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Spectral Graph Theory Notation

Connected, undirected, weighted graph
G = {V, E,W }

Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

Non-normalized Laplacian: L := D −W

Complete set of orthonormal eigenvectors and
associated real, non-negative eigenvalues:

Lχ` = λ`χ`,

ordered w.l.o.g. s.t.

0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax
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0 0 1 0
0 0 0 1.2
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Graph Laplacian Eigenvectors

Values of eigenvectors associated with lower frequencies (low λ`) change
less rapidly across connected vertices

χ0 χ1

χ2 χ50
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Graph Laplacian Eigenvectors
Special Case – Path Graph

� λ` = 2− 2 cos
(
π`
N

)
� χ0(i) = 1√

N
, χ`(i) =

√
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 is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression
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Graph Laplacian Eigenvectors
Special Case – Ring Graph

(Unordered) Laplacian eigenvalues: λ` = 2− 2 cos
(

2`π
N

)

One possible choice of orthogonal Laplacian eigenvectors:

χ` =
[
1, ω`, ω2`, . . . , ω(N−1)`

]
, where ω = e

2πj
N


| |

χ0 · · · χN−1

| |

 is the Discrete Fourier Transform (DFT) matrix
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Graph Laplacian Eigenvectors
Special Case – k-Regular Bipartite Graphs

A graph G is bipartite if V can be partitioned into subsets V1 and Vc
1 so that

every edge e ∈ E connects one vertex in V1 with one vertex in Vc
1

A graph G is k-regular if every vertex has the same degree (k)

All k-regular bipartite graphs have an even number N of vertices, and V1 has N
2

vertices

Laplacian eigenvalues satisfy λ` = 2k − λN−1−`

If χ` =

 χ1
`

χ1c
`

, then χN−1−` =

 χ1
`

−χ1c
`


For Lnorm, λ` = 2− λN−1−` and the Laplacian eigenvector property holds for
any (non-regular) bipartite graph as well
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Spectral Clustering

Goal: Partition the graph into k roughly equal-sized clusters such that the edges
between different clusters have low weights

cut(V1,V2, . . . ,Vk ) := 1
2

∑k
i=1 W (Vi ,Vc

i )

To encourage balanced cluster sizes, minimize, e.g.,

RatioCut(V1,V2, . . . ,Vk ) :=
1

2

k∑
i=1

W (Vi ,Vc
i )

|Vi |

Example: k = 2 (von Luxburg, 2007)

� For a fixed subset V1 ⊂ V, define f ∈ RN by fi :=


√
|Vc

1
|

|V1|
, if i ∈ V1

−
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1
| = N �

∑N
i=1 fi = |V1|

√
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|

|V1|
− |Vc
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| = 0

�
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Wij (fi − fj )2
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=
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1 |
+
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1 |
|V1|

+ 2

) ∑
i∈V1,j∈Vc

1

Wij = N · RatioCut(V1,V
c
1 )
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Spectral Clustering (cont’d)
Example: k = 2 (von Luxburg, 2007)

� min
V1⊂V

RatioCut(V1,Vc
1 )⇔ min

V1⊂V
fTLf s.t. f⊥1, ‖f ‖2 =

√
N, and fi =


√
|Vc

1
|

|V1|
, if i ∈ V1

−
√
|V1|
|Vc

1
| , if i ∈ Vc

1

� NP hard, so we can relax the last condition: min
V1⊂V

fTLf s.t. f⊥1 and ‖f ‖2 =
√

N

� From the Courant-Fischer Theorem: χ` = argmin

x⊥span
{
χ0,...,χ`−1

}
, x 6=0

{
xTLx
xTx

}

� Thus, f ∗ = Fiedler vector

� Spectral clustering: f ∗i

i ∈ V1
≷

i ∈ Vc
1

τ
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Spectral Clustering (cont’d)

General Case: k > 2

� Form {yi}i=1,2,...,N , where yi ∈ Rk

� Cluster yi ’s with the k-means
algorithm

k 

N χ0 χ1 χk-1 χN-1 … … 

yn 

y1 
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Graph Visualization

Use χ1(i) and χ2(i) as the x and y coordinates of the i th vertex:

Source: Spielman, 2011
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Outline

1 Introduction

2 Spectral Graph Theory Background
� Definitions

� Differential Operators on Graphs

� Graph Laplacian Eigenvectors

� Two Applications of Graph Laplacian Eigenvectors

� Graph Downsampling

� Filtering on Graphs

3 Wavelet Constructions on Graphs

4 Approximate Graph Multiplier Operators

5 Distributed Signal Processing via the Chebyshev Approximation

6 Open Issues and Challenges
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Graph Downsampling

Challenge: No clear notion of every other vertex

Wish List

� Removes approximately half of the vertices of the graph

� Eliminated vertices are not connected by edges of high weight

� Kept vertices are not connected by edges of high weight

� Can be implemented in a computationally efficient manner
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Graph Downsampling
The Largest Eigenvector Method

Downsample based on the polarity of the eigenvector associated with the largest
eigenvalue of the graph Laplacian

Vkeep := {i ∈ V : χmax(i) ≥ 0} , Veliminate := {i ∈ V : χmax(i) < 0}

Variations: Keep negative, keep smallest or largest set, set threshold to
something other than 0, use the largest eigenvector of the normalized Laplacian
Lnorm

Largest eigenvector efficiently computed with the power method:

x(k) =
Lx(k−1)

‖Lx(k−1)‖2
.

