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Spectral Graph Theory

Spectral Graph Theory Notation

m Connected, undirected, weighted graph
g = {V787 W}

m Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

0 3 1 0
m Non-normalized Laplacian: £:=D — W W= 3 0 2 5
{1 2 0 7
0 5 7 0
m Complete set of orthonormal eigenvectors and -
associated real, non-negative eigenvalues:
Lxe = Xexe, 4 0 0 O
ordered w.l.o.g. s.t. D= 8 (1) ? 8
0=2 <A1 < X2... <Ayt = Amax 0O 0 0 1.2

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 4/76



Spectral Graph Theory

Graph Laplacian Eigenvectors

m Values of eigenvectors associated with lower frequencies (low \;) change
less rapidly across connected vertices
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Path Graph
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Path Graph
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Path Graph
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is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011




Spectral Graph Theory

Graph Laplacian Eigenvectors
Special Case — Ring Graph
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Ring Graph

ooreroroTee

m (Unordered) Laplacian eigenvalues: A\; =2 — 2cos (%)
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — Ring Graph

ooreroroTee

m (Unordered) Laplacian eigenvalues: A\; =2 — 2cos (%)

m One possible choice of orthogonal Laplacian eigenvectors:

2¢ N—I)E} 2

Xg:[l,wg,w ,..A,w( , where w = e~

| \
m | xo - xwn_1 | isthe Discrete Fourier Transform (DFT) matrix
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — k-Regular Bipartite Graphs

m A graph G is bipartite if V can be partitioned into subsets V1 and V{ so that
every edge e € £ connects one vertex in V1 with one vertex in Vi
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — k-Regular Bipartite Graphs

m A graph G is bipartite if V can be partitioned into subsets V1 and V{ so that
every edge e € £ connects one vertex in V1 with one vertex in Vi

m A graph G is k-regular if every vertex has the same degree (k)
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — k-Regular Bipartite Graphs

m A graph G is bipartite if V can be partitioned into subsets V1 and V{ so that
every edge e € £ connects one vertex in V1 with one vertex in Vi

m A graph G is k-regular if every vertex has the same degree (k)

N

m All k-regular bipartite graphs have an even number N of vertices, and V; has 3

vertices
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — k-Regular Bipartite Graphs

A graph G is bipartite if V can be partitioned into subsets V; and V{ so that
every edge e € £ connects one vertex in V1 with one vertex in Vi

A graph G is k-regular if every vertex has the same degree (k)

N

m All k-regular bipartite graphs have an even number N of vertices, and V; has 3

vertices

m Laplacian eigenvalues satisfy A\p =2k — Ay_1_¢
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — k-Regular Bipartite Graphs

A graph G is bipartite if V can be partitioned into subsets V; and V{ so that
every edge e € £ connects one vertex in V1 with one vertex in Vi

m A graph G is k-regular if every vertex has the same degree (k)

N

m All k-regular bipartite graphs have an even number N of vertices, and V; has 3

vertices

m Laplacian eigenvalues satisfy A\p =2k — Ay_1_¢

X3 Xt
m If xe = , then xy_1-¢ =
Xi° -Xi
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Spectral Graph Theory

Graph Laplacian Eigenvectors

Special Case — k-Regular Bipartite Graphs

A graph G is bipartite if V can be partitioned into subsets V; and V{ so that
every edge e € £ connects one vertex in V1 with one vertex in Vi

m A graph G is k-regular if every vertex has the same degree (k)

N

m All k-regular bipartite graphs have an even number N of vertices, and V; has 3

vertices

m Laplacian eigenvalues satisfy A\p =2k — Ay_1_¢

X3 Xt
m If xe = , then xy_1-¢ =
Xi° -Xi

m For L™ X, =2 — Any_1_¢ and the Laplacian eigenvector property holds for
any (non-regular) bipartite graph as well
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Spectral Graph Theory

Outline

Spectral Graph Theory Background

@ Two Applications of Graph Laplacian Eigenvectors
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Spectral Graph Theory

Spectral Clustering

m Goal: Partition the graph into k roughly equal-sized clusters such that the edges
between different clusters have low weights
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Spectral Graph Theory

Spectral Clustering

m Goal: Partition the graph into k roughly equal-sized clusters such that the edges
between different clusters have low weights

m cutVi, Vo, ..., V) == % Sk w, Vf)
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Spectral Graph Theory

Spectral Clustering

m Goal: Partition the graph into k roughly equal-sized clusters such that the edges
between different clusters have low weights

m cutVi, Vo, ..., V) == % Sk w, Vf)

m To encourage balanced cluster sizes, minimize, e.g.,

k
1 W(V;, V¢

RatioCut(Vl, Vo,..., Vk) = E E %‘I)

i=1 i
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Spectral Graph Theory

Spectral Clustering

m Goal: Partition the graph into k roughly equal-sized clusters such that the edges
between different clusters have low weights

m cutVi, Vo, ..., V) == % Sk w, Vf)

m To encourage balanced cluster sizes, minimize, e. g ,

Wi, Vi)
RatioCut(V1, V2, ..., Vk — i
(V1,V2, )i=3 Z Vi
i=1
EXAMPLE: k = 2 (von Luxburg, 2007)
c
N \/Il:j \‘ eV
07 For a fixed subset Vi C V, define f € RV by f; := 1T
P ifie vE
2 il i
@ 1113 = =N @ LY =l i -
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Spectral Graph Theory

