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Abstract

In this paper we want to start the discussion on whether
image based 3-D modelling techniques can possibly be used
to replace LIDAR systems for outdoor 3D data acquisi-
tion. Two main issues have to be addressed in this context:
(i) camera calibration (internal and external) and (ii) dense
multi-view stereo. To investigate both, we have acquired
test data from outdoor scenes both with LIDAR and cam-
eras. Using the LIDAR data as reference we estimated the
ground-truth for several scenes. Evaluation sets are pre-
pared to evaluate different aspects of 3D model building.
These are: (i) pose estimation and multi-view stereo with
known internal camera parameters; (ii) camera calibration
and multi-view stereo with the raw images as the only input
and (iii) multi-view stereo.

1. Introduction

Several techniques to measure the shape of objects in
3-D are available. The most common systems are based
on active stereo, passive stereo, time of flight laser mea-
surements (LIDAR ) or NMR imaging. For measurements in
laboratories, active stereo systems can determine3-D coor-
dinates accurately and in real-time. However, active stereo
is only available for controlled indoor environments.

A second technique which is also applicable to mea-
sure outdoor environments is time of flight laser scanning
(LIDAR ). In contrast to image based techniques,LIDAR sys-
tems are able to directly produce a 3-D point cloud based on
distance measurements with an accuracy of less than 1 cm.
The downside are high costs for the system and a time con-
suming data acquisition.

Automatic reconstruction from multiple view imagery
already is a low-cost alternative to laser systems, but could
even become a replacement once the geometrical accuracy
of the results can be proven. The aim of this paper is to
investigate whether image based3-D modelling techniques
could possibly replaceLIDAR systems. For this purpose we

Figure 1. Diffuse rendering of the integratedLIDAR 3-D triangle
mesh for the Herz-Jesu-P8 data-set.

have acquiredLIDAR data and images from outdoor scenes.
The LIDAR data will serve as geometrical ground truth to
evaluate the quality of the image based results.

Our evaluation sets include camera calibration as well
as the evaluation of dense multi-view stereo. Benchmark
data-set for both, camera calibration (internal and exter-
nal) [9] and for stereo and multi-view stereo [16, 15] are
available. To generate ground truth usually a measurement
techniques has to be used which is superior to the evalua-
tion techniques. Seitzet al. [16] and Scharsteinet al. [15]
use a laser scanner and an active stereo system, respectively,
to get the advantage w.r.t. multi-view stereo. In the ISPRS
calibration benchmark [9] the ground truth is estimated on
large resolution images,i.e. for a more accurate feature lo-
calisation, and only small resolution images are provided as
benchmark data. However, in these data-sets ground truth
is measured and is assumed to be known exactly. Our ap-
proach is different from that. Similar to Seitzet al. [16]
we use laser scans to obtain ground truth but we also esti-
mate the variance of these measurements. Image based ac-
quisition techniques are evaluatedrelative to this variance.
This allows to compare different algorithms w.r.t. to each
other. Moreover we can specify, based on this variance,



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

at which point image based techniques become similar to
LIDAR techniques,i.e. benchmark results can be classified
into correct if its relative error approaches the uncertainty
range of the ground truth.

Our benchmark data contains realistic scenes that could
also be of practical interest,i.e. outdoor scenes for which
active stereo is not applicable. This is a major difference
to existing data-sets. We use furthermore high resolution
images to be competitive withLIDAR .

The paper is organised as follows: Sec. 2 deals with the
LIDAR system used for our experiments. The preparation of
the raw point cloud and the integration into a combined tri-
angle mesh is discussed. Sec. 2.2 describes the generation
of ground truth for the images from theLIDAR data. This
includes the camera calibration and the generation of a per
pixel depth and variance for each image. Sec. 3 evaluates
different aspects of image based3-D acquisition. In par-
ticular these are camera calibration and multi-view stereo
reconstruction.

2. Ground truth estimation from LIDAR data

2.1. LIDAR acquisition

The datasource for ground truth in our project is laser
scanning (LIDAR ). A laser beam is scanned across the ob-
ject surface, measuring the distance to the object for each
position. We had a Zoller+Fröhlich IMAGER 5003 laser
scanner at our disposition. Multiple scan positions are re-
quired for complex object surfaces to handle missing parts
due to occlusions. Even though fully automatic methods
exist for registration, we have chosen a semi-automatic way
utilising software provided by the manufacturer in order to
get a clean reference.