If λmax > λN−1 and 〈x(0), χmax〉 6= 0, the sequence
{

x(k)
}

k=0,1,...
converges to

χmax
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Graph Downsampling
The Largest Eigenvector Method – Examples

Theorem (Roth, 1989)

For a connected, bipartite graph G = {V1 ∪ Vc
1 , E,W}, the largest eigenvalues of L

and Lnorm are simple, and the polarities of the components of the eigenvectors χmax

and χnorm
max split V into the bipartition V1 and Vc

1 .
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Graph Downsampling
The Largest Eigenvector Method – Examples
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Graph Downsampling
Connections with Graph Coloring and Spectral Clustering

A graph G = {V, E,W} is k-colorable if there exists a partition of V into subsets
V1,V2, . . . ,Vk such that if i ∼ j , then i and j are in different subsets in the
partition

The chromatic number C of a graph G is the smallest k such that G is
k-colorable

The chromatic number is equal to 2 if and only if the graph is bipartite

In graph downsampling, we are interested in finding an approximate 2-coloring
with few edges connecting vertices in the same subsets

In some sense dual to the spectral clustering problem
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Graph Downsampling
Connections with Nodal Domains

+0 –– +

–

+

Source: Bıyıkoğlu et al., 2007

A nodal domain of a function f on G is a maximally connected subgraph of G
such that the sign of f is the same on all vertices of the subgraph

A positive (negative) strong nodal domain has f (i) > 0 (f (i) < 0) for all i in
the subgraph

A positive (negative) weak nodal domain has f (i) ≥ 0 (f (i) ≤ 0) for all i in the
subgraph

# weak nodal domains of f on G ≤ # strong nodal domains of f on G

Graph downsampling is closely related to the problem of maximizing the number
of nodal domains
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Graph Downsampling
Connections with Nodal Domains (cont’d)

General Bounds

� For any f on G, # strong and weak nodal domains ≤ N − C + 2

� If C = 2 (G is bipartite), ∃f s.t. # strong and weak nodal domains of f is N

Bounds on the Nodal Domains of Laplacian Eigenvectors (Bıyıkoğlu et al., 2007)

� # weak nodal domains of χ` ≤ `+ 1

� # strong nodal domains of χ` ≤ `+ s, where s is
multiplicity of λ`

� χmax has N strong and weak nodal domains if and only if
G is bipartite

� `+ 1− r ≤ # strong and weak nodal domains of χ`, if λ`
is simple and χ`(i) 6= 0, ∀i ∈ V, where r is the number of
edges that need to be removed from the graph in order to
turn it into a tree (Berkolaiko, 2008)

H G
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Source: Oren, 2007

Important Note

The bounds on the number of nodal domains of the Laplacian eigenvectors are
monotonic in `, but the actual number of nodal domains is not always monotonic in `
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Filtering on Graphs

Filtering: represent an input signal as a combination of other
signals, and amplify or attenuate the contributions of some of the
component signals

In classical signal processing, the most common choice of basis is
the complex exponentials, which results in frequency filtering

Not difficult to extend this notion to signals on graphs via the
eigenvectors of the graph Laplacian
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Graph Fourier Transform

Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line

Fourier Transform

f̂ (ω) = 〈e iωx , f 〉 =
∫
R

f (x)e−iωx dx

Inverse Fourier Transform

f (x) = 1
2π

∫
R

f̂ (ω)e iωx dω

Functions on the Vertices of a Graph

Graph Fourier Transform

f̂ (`) = 〈χ`, f 〉 =
N∑

n=1

f (n)χ∗` (n)

Inverse Graph Fourier Transform

f (n) =
N−1∑̀

=0

f̂ (`)χ`(n)
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Fourier Multiplier Operator (Filter)

f (x) // FT // f̂ (ω) // g // g(ω)f̂ (ω) // IFT // Φf (x)

Fourier multiplier (filter) reshapes functions’ frequencies:

Φ̂f (ω) = g(ω)f̂ (ω), for every frequency ω

We can extend this to any group with a Fourier transform, including
weighted, undirected graphs:

Φf = IFT
(
g(ω)FT(f )(ω)

)

Functions on the Real Line

Φf (x) = 1
2π

∫
R

g(ω)f̂ (ω)e iωx dω

Functions on the Vertices of a Graph

Φf (n) =
N−1∑̀

=0

g(λ`)f̂ (`)χ`(n)
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Generalized Graph Multiplier Operators

Graph Fourier transform leads to natural notions of smoothness

However, we can just as easily use different filtering bases (useful in practice)

Definition

Ψ is a graph multiplier operator with respect to the real symmetric positive
semi-definite matrix P if there exists a function g : [0, λmax(P)]→ R and a complete
set {χ`}`=0,1,...,N−1 of orthonormal eigenvectors of P such that

Ψ =

N−1∑
`=0

g(λ`)χ`χ
∗
` ,

where {λ`}`=0,1,...,N−1 are the eigenvalues of P.

Proposition (Equivalent characterizations of graph multiplier operators)

The following are equivalent:

(a) Ψ is a graph multiplier operator with respect to P.

(b) Ψ and P are simultaneously diagonalizable by a unitary matrix; i.e., there exists
a unitary matrix U such that U∗ΨU and U∗PU are both diagonal matrices.

(c) Ψ and P commute; i.e., ΨP = PΨ.
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Unions of Graph Multiplier Operators

So far, just a single
graph multiplier
operator

Can easily extend this
to unions of graph
multiplier operators:

(Φηf) 1

f

(Φ1f) 1

Φ2

Φη

1N 1

NηNη

N

=.
.
.

…

(Φ1f) N

Φ1

…

(Φηf) N

.

.

.

(Φ2f) 1

(Φ2f) N

…
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Each point has a desired class label           (suppose binary)

x1, x2, ..., xn 2 Rd

|S| = l < n

Transductive Learning

Let X be an array of data points

yk 2 Y

At training you have the labels of a subset S of X

GOAL: predict remaining labels
Rationale: minimize empirical risk on your training data such that
- your model is predictive
- your model is simple, does not overfit
- your model is “stable” (depends continuously on your training set)
- ... 

Getting data is easy but labeled data is a scarce resource 



kXt� � yk2
2

yk = � · xk + b

� = (XXt)�1Xy

� = (XXt + ↵I)�1XykXt� � yk2
2 + ↵k�k2

2

Transductive Learning
Ex: Linear regression
Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression



kXt� � yk2
2

yk = � · xk + b

� = (XXt)�1Xy

� = (XXt + ↵I)�1XykXt� � yk2
2 + ↵k�k2

2

Transductive Learning
Ex: Linear regression
Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression

k�X� � yk2
2,S + ↵S(�)

How can unlabeled data be used ?
Questions: 

More general linear model with a dictionary of features ?

dictionary depends on data points simplifies/stabilizes selected model



Learning on/with Graphs
How can unlabeled data be used ?