Spectral Clustering

m Goal: Partition the graph into k roughly equal-sized clusters such that the edges
between different clusters have low weights

m cutVi, Vo, ..., V) == % Sk w, Vf)

m To encourage balanced cluster sizes, minimize, e. g ,

Wi, V5)
RatioCut(V1, Vs, ..., Vi) = —_—i
e 2 Z |V,"
i=1
EXAMPLE: k = 2 (von Luxburg, 2007)
VC
N \/% ,ifiew
0D For a fixed subset Vi C V, define f € RN by f; := Al
|V1\ P c
e , ifi € Vy
1
2 %1 VeI |
@718 = Vil ok - @ sln= o - i =
it
T 1 X 2
f Lf:E > owyf - f)

_ 2 _

1 Vil V1l 1 Vil V1l
=5 X W,-J-( 71+ o) ta 2 Wil - Vl T pe
eviTevs il T\ el evETev: il o\ s

Vil Vil . c

= -+ o +2 Z Wj; = N - RatioCut(V1, V1)
% V1l i€eVvy,jevi
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Spectral Graph Theory

Spectral Clustering (cont'd)

EXAMPLE: k = 2 (von Luxburg, 2007)

Vil .
VA , ifieVy
80 _min_RatioCut(Vy, V) < _min fTLfst F11, ||fll = VN, and f; = 1
viCcv Vicv _\/‘\V%\ ifie Ve
Ve[ o
1
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Spectral Graph Theory

Spectral Clustering (cont'd)

EXAMPLE: k = 2 (von Luxburg, 2007)

Vil .
VA , ifieVy
80 _min_RatioCut(Vy, V) < _min fTLfst F11, ||fll = VN, and f; = 1
viCcv Vicv _\/‘\V%\ ifie Ve
Ve[ o
1

00 NP hard, so we can relax the last condition: Vmgnv fILfst fLland ||fll2 = VN
1

T
From the Courant-Fischer Theorem: x, = argmin { %}
X+ X
xJ.Span{xO,.,.,X271}. x50

Thus, f* = Fiedler vector
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Spectral Graph Theory

Spectral Clustering (cont'd)

EXAMPLE: k = 2 (von Luxburg, 2007)

80 _min_RatioCut(Vy, V) < _min fTLfst F11, ||fll = VN, and f; =
Vi CV Vicy

1

00 NP hard, so we can relax the last condition:
1C

L Lx

xLx

argmin
xJ.Span{xO,.,.,X271}. x50

O0 From the Courant-Fischer Theorem: x, =

{7}

C7 Thus, f* = Fiedler vector

i€V
00 Spectral clustering: i

Vandergheynst and Shuman (EPFL)
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‘vi‘ , ifieVy
Ml e ve

Jmin fYLfst f11and ||f]l2 = VN
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Spectral Graph Theory

Spectral Clustering (cont'd)

GENERAL CASE: k > 2 [ ]

@ Form {yi};_y 5 . n. Wherey; € Rk

& Cluster y;'s with the k-means
algorithm

V!
va
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Spectral Graph Theory

Spectral Clustering (cont'd)

k
yl [
1 ]
[ ]
GENERAL CASE: k > 2 [ ]
od Form {y;}._ . where y; € R¥
{}’r},_1,'2,“.,N Yi N Xo X1 = Xia Xna
& Cluster y;'s with the k-means

algorithm
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Spectra | Graph Theory

Graph Visualization

Use x1(i) and x2(i) as the x and y coordinates of the i vertex:

Source: Spielman, 2011
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Spectral Graph Theory

Outline

Spectral Graph Theory Background

c@ Graph Downsampling
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Spectral Graph Theory

Graph Downsampling
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Spectral Graph Theory

Graph Downsampling

m Challenge: No clear notion of every other vertex
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Spectral Graph Theory

Graph Downsampling

m Challenge: No clear notion of every other vertex

WisH LisT

&7 Removes approximately half of the vertices of the graph
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Spectral Graph Theory

Graph Downsampling

m Challenge: No clear notion of every other vertex

WisH LisT

&7 Removes approximately half of the vertices of the graph
0 Eliminated vertices are not connected by edges of high weight

07 Kept vertices are not connected by edges of high weight
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Spectral Graph Theory

Graph Downsampling

m Challenge: No clear notion of every other vertex

WisH LisT

&7 Removes approximately half of the vertices of the graph
0 Eliminated vertices are not connected by edges of high weight
07 Kept vertices are not connected by edges of high weight

g2 Can be implemented in a computationally efficient manner
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Spectral Graph Theory

Graph Downsampling

The Largest Eigenvector Method

m Downsample based on the polarity of the eigenvector associated with the largest
eigenvalue of the graph Laplacian

8 Vieep = {/ €V : Xmax(i) > 0}, Veliminate := {i € V : xmax(i) < 0}
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Spectral Graph Theory

Graph Downsampling

The Largest Eigenvector Method

m Downsample based on the polarity of the eigenvector associated with the largest
eigenvalue of the graph Laplacian

8 Vieep = {/ €V : Xmax(i) > 0}, Veliminate := {i € V : xmax(i) < 0}

m Variations: Keep negative, keep smallest or largest set, set threshold to
something other than 0, use the largest eigenvector of the normalized Laplacian
cnorm
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Spectral Graph Theory

Graph Downsampling

The Largest Eigenvector Method

m Downsample based on the polarity of the eigenvector associated with the largest
eigenvalue of the graph Laplacian

8 Vieep = {/ €V : Xmax(i) > 0}, Veliminate := {i € V : xmax(i) < 0}

m Variations: Keep negative, keep smallest or largest set, set threshold to

something other than 0, use the largest eigenvector of the normalized Laplacian
Enorm

m Largest eigenvector efficiently computed with the power method:

() Ex(kfl)

T e

B 1f Amax > Ay—1 and (x(9 xmax) # 0, the sequence {x(k)}kzo L converges to
X max
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Spectral Graph Theory

Graph Downsampling
The Largest Eigenvector Method — Examples

Theorem (Roth, 1989)

For a connected, bipartite graph G = {V1 U Vi, &, W}, the largest eigenvalues of L
and L™ are simple, and the polarities of the components of the eigenvectors Xmax
and xpoi" split V into the bipartition V1 and V5.
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Spectral Graph Theory

Graph Downsampling
The Largest Eigenvector Method — Examples
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Spectral Graph Theory

Graph Downsampling
The Largest Eigenvector Method — Examples

oacd
N
DR
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Spectral Graph Theory

Graph Downsampling

Connections with Graph Coloring and Spectral Clustering

m A graph G = {V,E,W} is k-colorable if there exists a partition of V into subsets
Vi, Va2, ..., Vi such that if i ~ j, then i and j are in different subsets in the
partition

m The chromatic number C of a graph G is the smallest k such that G is
k-colorable
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Spectral Graph Theory

Graph Downsampling

Connections with Graph Coloring and Spectral Clustering

m A graph G = {V,E,W} is k-colorable if there exists a partition of V into subsets
Vi, Va2, ..., Vi such that if i ~ j, then i and j are in different subsets in the
partition

m The chromatic number C of a graph G is the smallest k such that G is
k-colorable

m The chromatic number is equal to 2 if and only if the graph is bipartite
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Spectral Graph Theory

Graph Downsampling

Connections with Graph Coloring and Spectral Clustering

m A graph G = {V,E,W} is k-colorable if there exists a partition of V into subsets
Vi, Va2, ..., Vi such that if i ~ j, then i and j are in different subsets in the
partition

m The chromatic number C of a graph G is the smallest k such that G is
k-colorable

m The chromatic number is equal to 2 if and only if the graph is bipartite

m In graph downsampling, we are interested in finding an approximate 2-coloring
with few edges connecting vertices in the same subsets
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Spectral Graph Theory

Graph Downsampling

Connections with Graph Coloring and Spectral Clustering

m A graph G = {V,E,W} is k-colorable if there exists a partition of V into subsets
Vi, Va2, ..., Vi such that if i ~ j, then i and j are in different subsets in the
partition

m The chromatic number C of a graph G is the smallest k such that G is
k-colorable

m The chromatic number is equal to 2 if and only if the graph is bipartite

m In graph downsampling, we are interested in finding an approximate 2-coloring
with few edges connecting vertices in the same subsets

m In some sense dual to the spectral clustering problem
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Spectral Graph Theory

Graph Downsampling
Connections with Nodal Domains

Source: Biyikoglu et al., 2007

m A nodal domain of a function f on G is a maximally connected subgraph of G
such that the sign of f is the same on all vertices of the subgraph

m A positive (negative) strong nodal domain has f(i) > 0 (f(i) < 0) for all / in
the subgraph

m A positive (negative) weak nodal domain has f(i) > 0 (f(i) < 0) for all i in the
subgraph
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Spectral Graph Theory

Graph Downsampling
Connections with Nodal Domains

Source: Biyikoglu et al., 2007

m A nodal domain of a function f on G is a maximally connected subgraph of G
such that the sign of f is the same on all vertices of the subgraph

A positive (negative) strong nodal domain has f(i) > 0 (f(i) < 0) for all / in
the subgraph

m A positive (negative) weak nodal domain has f(i) > 0 (f(i) < 0) for all i in the
subgraph

m # weak nodal domains of f on G < # strong nodal domains of f on G
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Spectral Graph Theory

Graph Downsampling
Connections with Nodal Domains

Source: Biyikoglu et al., 2007

m A nodal domain of a function f on G is a maximally connected subgraph of G
such that the sign of f is the same on all vertices of the subgraph

A positive (negative) strong nodal domain has f(i) > 0 (f(i) < 0) for all / in
the subgraph

m A positive (negative) weak nodal domain has f(i) > 0 (f(i) < 0) for all i in the
subgraph

m # weak nodal domains of f on G < # strong nodal domains of f on G

m Graph downsampling is closely related to the problem of maximizing the number
of nodal domains
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Spectral Graph Theory

Graph Downsampling

Connections with Nodal Domains (cont’'d)

GENERAL BOUNDS
ol For any f on G, # strong and weak nodal domains < N —C + 2
&0 If C =2 (G is bipartite), 3f s.t. # strong and weak nodal domains of f is N

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 22 /76



Spectral Graph Theory

Graph Downsampling

Connections with Nodal Domains (cont’'d)

GENERAL BOUNDS
ol For any f on G, # strong and weak nodal domains < N —C + 2
&0 If C =2 (G is bipartite), 3f s.t. # strong and weak nodal domains of f is N

BounDS ON THE NODAL DOMAINS OF LLAPLACIAN EIGENVECTORS (Biyikoglu et al., 2007)

7 # weak nodal domains of xy < /+1 H g

G0 # strong nodal domains of x, < £+ s, where s is
multiplicity of A\

G2 Xmax has N strong and weak nodal domains if and only if

<&
<&

G is bipartite gg .
G0 ¢+ 1 —r < # strong and weak nodal domains of xg, if Ay Eg « .