2-D targets are put into the scene and marked interac-
tively in the datasets. Then the centre coordinates are auto-
matically computed and a registration module computes a
least squares estimation of the parameters for a rigid trans-
form between the datasets. Poorly defined targets can be
detected and manually removed. The resulting standard de-
viation for a single target is 1.1 mm for the Herz-Jesu and
1.5 mm for the Ettlingen-castle data-set. The targets are vis-
ible in the camera images as well and are used to linkLIDAR

and camera coordinate systems.
First, some filters from the software are applied to mask

out bad points resulting from measurements into the sky,
mixed pixels and other error sources. Then, theLIDAR

data is transformed into a set of oriented3-D points. Fur-
thermore, we integrated all data-set into a single high-
resolution triangle mesh by using a Poisson based recon-
struction scheme. See Kazhdan [7] for more details. A ren-
dering of the resulting mesh is shown in figs. 1 and 2.

We are now provided with a huge triangle mesh in the
local coordinate system defined by one of theLIDAR scan

Figure 2. Diffuse rendering of the integratedLIDAR 3-D triangle
mesh for the fountain-P11 data-set.

position. The next section deals with the calibration of the
digital cameras in this coordinate system.

2.2. Image acquisition

Together with theLIDAR data the scenes have been cap-
tured with a Canon D60 digital camera with a resolution of
3072 × 2028 square pixels.In this section we describe the
camera calibration and the ground truth3-D model prepa-
ration by using theLIDAR data. Our focus is thereby not
only on the ground truth estimation itself but also on the
accuracy of our ground truth data. TheLIDAR 3-D esti-
mates are themselves the result of a measurement process
and therefore given by3-D pointsand their covariance ma-
trix. Our aim is to propagate the variance into our image
based ground truth estimation. This is an important point
for the preparation of ground truth data in general.

Errors for the multi-view stereo evaluation are intro-
duced by:(i) the3-D accuracy of theLIDAR data itself and
(ii) by the calibration errors of the input cameras. The lat-
ter does influence the quality of multi-view stereo recon-
structions strongly. Evaluation taking these calibrationer-
rors into account should therefore be based on per image
reference depth maps (more details are given in sec. 3.2) as
opposed to Seitzet al. [16], who evaluate the stereo recon-
structions by the Euclidean3-D distance between estimated
and ground truth triangle mesh.

2.3. Ground truth camera calibration

LIDAR data and camera images are linked via targets that
are visible in both datasets. Thus the laser scanner pro-
vides 3-D reference coordinates that can be used to compute
the calibration parameters for each camera. For the camera
calibration we assume a perspective camera model with ra-
dial distortion [6]. The images are taken without changing
the focal length, such that the internal camera parameters

2
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Figure 3. Example of target measurements with their (enlarged)
covariance for the Herz-Jesu data.

Figure 4. Example of feature tracks and their covariance. A small
patch around the feature position is shown for all images. Under-
neath the covariance is shown as a gray-level image.

θint = {f, s, x0, a, y0, k1, k2} (K-matrix and radial dis-
tortion parametersk1,2) are assumed to be constant for all
images. The external camera parameters are the position
and orientation of the camera described by6 parameters
θext = {α, β, γ, tx, ty, tz}. The total number of parame-
tersθ for N images is thus7+6N . To calibrate the cameras
we usedM targets, which have been placed in the scene
(shown in fig. (3)). The3-D positionYj ; j = 1 . . . M and
the covarianceΣY for these is provided by the laser scan
software. In addition we used matched feature points across
all images. From the around20000 feature tracks we kept
200 as tie points. These have been selected as to have long
track size and large spatial spreading in the images. Further-
more, we checked these remaining tracks visually for their
correctness.

In each input imagei we estimated the2-D positionsyij

and the covarianceΣij matrices of the targets and the fea-
ture points. Examples are given in fig. 4.

Let y denote all measurements,i.e. the collection of3-D
pointsYj and the2-D image measurementsyij . The ex-
pected value of all internal and external camera parameters

θ = {θint,θext1 , . . . ,θextN
} can be written as:

E[θ] =

∫

p(y′)p(θ′ |y′) θ′ dy′ dθ′. (1)

Here p(y′) is the likelihood of data,i.e. among all3-D
pointsY′

i and image measurementsy′

ij only those will have
a large likelihood that are close to the estimated valuesy:

p(y′

ij) ∝ exp
(

−0.5(yij − y′

ij)
T Σ−1

ij (yij − y′

ij)
)

p(Y′

j) ∝ exp
(

−0.5(Yj − Y′

j)
T Σ−1

Y (Yj − Y′

j)
)