Assumption: 
target function is not globally smooth but it is locally smooth over 
regions of data space that have some geometrical structure

Use graph to model this structure



�f =
X

i,j2X

Wij(f(xi)� f(xj))2

= f t
Lf

kXt
S� � yk2

2 + ↵k�k2
2 + ��tXLXt�

Learning on/with Graphs
Example (Belkin, Niyogi)

Affinity between data points represented by edge weights 
(affinity matrix W)

measure of smoothness:

Revisit ridge regression:

L = W - D

Solution is smooth in graph “geometry”



�X

arg min
�
ky �M�X�k2

2 + ↵S(�)

Transduction & Representation
More general linear model with a dictionary of features ?

dictionary of features on the complete data set (data dependent)

M   restricts to labeled data points (mask)

Empirical Risk
Model Selection penalty, sparsity ?
Smoothness on graph ?

Important Note: our dictionary will be data dependent but its 
construction is not part of the above optimization 
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Wavelet Ingredients
Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)
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Wavelet Ingredients
Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

(T s�a)(x) =
1
s
⇥�

�x� a

s

⇥

(T sf)(x) =
1
2�

�
ei�x⇥̂�(s⇤)f̂(⇤)d⇤

Equivalently:



L = D �A

(Lf)(i) =
�

i�j

wi,j(f(i)� f(j))

G = (V,E, w)

Graph Laplacian and Spectral Theory

Non-normalized Laplacian: Real, symmetric

Why Laplacian ?

weighted, undirected graph
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(Lf)(i) =
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i�j

wi,j(f(i)� f(j))

G = (V,E, w)

Graph Laplacian and Spectral Theory

Non-normalized Laplacian: Real, symmetric

Why Laplacian ? Z2

(Lf)i,j = 4fi,j � fi+1,j � fi�1,j � fi,j+1 � fi,j�1

with usual stencil

In general, graph laplacian from nicely sampled  
manifold converges to Laplace-Beltrami operator

weighted, undirected graph



L = D �A

(Lf)(i) =
�

i�j

wi,j(f(i)� f(j))

G = (V,E, w)

Graph Laplacian and Spectral Theory

Non-normalized Laplacian: Real, symmetric

Lnorm = D�1/2LD�1/2 = I �D�1/2AD�1/2

Remark:

Why Laplacian ? Z2

(Lf)i,j = 4fi,j � fi+1,j � fi�1,j � fi,j+1 � fi,j�1

with usual stencil

In general, graph laplacian from nicely sampled  
manifold converges to Laplace-Beltrami operator

weighted, undirected graph
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Graph Laplacian and Spectral Theory



ei�x f(x) =
1
2�

�
f̂(⇥)ei�xd⇥

d2

dx2

Graph Laplacian and Spectral Theory

L⇥l = �l⇥lEigen decomposition of Laplacian:



ei�x f(x) =
1
2�

�
f̂(⇥)ei�xd⇥

d2

dx2

Graph Laplacian and Spectral Theory

L⇥l = �l⇥lEigen decomposition of Laplacian:

0 = �0 < �1 � �2... � �N�1

f̂(⇤) = ��⇥, f⇥ =
N�

i=1

��
⇥ (i)f(i)

f(i) =
N�1�

⇥=0

f̂(⇥)�⇥(i)

Graph Fourier Transform

For simplicity assume connected graph and

For any function on the vertex set (vector) we have:



Spectral Graph Wavelets
Remember good old Euclidean case:

(T sf)(x) =
1
2�

�
ei�x⇥̂�(s⇤)f̂(⇤)d⇤

We will adopt this operator view



Spectral Graph Wavelets
Remember good old Euclidean case:

(T sf)(x) =
1
2�

�
ei�x⇥̂�(s⇤)f̂(⇤)d⇤

We will adopt this operator view

g : R+ � R+ Tg = g(L)

�Tgf(⇤) = g(��)f̂(⇤) (Tgf)(i) =
N�1�

⇥=0

g(�⇥)f̂(⌅)⇥⇥(i)

Operator-valued function via continuous Borel functional calculus

Operator-valued function

Action of operator is induced by its Fourier symbol



Spectral Graph Wavelets
L = D �AG=(E,V) a weighted undirected graph, with Laplacian



Spectral Graph Wavelets

T t
g = g(tL)Dilation operates through operator: 

L = D �AG=(E,V) a weighted undirected graph, with Laplacian



Spectral Graph Wavelets

T t
g = g(tL)Dilation operates through operator: 

L�`(j) = �`�`(j)

⇥t,j = T t
g�j

⇤t,j(i) =
N�1�

⇤=0

g(t�⇤)⇥⇥⇤ (j)⇥⇤(i)

�t,a(u) =
�

R
d⇥ �̂(t⇥)e�j�aej�u

Translation (localization):

Define response to a delta at vertex j

L = D �AG=(E,V) a weighted undirected graph, with Laplacian



Spectral Graph Wavelets

T t
g = g(tL)Dilation operates through operator: 

L�`(j) = �`�`(j)

⇥t,j = T t
g�j

⇤t,j(i) =
N�1�

⇤=0

g(t�⇤)⇥⇥⇤ (j)⇥⇤(i)

�t,a(u) =
�

R
d⇥ �̂(t⇥)e�j�aej�u

Translation (localization):

Define response to a delta at vertex j

Wf (t, j) = ��t,j , f⇥ Wf (t, j) = T t
gf(j) =

N�1�

⇥=0

g(t�⇥)f̂(⌃)⇥⇥(j)

And so formally define the graph wavelet coefficients of f:

L = D �AG=(E,V) a weighted undirected graph, with Laplacian



�(�`) =
Z 1

1/2

dt

t
g2(t�`) g̃(�`) =

p
�(�`)� �(2�`)

�n = Th�n = h(L)�n

Frames

9A, B > O, 9h : R+ ! R+ (i.e. scaling function)

0 < A 6 h2
(u) +

P
s g(tsu)

2 6 B < 1

scaling function wavelets

0 10
0

1

2

λ

A

B

A simple way to get a tight frame:

for any admissible kernel g
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Fig. 1. Signed Laplacian matrices L̄ for 90-region functional
connectivity graphs during resting (left) and movies condition
(right). Warm colors represent positive entries, cold colors
negative ones; degree capped at 1 to enhance visibility.