is simple and x¢(i) # 0, Vi € V, where r is the number of s

edges that need to be removed from the graph in order to %1 2,3 4 s

turn it into a tree (Berkolaiko, 2008) Source: Oren, 2007

Important Note

The bounds on the number of nodal domains of the Laplacian eigenvectors are
monotonic in £, but the actual number of nodal domains is not always monotonic in ¢
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Spectral Graph Theory

Filtering on Graphs

m Filtering: represent an input signal as a combination of other
signals, and amplify or attenuate the contributions of some of the
component signals

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011




Spectral Graph Theory

Filtering on Graphs

m Filtering: represent an input signal as a combination of other
signals, and amplify or attenuate the contributions of some of the
component signals

m In classical signal processing, the most common choice of basis is
the complex exponentials, which results in frequency filtering

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011



Spectral Graph Theory

Filtering on Graphs

m Filtering: represent an input signal as a combination of other
signals, and amplify or attenuate the contributions of some of the
component signals

m In classical signal processing, the most common choice of basis is
the complex exponentials, which results in frequency filtering

m Not difficult to extend this notion to signals on graphs via the
eigenvectors of the graph Laplacian
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Spectral Graph Theory

Graph Fourier Transform

m Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line Functions on the Vertices of a Graph

FOURIER TRANSFORM GRAPH FOURIER TRANSFORM
Z iwx —jwx 2 0y
fF(w) = (", f) = [ F(x)e™"" dx () = (xe, f) = > f(n)xz(n)
R n=1
INVERSE FOURIER TRANSFORM INVERSE GRAPH FOURIER TRANSFORM
N—1
f(x) = 5= ff(w WX duw f(n)= 3 f(£)xe(n)
£=0
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Spectral Graph Theory

Fourier Multiplier Operator (Filter)

fl) — FT |—F(v) g(w)F(w) — IFT — of(x)

m Fourier multiplier (filter) reshapes functions’ frequencies:

d/>\f(w) = g(w)f(w), for every frequency w
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Spectral Graph Theory

Fourier Multiplier Operator (Filter)

fl) — FT |—F(v) g(w)F(w) — IFT — of(x)

m Fourier multiplier (filter) reshapes functions’ frequencies:

d/>\f(w) = g(w)f(w), for every frequency w

m We can extend this to any group with a Fourier transform, including
weighted, undirected graphs:

Of = IFT (g()FT(F)(w))

Functions on the Vertices of a Graph

Functions on the Real Line

Of(x) = iﬂ{ g(w)f(w)e™™ dw of(n) = Nilg(ke)f‘(f)xe(")
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Spectral Graph Theory

Generalized Graph Multiplier Operators

m Graph Fourier transform leads to natural notions of smoothness
m However, we can just as easily use different filtering bases (useful in practice)
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Spectral Graph Theory

Generalized Graph Multiplier Operators

m Graph Fourier transform leads to natural notions of smoothness
m However, we can just as easily use different filtering bases (useful in practice)

Definition

W is a graph multiplier operator with respect to the real symmetric positive
semi-definite matrix P if there exists a function g : [0, Amax(P)] — R and a complete
set {X¢}y_01 . n_1 Of orthonormal eigenvectors of P such that

N—1
U= g(A)xexi
£=0

where {\¢}, o1 y_1 are the eigenvalues of P.
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Spectral Graph Theory

Generalized Graph Multiplier Operators

m Graph Fourier transform leads to natural notions of smoothness
m However, we can just as easily use different filtering bases (useful in practice)

W is a graph multiplier operator with respect to the real symmetric positive
semi-definite matrix P if there exists a function g : [0, Amax(P)] — R and a complete
set {X¢}y_01 . n_1 Of orthonormal eigenvectors of P such that

N—1
=" g(\)xex;
£=0

where {\¢}, o1 y_1 are the eigenvalues of P.

Proposition (Equivalent characterizations of graph multiplier operators)

The following are equivalent:
(a) W is a graph multiplier operator with respect to P.

(b) W and P are simultaneously diagonalizable by a unitary matrix; i.e., there exists
a unitary matrix U such that U*WU and U*PU are both diagonal matrices.

(c) W and P commute; i.e., WP = PW.

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 26 / 76



Spectral Graph Theory

Unions of Graph Multiplier Operators

N 1 1
m So far, just a single t o, h ’(mth
graph multiplier | | | || ] (@)
operator o, f -N (®?f) 1
. . (@)
m Can easily extend this o | e . St
to unions of graph
multiplier operators:
”””” (; n ’(6?%)}’
\ J L@of)y

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011 27 / 76



Wavelets on Graphs

Outline

Wavelet Constructions on Graphs

Vandergheynst and Shuman (EPFL) Wavelets on Graphs November 17, 2011




Transductive Learning

Let X be an array of data points x1,x2,..., T, € R4

Each point has a desired class label yi € Y (suppose binary)

At training you have the labels of a subset Sof X |S|=1<n

Getting data is easy but labeled data is a scarce resource

GOAL: predict remaining labels

Rationale: minimize empirical risk on your training data such that

- your mod

- your mod

- your mod

€

el

el

| 1s predictive

| 1s simple, does not overfit

| is “stable” (depends continuously on your training set)
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Transductive Learning

Ex: Linear regression vy, = 0 -x5 + b
Empirical Risk: | X'8—y|3 == > 8= (XX")"'Xy

if not enough observations, regularize (Tikhonov):

IX'8—ylz+alfll; ==> 8= (XX"+ol) ' Xy

Ridge Regression
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Transductive Learning