(2)

The second term,p(θ′ |y′), is the likelihood of the calibra-
tion. This is a Gaussian distribution and reflects the accu-
racy of the calibration, given the data pointsy′. This accu-
racy is given by the reprojection error:

e(θ) =

N
∑

i

M
∑

j

(Pi(θ)Yj − yij)
T

Σ−1

ij (Pi(θ)Yj − yij) ,

wherePi(θ) projects a3-D pointYj to the image pointy′

ij

and the calibration likelihood becomes:

p(θ |y) ∝ exp (−0.5e(θ)) . (3)

The covarianceΣ of the camera parameters is similarly
given by:

Σ=

∫

p(y′)p(θ′ |y′) (E[θ′]−θ′) (E[θ′]−θ′)
T

dy′ dθ′ .

(4)
To compute the solution of eqs. (1) and (4), we apply a sam-
pling strategy. The measurement distributionp(y) is sam-
pled and given a specific sampley′ the parametersθ′ are
computed as the ML estimate of eq. (3):

θ′ = arg max
θ

{log p(θ |y′)} . (5)

Using eq. (5) and eq. (2) we can approximate the expected
values and the covariance in eqn. (1) and (4) by a weighted
sum over the sample estimates. As a result we obtain all
camera parametersθ by E[θ] and their covarianceΣ. This
is a standard procedure to estimate parameter distributions,
i.e. their mean and covariance.

2.4. Ground truth 3-D model

Given the mean and variance of the camera calibration
we are now in the position to estimate the expected value of
the per pixel depth and variance. Again we sample the cam-
era parameter distribution given byE[θ] andΣ in eq. (1)
and eq. (4):

p(θ′) =
exp

(

− 1

2
(E[θ] − θ′)

T
Σ−1 (E[θ] − θ′)

)

2π
7+6N

2 | Σ |
, (6)

3
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Figure 5. Four images (out of 25) of the fountain-R25 data-set.

and collect sufficient statistics for the per pixel depth val-
ues by the first intersection of the laser scan triangle mesh
with the camera ray through each pixel. The result is the
meanDij

LIDAR and varianceDij
σ of the depth value for all

pixelsi in all camerasj. Note, that this procedure allows to
evaluate multi-view stereo reconstructions independent on
the accuracy of the camera calibration. If the performance
of the stereo algorithm is evaluated in3-D (e.g. by the Eu-
clidean distance to the ground truth triangle mesh [16]) the
accuracy of the camera calibration and the accuracy of the
stereo algorithm is mixed. Here, the evaluation is relative
to calibration accuracy,i.e. pixels with a large depth vari-
ance, given the uncertainty of the calibration, will influence
the evaluation criterion accordingly. Large depth variance
pixels appear near depth boundaries and for surface parts
with a large slant. Obviously, these depth values vary most
with a varying camera position. The reference depth maps
and their variance will only be used for evaluation of multi-
view stereo in sec. 3.2. When the goal is to evaluate a trian-
gle mesh without a camera calibration, the evaluation will
be done in3-D equivalent to [16]. This applies to the first
two categories of data-sets described in sec. 3.

3. Evaluation of image based 3-D techniques

The 3-D modelling from high resolution images as the
only input has made a huge step forward in being accurate
and applicable to real scenes. Various authors propose a so
called structure and motion pipeline [2, 12, 13, 14, 17, 21,
22]. This pipeline consists of mainly three steps. In the first
step, the raw images undergo a sparse-feature based match-
ing procedure. Matching is often based on invariant fea-
ture detectors [11] and descriptors [10] which are applied to
pairs of input images. Secondly, the position and orienta-
tion as well as the internal camera parameters are obtained
by camera calibration techniques [6]. The third step takes
the input images, which have often been corrected for radial

distortion, and the camera parameters and establishes dense
correspondences or the complete3-D model (see [16] for an
overview).

We divided our data in to three categories which are used
to evaluate several aspects of the3-D acquisition pipeline:

• 3-D acquisition from uncalibrated raw images:The
data-sets in this category are useful to evaluate tech-
niques that take their images from the internet,e.g.
flickr (see for instance Goeseleet al. [5]), or for which
the internal calibration of the cameras is not available.
It is useful to evaluate here the camera parameter esti-
mation as well as the accuracy of the3-D triangle mesh
that has been computed from those cameras. Unfor-
tunately, algorithms that produce a triangle mesh from
uncalibrated images are still rare. Fully automatic soft-
ware is to our knowledge not available such that we
restrict the evaluation to the camera calibration, as will
follow in the next section.