3. RESULTS

3.1. Functional Connectivity Graph

We used fMRI data acquired from one subject during al-
ternating resting and movies conditions on a 3T scan-
ner (TR/TE/FA = 1.1s/27ms/90◦, matrix = 64×64, voxel
size = 3.75×3.75×4.2mm3, 21 contiguous transverse slices,
1.05mm gap, 2598 volumes) [11]. After realignment, fMRI
data was parcellated into 90 regions according to the Auto-
mated Anatomical Labeling (AAL) atlas and regional mean
time series were extracted. The time series corresponding
to the same condition (rest or movies) were then concate-
nated and each one decomposed using the discrete wavelet
transform. Pair-wise interregional correlations between the
wavelet coefficients at the different scales were estimated.
The resulting 90 × 90 correlation matrices can be inter-
preted as functional connectivity in a specific frequency band
[12, 13]. We used both the resting and movies correlation ma-
trices obtained from the low-frequency interval 0.03-0.06Hz
(scale 4) for our further analyses. The adjacency matrix A is
obtained by setting the diagonal to 0 (i.e., removing loops).
Fig. 1 shows the Laplacian matrices L̄ for the resting and
movies condition, respectively.

3.2. Scaling Function and Wavelet Kernels

The scaling function and wavelet generating kernels for J =
3 scales, and the eigenvalues of L̄ are shown in Fig. 2. It in-
dicates that, overall, the connectivity is increased during the
movies condition (larger eigenvalues than for the resting con-
dition) and that the number of eigenvalues at each scale tj is
comparable between the two conditions.

3.3. Decomposing the FMRI Signal Using the SGWT

For the decomposition, we used the original regional time
courses f that alternated between the resting and movies con-
dition, that is, before concatenation. We normalized f at
each scan to remove variations in global energy between the
two conditions and minimize effects of scanner drifts and

0 5 10 15 20 25 30 35 40 45 50
ï0.5
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0.5

1

0 5 10 15 20 25 30 35 40
ï0.5
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0.5

1

Fig. 2. Scaling function h(λ) (blue curve), wavelet kernels
g(tλ!), frame bound (black dotted line) and eigenvalues of
the Laplacian matrices L̄ (black spikes) for the resting (top)
and movies condition (bottom).

movements artifacts (i.e., ||f ||2 = 1 for each scan). We
decomposed f using both the SGWT constructed from the
”resting connectivity graph” (resting frame) and the SGWT
constructed from the ”movies connectivity graph” (movies
frame). Fig. 3 shows the sum of the energy of the wavelet
coefficients over all brain regions at each scan after applying
a moving average of length 24, in accordance with temporal
scale 4. At the finest scale, we can see that, during the rest-
ing conditions, the energy of the wavelet coefficients in the
resting frame is smaller than in the movies frame (i.e., blue
line below red line) (Table 1). This relation is reversed dur-
ing the movies block, where the energy of the coefficients in
the movies frame is smaller (red line below blue line). At
the coarse scale the behavior is reversed: during the rest-
ing conditions, the energy of the resting-frame coefficients
is lager than that of the movies-frame coefficients (i.e., blue
line above red line), whereas during the movies conditions the
energy in the movies frame is larger (i.e., red line above blue
line). This shows that decomposing the fMRI data using the
SGWT adapted to the condition results in fewer large coef-
ficients at the finest scale and more large coefficients at the
coarsest scale. The resting frame thus better captures large-
scale coherent activity during the resting condition than the
movies frame and the inverse is true during the movies condi-
tion.

4. CONCLUSION

We constructed graph wavelets and applied them as a new
spatial transformation to fMRI data. The graph structure was
defined by temporal information; i.e., functional connectivity
between the different brain regions. We extended the existing
SGWT as a Parseval frame (which provides energy conser-
vation and easy analysis/synthesis) and generalized it to neg-
ative edge weights. These extensions allowed applying the

����
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Fig. 3. Sum of the energy of the wavelet coefficients at the finest (left) and coarsest scale (right) over all brain regions, temporally
averaged over 24 scans. fMRI data was decomposed using the SGWT built from the connectivity graphs of the resting (blue)
or the movies condition (red). Vertical bars indicate on- and off-set of the movies condition.

Scale Condition
Rest Movies

Finest R M
Coarsest M R

Table 1. Comparison of the energy of the wavelet coefficients
at the finest and the coarsest scale for the resting and movies
conditions. R indicates that the energy of the coefficients is
smaller in the resting than in the movies frame; M indicates
that the energy in the movies frame is smaller.

transform to fMRI data and comparing the energy of the co-
efficients across different scales as a fraction of the energy of
the original signal. As a proof of concept, we showed that the
decomposition of the fMRI signal using the SGWT matched
to the condition was characterized by larger wavelet coeffi-
cients at the coarse scale than when using the SGWT adapted
to a different condition. The extended SGWT is a promising
spatial representation for fMRI data analysis since it repre-
sents joint activation/deactivation of multiple brain regions at
different scales.
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Non-local Wavelet Frame
 Non-local Wavelets are ...

                   ... Graph Wavelets on Non-Local Graph

increasing scale

 t, (i)

Interest: good adaptive sparsity basis
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Sparsity and Smoothness on Graphs
Using a dictionary of graph wavelets, sparsity and 

smoothness on graphs are the same thing !



Sparsity and Smoothness on Graphs
Using a dictionary of graph wavelets, sparsity and 

smoothness on graphs are the same thing !
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i2V

|h 2�j ,i, fi|2 =
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Idea: for a “Meyer kernel” on the spectrum of G 

discrete Sobolev semi-norm on G
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scaling functions coeffs
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Sparsity and Transduction

Since sparsity = smoothness on graph, why not simple LASSO ?

arg min
�
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Sparsity and Transduction

Since sparsity = smoothness on graph, why not simple LASSO ?

arg min
�
ky �M�X�k2

2 + ↵S(�)

Bad Idea:
We know there are strongly correlated coefficients 
(LASSO will kill some of them)

There is no information to determine masked wavelets
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Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 1

scale 2

group l



scaling level

Group Sparsity - take I
Scaling functions not sparse are optimized separately
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scaling level

Group Sparsity - take I
Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 1

scale 2
group k

group l

Few groups should be active = local smoothness

Inside group, all coefficients can be active

Simple model, no overlap, optimized like LASSO

Formulate with mixed-norms k�kp,q



Preliminary Results

Ground truth

Wavelets on trees, graphs and high dimensional data

For a regression problem, our estimator for f is

f̂(x) =
∑

!,k,j

â!,k,j ψ!,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j ] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by

