. Behaviour is similar 
across subjects, experiments and targets. 



 
 
Fig. 5. Experiment 3, comparing performance between practice targets (Up and Down), and 

new targets (Left and Right). [A] Normalized number of actions required to reach each 
target as in Fig. 2. [B] Optimal actions per state (denoted by arrows) for a practice target 
(Up), and [C] for a new target (Left). The green square marks the target location. The 
number of subjects for which the action was correctly learned is color encoded in gray 
levels. 
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Methods 

Analysis	  of	  error-‐related	  potentials	  waveforms	  

We	  analyzed	  variations	  in	  the	  grand	  average	  EEG	  potentials	  for	  both	  conditions,	  i.e.,	  erroneous	  
and	  correct	  device	  actions	  (see	  Fig.	  2B	  and	  Supplementary	  Fig.	  S1,	   left	  panel).	  To	  this	  end	  we	  
performed	   a	   statistical	   analysis	   on	   the	   difference	   ERP	   (error	  minus	   correct	   condition)	   for	   all	  
electrodes	  in	  the	  time	  window	  [-‐200,	  1000]	  ms,	  t	  =0	  ms	  being	  the	  instant	  when	  the	  device	  starts	  
to	  move.	  Only	  signals	  from	  the	  training	  runs	  —having	  a	  constant	  error-‐rate	  (20%)—	  are	  used	  in	  
this	  analysis.	  These	  runs	  yielded	  between	  200	  and	  400	  trials	  for	  each	  subject.	  

A	  3	  (brain	  area:	  frontal,	  central	  or	  centro-‐parietal	  electrode	  locations)	  x	  3	  (left,	  midline	  or	  right	  
locations)	  x	  3	  (experiments)	  within-‐subjects	  ANOVA	  was	  performed	  on	  the	  peak	  amplitudes	  and	  
latencies	  of	  the	  difference	  average.	  Each	  group	  is	  summarized	  in	  Supplementary	  Table	  1.	  When	  
needed,	  the	  Geisser-‐Greenhouse	  correction	  was	  applied	  to	  assure	  sphericity.	  Pairwise	  post-‐hoc	  
tests	   with	   the	   Bonferroni	   correction	   were	   computed	   to	   determine	   the	   differences	   between	  
pairs	  of	  experiments.	  

We	  mainly	   found	   significant	   effects	   on	   the	   latency	   but	   not	   the	   amplitude	   of	   the	   difference	  
potential.	   Latency	   increased	  with	   the	  complexity	  of	   the	  experiments.	  The	   type	  of	  experiment	  
significantly	  affected	  the	  latencies	  of	  both	  the	  positive	  (F2,22	  =	  41.594,	  p	  =3×10

−8)	  and	  negative	  
peaks	  of	  the	  difference	  ERP	  (F2,22	  =7.522,	  p	  =0.003).	  The	  brain	  area	  also	  affected	  the	  latencies	  of	  
the	  positive	  peak	  (F1.32,14.55	  =	  14.175,	  p	  =0.001)	  but	  not	  the	  negative	  one	  F2,22	  =0.911,	  p	  =0.417).	  
Similarly,	  the	  hemisphere	  affected	  the	  latency	  of	  the	  positive	  peak	  (F2,22	  =5.279,	  p	  =	  0.013),	  but	  
not	   the	   latency	   of	   the	   negative	   one	   (F2,22	   =1.711,	  p	   =0.204).	  No	   significant	   interactions	  were	  
found.	  

For	  the	  positive	  peak	  latencies,	  post-‐hoc	  pairwise	  tests	  revealed	  significant	  differences	  between	  
experiments	  1	  and	  2	  (p	  =0.0001),	  and	  between	  experiments	  1	  and	  3	  (p	  =0.0001),	  and	  close	  to	  
significant	  difference	  between	  experiments	  2	  and	  3	  (p	  =0.068).	  For	  the	  negative	  peak	  latencies,	  
there	  were	  significant	  differences	  between	  experiments	  1	  and	  3	   (p	  =0.009),	  but	  not	  between	  
experiments	  1	  and	  2	  (p	  =0.357)	  or	  experiments	  2	  and	  3	  (p	  =0.122).	  	  

In	  contrast,	  the	  amplitudes	  of	  the	  positive	  and	  negative	  peaks	  were	  not	  significantly	  affected	  by	  
the	  experiment	   (F2,22	   =0.124,	  p	   =0.884	  and	   F2,22	   =2.304,	  p	   =0.123,	   respectively)	   nor	   the	  brain	  
area	   (F1.19,13.08	   =	   1.227,	   p	   =0.737	   and	   F1.32,14.47	   =0.071,	   p	   =0.857).	   The	   laterality	   significantly	  
affected	  the	  positive	  peak	  amplitude	  (F2,22	  =4.556,	  p	  =0.022),	  and	  was	  close	  to	  significance	  for	  
the	  negative	  peak	   (F2,22	  =3.425,	  p	  =0.051).	  As	   in	   the	  case	  of	   the	  peak	   latencies,	  no	  significant	  
interactions	  were	  found.	  