Ex: Linear regression vy, = 0 -x5 + b
Empirical Risk: | X'8—y|3 == > 8= (XX")"'Xy

if not enough observations, regularize (Tikhonov):

X6 -yl +allfll; =>> B8=XX"+ol) ' Xy
Ridge Regression
(Questions:

How can unlabeled data be used 7

More general linear model with a dictionary of features 7

PxB—yl55+ aS(B)

dictionary depends on data points simplifies/stabilizes selected model
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Learning on/with Graphs

How can unlabeled data be used 7

Assumption:

target function is not globally smooth but it is locally smooth over
regions of data space that have some geometrical structure

Use graph to model this structure
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Learning on/with Graphs

Example (Belkin, Niyogi)

Affinity between data points represented by edge weights
(affinity matrix W)

Z Wi (f(z:) — f(z;))”
1,7€X
— flIf L=W-D

measure of smoothness: Af

Revisit ridge regression: || X%3 —y||5 + |85 + 74 XLX'3

K

Solution is smooth in graph “geometry”
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Transduction & Representation

More general linear model with a dictionary of features 7

® x dictionary of features on the complete data set (data dependent)

M restricts to labeled data points (mask)

argmin ||y — M®x 53 + aS(6)
B / \
Model Selection penalty, sparsity ?

Empirical Risk
P Smoothness on graph 7

Important Note: our dictionary will be data dependent but its

construction is not part of the above optimization
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Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

Voral) = —1 (‘” . a)

S S
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Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

Vy.a(a) = —w (x_a)

)@ = [0 (”3 - ) fa)de  (T°F)(a) = (W, f)

S S

I
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Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

Vga(@) = —w (x_a)

<wam:1/3w(f‘”)f@Mx (T* 1)(a) = (). f)

S

Equivalently: (T%0a)(x) = —¢ (37 - a)

(T N@) = o5 [ e (s0) flw)do

I
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Graph Laplacian and Spectral Theory

G = (V,E,w) weighted, undirected graph

Non-normalized Laplacian: £L=D — A Real, symmetric

(L) =Y wii(FG) = F())

Why Laplacian 7

(i
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Graph Laplacian and Spectral Theory

G = (V,E,w) weighted, undirected graph

Non-normalized Laplacian: £L=D — A Real, symmetric

(L) =Y wii(FG) = F())
Why Laplacian ? 7Z? with usual stencil
(Lf)ij =4 ij— fivrj — fimrj — fig+r — fig—

In general, graph laplacian from nicely sampled

manifold converges to Laplace-Beltrami operator
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Graph Laplacian and Spectral Theory

G = (V,E,w) weighted, undirected graph

Non-normalized Laplacian: £L=D — A Real, symmetric

(L) =Y wii(FG) = F())

Why Laplacian ? 7Z? with usual stencil
(Lf)ijg=4fij— fivrj — fim15 — Jij+1 — fij—1

In general, graph laplacian from nicely sampled

manifold converges to Laplace-Beltrami operator

Remark:

Lnorm _ D_1/2£D_1/2 —J — D—l/QAD—l/Q
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Graph Laplacian and Spectral Theory

d2
da:?

> eiwaz

> @)= 5 [ frerds

kP

; F E
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Graph Laplacian and Spectral Theory

j_; > i > f(x) = %/f(w)eiwxdw

Eigen decomposition of Laplacian: L¢; = A\

kP
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Graph Laplacian and Spectral Theory

dd—; > o'W > flz) = %/f(w)eiwxdw

FEigen decomposition of Laplacian: L¢; = A\

For simplicity assume connected graph and 0 = A\g < A1 < Ao... < Ay

For any function on the vertex set (vector) we have:
f (£) = (e, f Z ¢, (1) f(2) Graph Fourier Transform
N-1

(=0
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Spectral Graph Wavelets

Remember good old Euclidean case:

1

(T D@) = 5 [ e () fl)d

We will adopt this operator view

(i

“COLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Spectral Graph Wavelets

Remember good old Euclidean case:

1

T on

(T ) () / e () f () du

We will adopt this operator view

Operator-valued function via continuous Borel functional calculus
.+ +
g: R™ — R Tg — (g (»C) Operator-valued function

Action of operator is induced by its Fourier symbol
N-1

T,f(0) = g(\o) F(£) (T, =) gNe)F()be(i)

¢=0
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A

(i
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A

Dilation operates through operator: T; = g(tL)

(i
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A

Dilation operates through operator: Tgt = g(tL)

Translation (localization):

Define ¥ = Tg(Sj response to a delta at vertex ]
N-1

Vi3 (1) = g(tAe) 9 (1) de(i)  Lpe(F) = Mede()
=0 Ut o) :/Rdw@ﬁ(tw)ejwaejw“
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A

Dilation operates through operator: Tgt = g(tL)

Translation (localization):

Define ¥ = Tg(Sj response to a delta at vertex ]
N-1

Vi3 (1) = g(tAe) 9 (1) de(i)  Lpe(F) = Mede()
=0 Ut o) :/Rdw@ﬁ(tw)ejwaejw“

And so formally define the graph wavelet coefficients of f:
N-1

Wi(t,7) = (e, f) Wit j) =TL(5) =) g(the) f(£)de(5)

T mEe
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Frames

1A, B >0, dh : Ry — R, (i.e. scaling function)
0<A < h*(u) + >, g(tsu)* < B < o©

/ A

scaling function wavelets

A simple way to get a tight frame: 0 A

) = [T => 900 =vA0) @A

for any admissible kernel g
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Scaling & Localization

RPH

ECO!.E POLYTECHNIQUE
FEDERALE DE LAUSANNE




Scaling & Localization

1 1 — T — 1 T S e it
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FExample
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FExample
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FExample
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FExample

B
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FExample
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FExample
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Fraction of energy

i
| w
J
i

Scans

Leonardi & Van de Ville, 2011
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Non-local Wavelet Frame

e Non-local Wavelets are ...