E[â!,k,j − a!,k,j ]
2 ! 1

|S|
C2

1B
2α

ν(X"
k)

2α

1−e−|S|Bν(X"
k
)

(13)

+ 1
B e−|S|Bν(X"

k) · a2!,k,j

The resulting overall MSE is bounded by

E ‖f − f̂‖2 = 1
N

∑

i

(f(xi)− f̂(xi))
2

≤ C2
1B

2α

|S|

∑

!,k,j

B
2α(!−1)

1− e−|S|B" (14)

+ 22α+1C2
1

B

∑

!,k,j

e−|S|B"

(B
2α+1

)!−1

The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(X!

k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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Figure 2. Results on the USPS benchmark.

code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).
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For a regression problem, our estimator for f is

f̂(x) =
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â!,k,j ψ!,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j ] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by
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The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(X!

k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).
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k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
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code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).
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whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j ] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
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the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
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k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).
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Remarks:
CAP is the composition of mixed norm and adjacency mat.
For analysis coefficients, at small scale                   behaves like TV



Sensing and Analysis of High-D Data
Duke University July 2011

Graph wavelets
 Redundancy breaks sparsity
- can we remove some or all of it ?

 Faster algorithms
- traditional wavelets have fast filter banks implementation
- whatever scale, you use the same filters
- here: large scales -> more computations

 Goal: solve both problems at one
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Kron Reduction
In order to iterate the construction, we need to construct a graph on 
the reduced vertex set. 

2 F. Dörfler and F. Bullo

is the loopy Laplacian matrix. In various applications of circuit theory and related
disciplines it is desirable to obtain a lower dimensional electrically-equivalent network
from the viewpoint of certain boundary nodes (or terminals) � � {1, . . . , n}, |�| ⌅ 2.
If ⇥ = {1, . . . , n}\� denotes the set of interior nodes, then, after appropriately labeling
the nodes, the current-balance equations can be partitioned as

�
I�
I⇥

⇥
=

�
Q�� Q�⇥

Q⇥� Q⇥⇥

⇥ �
V�

V⇥

⇥
. (1.1)

Gaussian elimination of the interior voltages V⇥ in equations (1.1) gives an electrically-
equivalent reduced network with |�| nodes obeying the reduced current-balances

I� +QacI⇥ = QredV� , (1.2)

where the reduced conductance matrixQred ⇧ R|�|⇥|�| is again a loopy Laplacian given
by the Schur complement of Q with respect to the interior nodes ⇥, that is, Qred =
Q���Q�⇥Q

�1
⇥⇥Q⇥�. The accompanying matrix Qac = �Q�⇥Q

�1
⇥⇥ ⇧ R|�|⇥(n�|�|) maps

internal currents to boundary currents in the reduced network. In case that I⇥ is the
vector of zeros, the (i, j)-element of Qred is the current at boundary node i due to a
unit potential at boundary node j and a zero potential at all other boundary nodes.
From here the reduced network can be further analyzed as an |�|-port with current
injections I� +QacI⇥ and transfer conductance matrix Qred.

This reduction of an electrical network via a Schur complement of the associated
conductance matrix is known as Kron reduction due to the seminal work of Gabriel
Kron [37], who identified fundamental interconnections among physics, linear algebra,
and graph theory [33, 38]. The Kron reduction of a simple tree-like network with-
out current injections or shunt conductances is illustrated in Figure 1.1, an example
familiar to every engineering student as the Y �� transformation.

8

8

8

30

1.0 1.0

1.0
Kron reduction

8

8

8

1/3

1/31/3

Fig. 1.1. Kron reduction of a star-like electrical circuit with three boundary nodes ⇥�, one
interior node •⇥ , and with unit conductances resulting in a reduced triangular reduced circuit.

Literature Review. The Kron reduction of networks is ubiquitous in circuit
theory and related applications in order to obtain lower dimensional electrically-
equivalent circuits. It appears for instance in the behavior, synthesis, and analysis of
resistive circuits [56, 60, 59], particularly in the context of large-scale integration chips
[48, 53, 1]. When applied to the impedance matrix of a circuit rather than the admit-
tance matrix, Kron reduction is also referred to as the “shortage operator” [2, 3, 35].
Kron reduction is a standard tool in the power systems community to obtain station-
ary and dynamically-equivalent reduced models for power flow studies [58, 10, 61], or
in the reduction of di⇥erential-algebraic power network and RLC circuit models to
lower dimensional purely dynamic models [45, 52, 5, 18, 20]. A recent application of
Kron reduction is monitoring in smart power grids [17] via synchronized phasor mea-
surement units. Kron reduction is also crucial for reduced order modeling, analysis,

[Dorfler et al, 2011]
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Kron Reduction

Properties:

In order to iterate the construction, we need to construct a graph on 
the reduced vertex set. 

maps a weighted undirected laplacian to a weighted 
undirected laplacian
spectral interlacing (spectrum does not degenerate)

disconnected vertices linked in reduced graph IFF there is 
a path that runs only through eliminated nodes 
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Example
Note: For a k-regular bipartite graph

Kron-reduced Laplacian:

f̂r(i) = f̂(i) + f̂(N � i) i = 1, ..., N/2
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upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking di�erence of the original signal and the
output of the second filter.

Consider an input graph-signal x ⇤ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃VTx, (5.1)

where V = [v0|v1|...|vn�1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(�l)}n�1

l=0 and
o�-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ ⇥ R+.

The output of the highpass channel is then given by y1 = x�Gy0 which
is equal to the reconstruction error.

y1 = x�Gx

= x�VG̃VTx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(�l)}n�1

l=0 and o�-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ ⇥ R+.

The analysis operator Ta is then defined in

�
y0

y1

⇥

⇧ ⌅⇤ ⌃
y

=

�
Hm

I�GHm

⇥

⇧ ⌅⇤ ⌃
Ta

x, (5.3)

where y0, y1 ⇤ Rn are the coarse and prediction error coe⇤cients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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TsTa = I

Simple (traditional) left inverse

Figure 5.1: Analysis scheme in graph Laplacian pyramid.