• 3-D acquisition with known internal cameras: Of-
ten, it is possible to calibrate the internal camera pa-
rameters by using a calibration grid. These data-set are
the ideal candidate to study the possibility to replace
LIDAR scanning by image based acquisition. Results
that integrate the camera pose estimation and the3-D
mesh generation could not be obtained.

• Multi-View Stereo given all camera parameters:
These data-set are prepared to evaluate classical Multi-
View Stereo algorithms similar to the Multi-View
Stereo evaluation by Seitzet al. [16].

The data-set [1] are named by the convention:
sceneName-XN, where X=R,K,P correspond to the three
cathegories above ((R)aw images given, (K) matrix given,
(P)rojection matrix given); N is the number of images in
the data-set. In practice image based reconstructions should
consist of and combine calibrationand multi-view stereo.
This is reflected by the first two categories. However, often
one can find that both problems are handled separately. We
therefore included one category for multi-view stereo.

3.1. Camera calibration

To compare results of self-calibration techniques based
on our ground truth data we first have to align our ground
truth camera track with the evaluation track by a rigid3-D
transformation (scale, rotation and translation). This pro-
cedure transforms the coordinate system of the evaluation
into our coordinate system. We used a non-linear optimisa-
tion of the 7 parameters of a rigid transformation. For the
minimisation we use the weighted error function:

ǫ = (E[θ] − θeval)
T Σ−1(E[θ] − θeval) , (7)

4
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Figure 6. Camera calibration for the fountain-R25 data-set in fig. 5. ARC3D [3] (left) and Martinecet al. [8] (right).
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Figure 7. Position error [m] of the camera calibration (Martinecet al. [8] - blue, ARC-3D [3]-red) for the fountain-R25 data (top) and the
Herz-Jesu-R23 data (bottom). The green error bars indicate the3σ value of the ground truth camera positions.

whereθ andΣ includes now the subset of all camera posi-
tion and orientation parameters.

For the evaluation we used ARC-3D [3] and obtained re-
sults by Martinecet al. [8]. ARC-3D is a fully automatic
web application. Martinecet al. [8] scored second in the
ICCV 2005 challenge “Where am I”. Both methods suc-
cessfully calibrated all cameras for the fountain-R25 data-
set. For the Herz-Jesu-R23 data only Martinecet al. [8]

was able to reconstruct all cameras. ARC-3D succeeded
to calibrate four of the 21 cameras. The result of this au-
tomatic camera calibration is shown in fig. 6. In this fig-
ure we show the position and orientation of the cameras
(both ground truth and estimated cameras). Fig. 7 shows
the difference in (x,y,z) position for each of the cameras
w.r.t. the ground truth position. The errors bars indicate
the 3σ value of our ground truth camera positions. Note,
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Figure 8. Multi-view stereo results for FUK (left), ST4 (middle) and ST6 (right) on the Herz-Jesu-P8 data-set. The top images show the
variance weighted depth difference (red pixels encode an error of larger that30σ; green pixels encode missingLIDAR data; the relative
error between0. . .30σ is encoded in gray255. . .0). Diffuse renderings of the corresponding triangle meshes are shown at the bottom.

the decreasing variance for a higher camera indeces, which
can in this case be explained by a decreasing distance to
the fountain [1]. The camera positions for the fountain-R25
data-set lie within five millimeter from the ground truth po-
sitions. The variance weighted average distance is1.62σ

(3.5σ) for ARC-3D (Martinec) for this scene. The variance
weighted average distance for the Herz-Jesu-R23 data-set is
15.6σ (Martinec).

3.2. Multi-view stereo

Dense multi-view stereo applied to outdoor scenes can-
not rely on visual hulls that are very useful for indoor stereo
applicationset al. [16]. Our test images have high resolu-
tion in order to meet theLIDAR precision and do not cap-
ture the object from all around. During data acquisition we
also encountered problems due to pedestrians and changing
light conditions. These aspects form a particular challenge
for outdoor stereo reconstructions. As input to the multi-
view stereo algorithms we provide the ground truth camera
calibration as estimated in sec. 2.2, the images, which have
been corrected for radial distortion, the bounding volume of
the scene as well as the minimal/maximal depth value w.r.t.
each input image. Results for this input have been obtained
by Furukawaet al. [4] and Strechaet al. [19, 20] (providing
two implementations). In the remainder we will abbreviate
this three results by FUR, ST4 and ST6 for [4, 19, 20], re-
spectively. Furukawaet al. [4] scores best in completeness
and accuracy in the multi-view stereo evaluation [16]. They
get accurate results also when using only a small amount

Herz-Jesu-P8 fountain-P11
rel. error compleat. rel. error compleat.