... Graph Wayvelets on Non-Local Graph

St
>~
o
- o » -
=
o - -

//// )
- > . P -

,.:.' e l,j,’

increasing scale
Interest: good adaptive sparsity basis

LN
N
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28.85dB
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Sparsity and Smoothness on Graphs

Using a dictionary of graph wavelets, sparsity and
smoothness on graphs are the same thing !

(i
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Sparsity and Smoothness on Graphs

Using a dictionary of graph wavelets, sparsity and
smoothness on graphs are the same thing !

Idea: for a “Meyer kernel” on the spectrum of G

> Wbo-si I = > 1g@N)PIF)I
) [
= Z FOW))?

2777 Amax SN <277 Amax
AZA \2<ZQ 28”Z\¢sz!2<BZA 1P

1flE2e =Y A°IF(P discrete Sobolev semi-norm on G
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Sparsity and Smoothness on Graphs

ety S @ 48
o ey 46

... ;"\‘ “ g ¢
._ 2 ‘,::‘,"‘?‘h“l“h '_.'. 44

48
46

44

scaling functions coeffs

-98

-98

-98

-96

feg

96

~96

_94 -92 -90 -88

_94 —92 -90 -88

94 92 -90 -88

48}

46|

44

48

46

44

Y -
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Sparsity and Transduction

argmin |y — M®x 3 + ¢S(9)

Since sparsity = smoothness on graph, why not simple LASSO 7

argmin [y - M® x5]|5 + | 8]11
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Sparsity and Transduction

argmin |y — M®x 3 + ¢S(9)

Since sparsity = smoothness on graph, why not simple LASSO 7

argmin [y — M®x 3 + a3l

Bad Idea:

We know there are strongly correlated coeflicients
(LASSO will kill some of them)

There is no information to determine masked wavelets
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Group Sparsity - take 1

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2

scale 1

scaling level
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Group Sparsity - take 1

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2 ’ 1

scale 1
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Group Sparsity - take 1

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2

scale 1
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Group Sparsity - take 1

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2

scale 1

scaling level

Few groups should be active = local smoothness
Inside group, all coefficients can be active
Formulate with mixed-norms |3, 4

Simple model, no overlap, optimized like LASSO

PO

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



Preliminary Results

30 ‘ ‘
—©-Laplacian Eigenmaps
——Laplacian Reg.

25} —~&— Adaptive Threshold || 2—ClaSS USPS
—*—Haar-like basis

20l O State of the art

Simulation results from Gavish et al, ICML 2010

Test Error (%)
o

-
o
T

0 20 40 60 80 100
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Preliminary Results

30 ‘ ‘
—©-Laplacian Eigenmaps
——Laplacian Reg.

251 —#— Adaptive Threshold ]
—I—Haar-like basis

20 O State of the art

Test Error (%)
o

-
o
T

60 80 100

2-class USPS

Simulation results from Gavish et al, ICML 2010
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Preliminary Results

30 ‘ ‘
—©-Laplacian Eigenmaps
——Laplacian Reg.

251 —#— Adaptive Threshold ]
—I—Haar-like basis

20 O State of the art

Test Error (%)
o

-
o
T

60 80 100

2-class USPS

Simulation results from Gavish et al, ICML 2010

5% labeled

recovered

Y -
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Preliminary Results

30 w ‘
—©-Laplacian Eigenmaps
——Laplacian Reg.
25} —~&— Adaptive Threshold || 2—ClaSS USPS

—¥— Haar-like basis
O State of the art

N
o
T

Simulation results from Gavish et al, ICML 2010

Test Error (%)
o

-
o
T

5,
O I I I I
0 20 40 60 80 100
5% labeled recovered
. R
i f s
r'. !‘“"‘.'. L ¥ g L
Is it spectacular 7 No. Comparable to state-of-art :(
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Group Sparsity - take II (outlook)

Group definition too restrictive

No “spatial” (neighborhood) information

(i
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Group Sparsity - take II (outlook)

Group definition too restrictive

No “spatial” (neighborhood) information

Example (CompOSite AbSOlU.te Penalty |[Mosci et al 2010, Jacob, Obozinski, Vert, 2009| ):

=303 [0
Nz

eV k~1

~

weights can trigger influence neighborhood of

through scales
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Group Sparsity - take II (outlook)

Group definition too restrictive

No “spatial” (neighborhood) information

Example (CompOSite AbSOlU.te Penalty |[Mosci et al 2010, Jacob, Obozinski, Vert, 2009| ):

=303 [0
Nz

eV k~1

~

weights can trigger influence neighborhood of

through scales

Remarks:

CAP is the composition of mixed norm and adjacency mat.

For analysis coefficients, at small scale »  [> 8%, behaves like TV
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Graph wavelets

* Redundancy breaks sparsity

- can we remove some or all of it ?

e Faster algorithms

- traditional wavelets have fast filter banks implementation

- whatever scale, you use the same filters

- here: large scales -> more computations

e Goal: solve both problems at one

Sensing and Analysis of High-D Data
Duke University July 2011
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Kron Reduction

In order to iterate the construction, we need to construct a graph on

the reduced vertex set.
A, =Ala,a] — Ala,a)A(a, 0) Ao, af

Ala,al A
A= Ala,af A
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Kron Reduction

In order to iterate the construction, we need to construct a graph on
the reduced vertex set.