The usual inverse transform of the LP for reconstruction of the original
signal is also given in

x̂ = ( G I )⇧ ⌅⇤ ⌃
Ts

�
y0

y1

⇥

⇧ ⌅⇤ ⌃
y

. (5.4)

First, we predict the original signal by filtering of the coarse version y0 and
add the reconstruction error y1 to recover the original signal x completely.
Fig. 5.2 shows the usual inverse transform of the graph LP.

Figure 5.2: Usual synthesis scheme in graph Laplacian pyramid.

It is easy to check that TsTa = I for any Hm,G. In fact, it shows that LP
can be perfectly reconstructed with any pairs of filters Hm,G. Analogously
to the classical Laplacian pyramid, since the graph LP is also a redundant
transform, an infinite number of left inverses are admitted as synthesis oper-
ator. The most important one among those is the pseudo inverse

Ta
† = (Ta

TTa)
�1Ta

T . (5.5)

As it is discussed previously in classical Laplacian pyramid, the impor-
tance of the pseudo inverse as a synthesis operator is its ability to eliminate
the influence of those errors which are added to the transform coe⇤cients y
and are orthogonal to the range of the analysis operator Ta. So, if instead of
having access to y = Tsx we have ŷ = y+e, then the pseudo inverse provides
the solution x̂ = Ta

†ŷ that minimizes the residual ||Tax̂� ŷ||2.
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with no conditions on H or G
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arg min
x

kTax� yk2
2 x̂k+1 = x̂k + ⌧Ta

T (y �Tax̂k)

Ta
T = (Hm

T I�Hm
T GT )

Define iteratively, through descent on LS:

Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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we can easily implement with filters and masks:

With the real symmetric matrix and

Use Chebyshev approximation of:















f0

Filter Banks
2 critically sampled channels

Filter H

Filter G

Downsample

Downsample

Coset 1

Coset 2



f0

Filter Banks
2 critically sampled channels

Filter H

Filter G

Downsample

Downsample

Coset 1

Coset 2

|H(i)|2 + |G(i)|2 = 2

H(i)G(N � i) + H(N � i)G(i) = 0

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF 
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Chebyshev Polynomials

Tn(x) := cos
(
n arccos(x)

)
,

x ∈ [−1, 1],
n = 0, 1, 2, . . .

T0(x) = 1

T1(x) = x

Tk (x) = 2xTk−1(x)− Tk−2(x)

for k ≥ 2

Source: Wikipedia.
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Chebyshev Polynomial Expansion and Approximation

Chebyshev polynomials form an orthogonal basis for L2

(
[−1, 1], dx√

1−x2

)
� Every h ∈ L2

(
[−1, 1], dx√

1−x2

)
can be represented as

h(x) =
1

2
c0 +

∞∑
k=1

ckTk (x), where ck =
2

π

∫ π

0
cos(kθ)h(cos(θ))dθ

K th order Chebyshev approximation to a continuous function on an
interval provides a near-optimal approximation (in the sup norm) amongst
all polynomials of degree K

Shifted Chebyshev Polynomials

� To shift the domain from [-1,1] to [0,A], define

T k (x) := Tk

( x

α
− 1
)
, where α :=

A

2

� T k (x) = 2
α

(x − α)T k−1(x)− T k−2(x) for k ≥ 2
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Fast Chebyshev Approx. of a Graph Multiplier Operator

Let Φ ∈ RN×N be a graph Fourier multiplier with Φf =

 (Φf )1

...
(Φf )N


Approximate Graph Fourier Multiplier Operator

(Φf )n =
N−1∑
`=0

g(λ`)f̂ (`)χ`(n) =
N−1∑
`=0

[
1

2
c0 +

∞∑
k=1

ckT k(λ`)

]
f̂ (`)χ`(n)

≈
N−1∑
`=0

[
1

2
c0 +

K∑
k=1

ckT k(λ`)

]
f̂ (`)χ`(n)

=

(
1

2
c0f +

K∑
k=1

ckT k(L)f

)
n

:=
(

Φ̃f
)

n

Here, T k(L) ∈ RN×N and
(
T k(L)f

)
n

:=
N−1∑̀

=0

T k(λ`)f̂ (`)χ`(n)
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Fast Chebyshev Approx. of a Graph Fourier Multiplier

Φ̃f = 1
2c0f +

K∑
k=1

ckT k(L)f ≈ Φf

Question: Why do we call this a fast approximation?

Answer: From the Chebyshev polynomial recursion property, we have:

T 0(L)f = f

T 1(L)f =
1

α
Lf − f , where α :=

λmax

2

T k(L)f =
2

α
(L − αI )

(
T k−1(L)f

)
− T k−2(L)f

=
2

α
LT k−1(L)f − 2T k−1(L)f − T k−2(L)f

Does not require explicit computation of the eigenvectors of the Laplacian

Computational cost proportional to # nonzero entries in the Laplacian

This corresponds to the number of edges in the communication graph

Large, sparse graph ⇒ Φ̃f far more efficient than Φf
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Approximation Error

Let Φ be a union of η generalized graph multiplier operators:

Φ = [Ψ1; Ψ2; . . . ; Ψη] , where Ψj =
N−1∑
`=0

gj(λ`)χ`χ
∗
`

Define B(K) := max
j=1,2,...,η

{
sup

λ∈[0,λmax]

{∣∣gj(λ)− pK
j (λ)

∣∣}}

Proposition

|||Φ− Φ̃|||2 := max
f 6=0

‖(Φ−Φ̃)f‖2
‖f‖2

≤ B(K)
√
ηN.

Proposition (see, e.g., Mason and Handscomb, 2003)

If gj(·) has M + 1 continuous derivatives for all j , then B(K) = O
(
K−M

)
.

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 64 / 76



Intro Spectral Graph Theory Wavelets on Graphs Chebyshev Approximation Distributed Processing Open Issues

Approximation Error

Let Φ be a union of η generalized graph multiplier operators:

Φ = [Ψ1; Ψ2; . . . ; Ψη] , where Ψj =
N−1∑
`=0

gj(λ`)χ`χ
∗
`

Define B(K) := max
j=1,2,...,η

{
sup

λ∈[0,λmax]

{∣∣gj(λ)− pK
j (λ)

∣∣}}

Proposition

|||Φ− Φ̃|||2 := max
f 6=0

‖(Φ−Φ̃)f‖2
‖f‖2

≤ B(K)
√
ηN.