FUK 2.98 89.53% 2.04 73.02%
ST6 4.05 77.23% 2.31 87.09%
ST4 5.40 71.79% 4.09 84.78%

Table 1. Numeric values for the mean relative error and the com-
pleatness.

of images. Strechaet al. [19, 21] proposed a PDE-based
formulations which is applicable to high resolution images.
The same author provides the results of [20] on a down-
scaled version of the data-sets. All results are given by
a single triangle mesh similar to [16]. The results of the
multi-view stereo approaches are shown in figs. 8 and 9 for
the fountain-P11 and the Herz-Jesu-P8 data-sets. Their nu-
meric values can be found in table 1. The accuracy of the
stereo reconstructionDij

Stereo is evaluated by building a his-
togramhk over the relative errors:

hk ∝
∑

ij

δk

(

| Dij
LIDAR −Dij

Stereo |,D
ij
σ

)

. (8)

Dij
LIDAR is the expected value of theLIDAR depth estimate

at pixel positioni and cameraj andDij
σ its corresponding

variance. Furthermore,δk() is an indicator function which
evaluates to1 if the depth difference| Dij

LIDAR −Dij
Stereo |

falls within the variance range[kDij
σ , (k + 1)Dij

σ ] and eval-
uates to0 otherwise.
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Figure 9. Multi-view stereo results for FUK (left), ST4 (middle) and ST6 (right) on the fountain-P11 data-set similar to fig. 8.
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Figure 10. Histograms of the relative error occurrence for the reference view in fig. 8 of the Herz-Jesu-P8 data (left) and the reference view
in fig. 9 of the fountain-P11 scene (right). The last (11

th) bin collects the occurrence of an relative error larger than30σ.

The stereo estimateDij
Stereo is obtained from a3-D tri-

angle mesh by computing the depth of the first triangle in-
tersection with thejth camera ray going through pixeli. All
depth estimates for which the absolute difference with the
ground truth is larger than30Dij

σ and all pixels for which
the multi-view stereo reconstruction does not give depth es-
timates are collected all together in the last (k = 11) bin.
These are all pixels indicated by red in figs. 9 and 8. The rel-
ative error histogram for the fountain-P11 and Herz-Jesu-P8
data are show in fig. 10. They can be interpreted as follows:
∼58% (∼43%) of the stereo depths for Furukawaet al. [4]
lie within the3σ range of theLIDAR data for the fountain-
P11 (Herz-Jesu-P8) data-set; for∼ 10% (∼ 27%) either no

stereo depth exists or the error is larger than30 times the
LIDAR variance.

The three evaluated algorithms are very different. Fu-
rukawaet al. [4] is based on feature matching between pairs
of images,3-D points and their normals are computed and
the final mesh is obtained by a Poisson reconstruction. [20]
is a MRF formulation that evaluates a certain number of dis-
cretised depth states. Similar formulations are widely used
in small resolution stereo [15] where the number of states is
limited. The PDE-based multi-view stereo approach [19]
evolves a depth map starting from an initial depth esti-
mate [18]. The results show that Furukawaet al. [4] has the
best overall performance. However, all multi-view stereo
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results are still far away from the accuracy of theLIDAR .

4. Summary and conclusions

In this paper we investigated the possibility to evaluate
3-D modelling of outdoor scenes based on high resolution
digital images using ground truth acquired by aLIDAR sys-
tem. We prepared evaluation sets for camera calibration and
multi-view stereo and evaluated the performance of algo-
rithms which have been shown to perform well on current
benchmark data-sets and that scale to high resolution input.
The ground truth data was prepared such that the evaluation
can be done relative to the accuracy of theLIDAR data. This
is an important point which enables a fair comparison be-
tween benchmark results as well as to theLIDAR measure-
ments. The variance weighted evaluation is necessary to de-
termine when a data-set can be treated a being solved. The
best results for camera calibration deviate in the order ofσ

from the ground truth positions and by≈3σ for dense depth
estimation. We hope that the data-sets, of which we have
shown only a part in this paper, can help to close the gap
betweenLIDAR and passive stereo techniques. This should
already be possible when passive stereo techniques can find
and handle pixel accurate correspondences also for high res-
olution input images. The data-set are available at [1].
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