A, =Ala,a] — Ala,a)A(a, 0) Ao, af

| Ala,a] A
A = { Ala,a] Ao, a)

1 0 Kron reduction

:'> 1/3

1/3

1.0 1.0

13

|[Dorfler et al, 2011]
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Kron Reduction

In order to iterate the construction, we need to construct a graph on

the reduced vertex set.
A, =Ala,a] — Ala,a)A(a, 0) Ao, af

Properties: maps a weighted undirected laplacian to a weighted

undirected laplacian

spectral interlacing (spectrum does not degenerate)
Ae(A) < Ae(Ay) < Apgn—jal(A)

disconnected vertices linked in reduced graph IFF there is
a path that runs only through eliminated nodes

ML
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Example

Note: For a k-regular bipartite graph

K, —A
b= { ~AT kI, }

Kron-reduced Laplacian: L, = kI, — AA’
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Example

Note: For a k-regular bipartite graph

K, —A
b= { ~AT kI, }

Kron-reduced Laplacian: L, = k%I, — AAT
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The Laplacian Pyramid

Analysis operator

XL

> U1

> Ylow

I
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The Laplacian Pyramid

Analysis operator

XL

> Yo

I
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The Laplacian Pyramid

Analysis operator

T y \ > Y1

I
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The Laplacian Pyramid

Analysis operator

T y \ > Y1

H,x U1 r — Gyo

— MH=~» — x—GH_,zx

Yo

I
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The Laplacian Pyramid

Analysis operator

T y \ > Y1

I
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The Laplacian Pyramid

Analysis operator

T y \ > Y1

I
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The Laplacian Pyramid

Analysis operator

Yo _ Hm -
Y1 I— GHm 7

H/_/ ~ ~\~
Yy Ta

(i
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The Laplacian Pyramid

Analysis operator

Yo _ Hm -
U I— GHm ’

H/_/ ~ ~\~
Yy Ta

Simple (traditional) left inverse

i=(G I)<%>
N—— Y1
Ts N——

Yy

T, T, =1 with no conditions on H or G
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The Laplacian Pyramid

Pseudo Inverse ?

Tol = (Ta'Ta) Tl

Let’s try to use only filters

(i
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The Laplacian Pyramid

Pseudo Inverse ?

Tol = (Ta'Ta) Tl

Let’s try to use only filters

Define iteratively, through descent on LS:

arg min | Taz — y|3 > @py1 =@ +7Ta (y — Tads)

T. = (H,' I-H,'GT)

® &

g h
Yo ere—(M)—— 1
1 _+ TaTy
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The Laplacian Pyramid

we can eagsily implement T, T, with filters and masks:

@5 g
® 6

R
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Filter Banks

2 critically sampled channels

Coset 1

Filter HHDownsamplej
[Filter GHDownsampleJ

Coset 2
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Filter Banks

2 critically sampled channels

Coset 1

Filter HHDownsamplej
[Filter GHDownsampleJ

Coset 2

[ &

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF
H(i)" + |G =2
H(i{)G(N —1)+ H(N —1)G(i) =0

ML
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Chebyshev Approximation

Outline

Approximate Graph Multiplier Operators
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Chebyshev Approximation

Chebyshev Polynomials

B Ta(x) := cos(narccos(x)), m To(x)=1
x € [-1,1],
n=01,2, Ti(x) = x
Ti(x) = 2xTh—1(x) — Ti—2(x)
for k > 2
1of T T s Ranaan z
Ell =1 E
0.5 —77 \\ ! T
3 =/ X n=2/ [|l|3
2 ok / \ IE
= 00F - \ e
3 // n=3 \ /14
—05F : n=>5 \ E
. // \ / E
-10 : Il 1 L L 1 L 1 L 1 L .
10 ~05 0.0 05 1.0

Source: Wikipedia.
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Chebyshev Approximation

Chebyshev Polynomial Expansion and Approximation

m Chebyshev polynomials form an orthogonal basis for L[> ([—1, 1], —& )

1—x2

o0 Every h € L2 <[—1, 1], \/%) can be represented as
—X

1 — 2 (7
h(x) = 5 + Z ¢k Tk(x), where ¢ = ;/0 cos(kB)h(cos(0))dé
k=1
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Chebyshev Approximation

Chebyshev Polynomial Expansion and Approximation

1—x2

m Chebyshev polynomials form an orthogonal basis for L[> ([—1, 1], —& )

o0 Every h € L2 <[—1, 1], \/%) can be represented as
—X

1 — 2 (7
h(x) = 5 + Z ¢k Tk(x), where ¢ = ;/0 cos(kB)h(cos(0))dé
k=1

m K order Chebyshev approximation to a continuous function on an
interval provides a near-optimal approximation (in the sup norm) amongst
all polynomials of degree K
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Chebyshev Approximation

Chebyshev Polynomial Expansion and Approximation

m Chebyshev polynomials form an orthogonal basis for L? ([—1, 1], \/jxiz>

o0 Every h € L2 <[—1, 1], \/%) can be represented as
—X

1 — 2 (7
h(x) = 5 + Z ¢k Tk(x), where ¢ = ;/0 cos(kB)h(cos(0))dé
k=1

m K order Chebyshev approximation to a continuous function on an
interval provides a near-optimal approximation (in the sup norm) amongst
all polynomials of degree K