Proposition (see, e.g., Mason and Handscomb, 2003)

If gj(·) has M + 1 continuous derivatives for all j , then B(K) = O
(
K−M

)
.

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 64 / 76



Intro Spectral Graph Theory Wavelets on Graphs Chebyshev Approximation Distributed Processing Open Issues

Approximation Error

Let Φ be a union of η generalized graph multiplier operators:

Φ = [Ψ1; Ψ2; . . . ; Ψη] , where Ψj =
N−1∑
`=0

gj(λ`)χ`χ
∗
`

Define B(K) := max
j=1,2,...,η

{
sup

λ∈[0,λmax]

{∣∣gj(λ)− pK
j (λ)

∣∣}}

Proposition

|||Φ− Φ̃|||2 := max
f 6=0

‖(Φ−Φ̃)f‖2
‖f‖2

≤ B(K)
√
ηN.

Proposition (see, e.g., Mason and Handscomb, 2003)

If gj(·) has M + 1 continuous derivatives for all j , then B(K) = O
(
K−M

)
.

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 64 / 76



Intro Spectral Graph Theory Wavelets on Graphs Chebyshev Approximation Distributed Processing Open Issues

Approximation Error

Let Φ be a union of η generalized graph multiplier operators:

Φ = [Ψ1; Ψ2; . . . ; Ψη] , where Ψj =
N−1∑
`=0

gj(λ`)χ`χ
∗
`

Define B(K) := max
j=1,2,...,η

{
sup

λ∈[0,λmax]

{∣∣gj(λ)− pK
j (λ)

∣∣}}

Proposition

|||Φ− Φ̃|||2 := max
f 6=0

‖(Φ−Φ̃)f‖2
‖f‖2

≤ B(K)
√
ηN.

Proposition (see, e.g., Mason and Handscomb, 2003)

If gj(·) has M + 1 continuous derivatives for all j , then B(K) = O
(
K−M

)
.

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 64 / 76



Intro Spectral Graph Theory Wavelets on Graphs Chebyshev Approximation Distributed Processing Open Issues

Outline

1 Introduction

2 Spectral Graph Theory Background

3 Wavelet Constructions on Graphs

4 Approximate Graph Multiplier Operators

5 Distributed Signal Processing via the Chebyshev Approximation

6 Open Issues and Challenges

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 65 / 76



Intro Spectral Graph Theory Wavelets on Graphs Chebyshev Approximation Distributed Processing Open Issues

Motivating Application: Distributed Denoising

Sensor network with N sensors

Noisy signal in RN : y = x+ noise

Node n only observes yn and wants to
estimate xn

No central entity - nodes can only send
messages to their neighbors in the
communication graph

However, communication is costly

Prior info, e.g., signal is smooth or

piecewise smooth w.r.t. graph structure

� If two sensors are close enough to

communicate, their observations are

more likely to be correlated
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Distributed Computation

(
Φ̃f
)

n
=

(
1
2c0f +

K∑
k=1

ckT k(L)f

)
n

Node n’s knowledge:

1 (f )n

2 Neighbors and weights of edges to
its neighbors

3 Graph Fourier multiplier g(·), which
is used to compute co , c1, . . . , cK

4 Loose upper bound on λmax

Task: Compute (T k(L)f )n, k ∈ {1, 2, . . . ,K} in a distributed manner

(T 1(L)f )n = 1
α

(Lf )n − (f )n = 1
α

f0 Ln,2 0 0 0 Ln,6 0 0 0   −(f )n

(
T k (L)f

)
n

=
(

2
α
LT k−1(L)f

)
n
−
(

2T k−1(L)f
)

n
−
(
T k−2(L)f

)
n

To get (T 2(L)f )n, suffices to compute (LT 1(L)f )n = `T1(L)f0  Ln,2 0 0 0 Ln,6 0 0 0   

2K |E |
scalar

messages
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Distributed Denoising - Method 1

Prior: signal is smooth w.r.t the underlying graph structure

Regularization term: fTLf = 1
2

∑
n∈V

∑
m∼n

wm,n [f (m)− f (n)]2

� fTLf = 0 iff f is constant across all vertices

� fTLf is small when signal f has similar values at neighboring vertices

connected by an edge with a large weight

Distributed regularization problem:

argmin
f

τ

2
‖f − y‖2

2 + fTLf (1)

Proposition

The solution to (1) is given by Ry, where R is a graph Fourier multiplier
operator with multiplier g(λ`) = τ

τ+2λ`
.
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connected by an edge with a large weight

Distributed regularization problem:

argmin
f

τ

2
‖f − y‖2

2 + fTLf (1)

Proposition

The solution to (1) is given by Ry, where R is a graph Fourier multiplier
operator with multiplier g(λ`) = τ

τ+2λ`
.
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Distributed Denoising Illustrative Example

Graph analog to low-pass filtering

Modify the contribution of each Laplacian

eigenvector

� f∗(n) = (Ry)n =
N−1∑̀

=0

[
τ

τ+2λ`

]
ŷ(`)χ`(n)

Use Chebyshev approximation to compute R̃y
in a distributed manner

Over 1000 experiments, average mean square
error reduced from 0.250 to 0.013
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Distributed Denoising - Method 2

Prior: signal is p.w. smooth w.r.t. graph ⇔ SGWT coefficients sparse

Regularize via LASSO (Tibshirani, 1996):

min
a

1
2
‖y −W ∗a‖2

2 + µ‖a‖1

Solve via iterative soft thresholding (Daubechies et al., 2004):

a(β) = Sµτ
(
a(β−1) + τW

(
y −W ∗a(β−1)

))
, β = 1, 2, . . .

D-LASSO (Mateos et al., 2010) solves in distributed fashion, but requires
2|E | messages of length N(J + 1) at each iteration

We solve the LASSO with the approximate wavelet operator via the
distributed Chebyshev computation method

The communication workload only scales with network size through |E |,
otherwise independent of N

‖W̃ ∗ã∗ −W ∗a∗‖2
2 ≤

‖y‖3
2

µ

√
N(J + 1)B(K)
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Distributed Deconvolution/Deblurring

Noisy observation: y = Φx+ noise, where Φ is a graph Fourier
multiplier operator with multiplier gΦ

Distributed regularization problem:

argmin
f

τ

2
‖y − Φf ‖2

2 + fTLr f (2)

Proposition

The solution to (2) is given by Ry, where R is a graph Fourier multiplier

operator with multiplier g(λ`) = τgΦ(λ`)
τg2

Φ(λ`)+2λr
`
.