	  

	  

	  



	  

	  

Fig.	  S1.	  Grand	  averaged	  ERPs.	  Grand	  averaged	  ERPs	  in	  channels	  FC3,	  FCz,	  and	  FC4	  over	  all	  subjects	  (N=12).	  Each	  row	  corresponds	  to	  
a	  different	  experiment.	   Left	  panel	  displays	   the	  grand	  averages	  at	   FCz	  of	   correct	   (blue),	  error	   (red),	   and	  difference	   (black).	  
Center	   and	   right	  panels	   illustrate	   the	  grand	  averages	   for	   correct	   and	  erroneous	  assessments	  of	   each	  movement	  direction	  
(left,	  right,	  up	  or	  down),	  respectively.	  These	  two	  panels	  show	  that	  the	  averaged	  signals	  are	  very	  similar	  across	  all	  directions,	  
reducing	   the	  possibility	   that	   the	  direction	  of	   robot	  movements	  may	  have	  a	   systematic	   influence	  on	   the	  ErrP	   classification	  
process.	  



	  

	  

Fig.	  S2.	  Acquisition	  of	  control	  policies.	  (a)	  Acquisition	  of	  control	  policies	  for	  all	  the	  targets,	  and	  each	  experiment	  separately,	  as	  a	  bar	  
plot	  each	  time	  a	  target	  was	  reached.	  Additionally,	   the	  median	   line	   is	  also	  shown	  in	  red.	   (b)	  Acquisition	  of	  control	   for	  each	  
experiment	  and	  target.	  Dots	  represent	  the	  normalized	  number	  of	  actions	  required	  to	  reach	  a	  target	  location	  during	  an	  online	  
run	  (all	  subjects	  together).	  The	  continuous	  line	  corresponds	  to	  an	  exponential	  fitting	  (y	  =a	  +	  be−cx)	  of	  the	  data.	  The	  shadowed	  
area	  corresponds	  to	  the	  95%	  confidence	  interval	  of	  the	  fitting.	  A	  consistent	  decrease	  in	  the	  number	  of	  actions	  required	  to	  
reach	  the	  goal	  is	  observed	  for	  all	  targets.	  Moreover,	  no	  difference	  is	  observed	  in	  experiments	  2	  and	  3	  between	  practice	  (up	  
and	  down,	  red)	  and	  new	  targets	  (left	  and	  right,	  blue).	  



Table	   S1.	   Electrode	   locations	   used	   as	   factors	   for	   the	   ERP	   statistical	   analysis.	   Each	   row	  
corresponds	  to	  the	  brain	  areas,	  while	  columns	  correspond	  to	  the	  laterality.	  	  

	   	   	  

	   Left	   Midline	   Right	  

Frontal	   FC3,	  FC1	   Fz,FCz	   FC2,FC4	  

Central	   C3,C1	   Cz	   C2,C4	  

Centro-‐parietal	   CP3,CP1	   CPz	   CP2,CP4	  

	  

	  

	  

Movie	  S1.	  Demonstration	  of	  the	  teaching	  BMI	  paradigm.	  The	  movie	  demonstrates	  the	  online	  
operation	  of	  our	  teaching	  BMI	  paradigm	  with	  a	  real	  arm	  robot	  executing	  a	  reaching	  task.	  
The	  user	  monitors	  the	  performance	  of	  the	  robot	  arm	  that	  has	  no	  knowledge	  about	  the	  
target	  location	  (green	  square).	  Error-‐related	  potentials	  (ErrPs)	  are	  elicited	  whenever	  an	  
executed	  action	  does	  not	  match	  the	  user’s	  expectations.	  These	  ErrPs	  are	  decoded	  online	  
as	   shown	   in	   the	   bottom-‐left	   part.	   The	   outcome	   of	   this	   decoding	   is	   used	   as	   a	   reward	  
signal	  for	  a	  reinforcement	  learning	  algorithm	  that	  updates	  the	  control	  policy.	  This	  policy	  
is	  shown	  in	  the	  upper-‐right	  panel,	  where	  arrows	  show	  the	  estimated	  optimal	  action	  for	  
each	  state.	  As	  observed,	  acquisition	  of	   (quasi-‐)optimal	  actions	   is	  very	  fast.	  Trajectories	  
are	  initially	  random	  and	  progressively	  become	  straight	  throughout	  the	  run	  (100	  actions).	  

	  

	  