Compute R̃y in a distributed manner
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Distributed Semi-Supervised Classification

Finite number of classes {1, 2, . . . ,C}

We know the class labels for l vertices on the graph (l << N)

Want to determine the labels for the other vertices in a distributed manner

Many centralized solutions (e.g., Zhou et al., 2004) force the labels to be
smooth with respect to the intrinsic structure of the graph by

argmax
j∈{1,2,...,κ}

F opt
nj , where Fopt is the solution to

Fopt = argmin
F∈RN×κ

κ∑
j=1

{
τ‖F:,j − Y:,j‖2

2 + ‖F:,j‖2
H
}

� ‖f‖2
H = 〈f, f〉H := 〈f,Pf〉 = fTPf for different choices

of real, symmetric, positive semi-definite matrices P

0 1 0 

0 0 0 

κ 

l 

. 

. 

. 

1 0 0 

N 

…
 

0 0 1 

0 0 0 

0 0 0 

u 

Y  = 
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Distributed Semi-Supervised Classification (cont’d)

Equivalent to κ separate minimization problems:

Fopt
:,j = argmin

f∈RN

{
τ‖f − Y:,j‖2

2 + fTPf
}

(3)

Solution to (3) is given by RY:,j , where R is a generalized graph
multiplier operator (with respect to P) with a multiplier of τ

τ+λ

This type of framework provides a way to distribute a number of existing
(centralized) semi-supervised classification and regression methods from
the machine learning literature
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Summary

A number of distributed signal processing tasks can be represented as
applications of graph multiplier operators

We approximate the graph multipliers by Chebyshev polynomials

The recurrence relations of the Chebyshev polynomials make the
approximate operators readily amenable to distributed computation

The communication required to perform distributed computations only
scales with the size of the network through the number of edges in the
communication graph

The proposed method is well-suited to large-scale networks with sparse
communication graphs
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Outline

1 Introduction

2 Spectral Graph Theory Background

3 Wavelet Constructions on Graphs

4 Approximate Graph Multiplier Operators

5 Distributed Signal Processing via the Chebyshev Approximation

6 Open Issues and Challenges
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Best Minimax Appoximation

Weierstrass Approximation Theorem

For any continuous function f on [a, b] and any ε > 0, there exists a polynomial p
such that

‖f − p‖∞ := sup
x∈[a,b]

|f (x)− p(x)| < ε.

� Catch: The degree of the approximating polynomial may be large

� What is the best we can do when the degree of the approximating polynomial is
bounded?

� Consider approximation space Pn, with elements pn(x) = a0 + a1x + . . .+ anxn

Questions

1 Does there exist p∗n ∈ Pn such that ‖f − p∗n ‖∞ = inf
pn∈Pn

‖f − pn‖∞?

Yes

2 If so, is it unique?

Yes

3 What are the characteristic properties of p∗n ?

4 How do we compute p∗n ?
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Polynomial Interpolation and the Runge Phenomenon

Fix n + 1 points in [−1, 1]

Unique polynomial of degree n passing through those points

If you pick n + 1 points uniformly, max error may increase with n (despite
Weierstrass theorem)

Red is function to be approximated, blue is fifth order approx., green is ninth order approx. Source: Wikipedia.
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Chebyshev Polynomials

Tn(x) := cos
(
n arccos(x)

)
, x ∈ [−1, 1], n = 0, 1, 2, . . .

Chebyshev nodes: Tn(x) = 0 at xi = cos
(

2i−1
2n
π
)
, i = 1, 2, . . . , n

Tn(x) has n + 1 extrema at cos
(

kπ
n

)
, k = 0, 1, . . . , n

Maximum magnitude alternates between 1 and -1 at these n + 1 points

Source: Wikipedia.
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The Minimax Property of Chebyshev Polynomials

Answer to Question 3

Necessary and sufficient conditions for ‖f − p∗n ‖∞ = inf
pn∈Pn

‖f − pn‖∞

There exist n + 2 distinct points x1 < x2 < . . . < xn+2 such that:

� |f (xi )− p∗n (xi )| = ‖f − p∗n ‖∞ , i = 1, 2, . . . , n + 2

� Residuals at these points alternate signs

Application: argmin
pn−1∈Pn−1

‖xn − pn−1‖∞ = xn − 1
2n−1 Tn(x)

Answer to Question 4

Polynomial interpolation with the n + 1 points chosen to be the Chebyshev
nodes (zeros) of Tn+1(x)

Puts more of the interpolation points towards the ends than uniform choice

Can iterate by setting new interpolation points to be those with the largest
magnitude of error in previous round

Near-optimal and the error decreases as you consider higher degree polynomials
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Recurrence Relations of Chebyshev Polynomials

1 T0(x) = 1
T1(x) = x
Tk(x) = 2xTk−1(x)− Tk−2(x) for k ≥ 2

2 Tk(x)Tk′(x) = 1
2

[
Tk+k′(x) + T|k−k′|(x)

]

Shifted Chebyshev Polynomials

� To shift the domain from [-1,1] to [0,A], define

T k(x) := Tk

( x

α
− 1
)
, where α :=

A

2

� T k(x) = 2
α (x − α)T k−1(x)− T k−2(x) for k ≥ 2
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Chebyshev Expansion

Chebyshev polynomials form an orthogonal basis for L2

(
[−1, 1], dx√

1−x2

)

� 〈Tm,Tn〉 =
1∫
−1

Tm(x)Tn(x)√
1−x2

dx =


0 if m 6= n
π
2

if m = n > 0

π if m = n = 0

� Every h ∈ L2

(
[−1, 1], dx√

1−x2

)
can be represented as

h(x) =
1

2
c0 +

∞∑
k=1

ckTk (x), where ck =
2

π

∫ π

0
cos(kθ)h(cos(θ))dθ

� Coefficients usually decrease rapidly

If h(·) has M + 1 continuous derivatives,∣∣∣∣∣h(x)−

[
1

2
c0 +

K∑
k=1

ckTk(x)

]∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=K+1

ckTk(x)

∣∣∣∣∣ = O(K−M), ∀x ∈ [−1, 1]
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