SHIFTED CHEBYSHEV POLYNOMIALS

&0 To shift the domain from [-1,1] to [0,A], define

= X A
T =T (——1 h ==
k(%) k(a ),werea >

0 Ti(x) = %(x —a)Ti_1(x) — Tx_a(x) for k >2
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Chebyshev Approximation

Fast Chebyshev Approx. of a Graph Multiplier Operator

(@)
Let & € RY*"N be a graph Fourier multiplier with ®f =

(OF)n

Approximate Graph Fourier Multiplier Operator

(f), = Z g(\e)f f)xe( fco + i ck T(Xe) f(g)XL’(”)
£=0 =

~Y |Re+ 3 e Tuh0)| Al
=0 k=1

N =

:< cof—&—icka(ﬁ)f) = (éf)n

Here, T«(£) € RY*N and (Tw(L)f), = ng(AZ)?(Z)XZ(")
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Chebyshev Approximation

Fast Chebyshev Approx. of a Graph Fourier Multiplier

- K
Of = %Cof—i- Z Ck Tk(ﬁ)f ~ Of J
k=1

Question: Why do we call this a fast approximation?
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Chebyshev Approximation

Fast Chebyshev Approx. of a Graph Fourier Multiplier

- K
Of = %Cof—i- Z Ck Tk(ﬁ)f ~ Of J
k=1

Question: Why do we call this a fast approximation?

Answer: From the Chebyshev polynomial recursion property, we have:
To(L)f =f

= 1 Amax
T(L)f = aﬁf— f, where o := >

Tw(L)f = 2(5 — al) (Tr 1(£)F) = Tro(L)F

2 — _
= ~LTa(O)f = 2Tur(L)f = Tia(L)F
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Chebyshev Approximation

Fast Chebyshev Approx. of a Graph Fourier Multiplier

- K
Of = %Cof—i- Z Ck Tk(ﬁ)f ~ Of J
k=1

Question: Why do we call this a fast approximation?

Answer: From the Chebyshev polynomial recursion property, we have:
To(L)f =f

= 1 Amax
T(L)f = aﬁf— f, where o := >

T(L)f = %(.c —al) (Troa (L)) — Tra(L)f

2 _ _ _
EﬂTk,l(E)f —2T 1 (L) — Tr—a(L)f

m Does not require explicit computation of the eigenvectors of the Laplacian
m Computational cost proportional to # nonzero entries in the Laplacian
m This corresponds to the number of edges in the communication graph

m Large, sparse graph = ®f far more efficient than ®f
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Chebyshev Approximation

Approximation Error

m Let ® be a union of 7 generalized graph multiplier operators:

N—-1

@ =[Wi; Wy W], where W) = gi(A)x,X;
£=0
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Chebyshev Approximation

Approximation Error

m Let ® be a union of 7 generalized graph multiplier operators:

N—-1

@ =[Wi; Wy W], where W) = gi(A)x,X;
£=0

j=12,....,m AE[0, Amax]

m Define B(K) := max { sup {|gj(>\)—pf<(>\)}}}
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Chebyshev Approximation

Approximation Error

m Let ® be a union of 7 generalized graph multiplier operators:

N—-1

@ =[Wi; Wy W], where W) = gi(A)x,X;
£=0

j=12,....,m AE[0, Amax]

m Define B(K) := max { sup {|gj(>\)—pf<(>\)}}}

Proposition

I — &2 := max le—®)l> < B(K)\/nN.

[IFll2
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Chebyshev Approximation

Approximation Error

m Let ® be a union of 7 generalized graph multiplier operators:

N—-1

@ =[Wi; Wy W], where W) = gi(A)x,X;
=0

m Define B(K) := max { sup {|gj(>\)—pf<(>\)}}}

j=12,....,m AE[0, Amax]

Proposition

[ — |, := m;oxw < B(K)v/nN.

Proposition (see, e.g., Mason and Handscomb, 2003)

If gi(+) has M + 1 continuous derivatives for all j, then B(K) = O (K~").
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Distributed Processing

Outline

Distributed Signal Processing via the Chebyshev Approximation
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Distributed Processing

Motivating Application: Distributed Denoising

m Sensor network with N sensors
m Noisy signal in RY: y = x+ noise

m Node n only observes y, and wants to
estimate x,

— (=)

m No central entity - nodes can only send
messages to their neighbors in the
communication graph

m However, communication is costly

1/

&) ()
@/ — (=)

m Prior info, e.g., signal is smooth or
piecewise smooth w.r.t. graph structure

0P If two sensors are close enough to —

O

communicate, their observations are

more likely to be correlated
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Distributed Processing

Distributed Computation

(@f)n - (%cof + é cﬁk(c)f)

n
NODE n’S KNOWLEDGE:
(F)n Graph Fourier multiplier g(-), which
Neighbors and weights of edges to is used to compute co, c1, ..., Ck
its neighbors Loose upper bound on Amax
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Distributed Processing

Distributed Computation

(@f)n - (%cof—i- é cﬁk(c)f)n J

NODE n’S KNOWLEDGE:

(F)n Graph Fourier multiplier g(-), which
Neighbors and weights of edges to is used to compute o, Cy, .. -, Ck
its neighbors Loose upper bound on Amax

Task: Compute (T(L)f)n, k € {1,2,...,K} in a distributed manner
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Distributed Processing

Distributed Computation

(@f)n - (%cof—i- é cﬁk(c)f)n J

NODE n’S KNOWLEDGE:

(F)n Graph Fourier multiplier g(-), which
Neighbors and weights of edges to is used to compute o, Cy, .. -, Ck
its neighbors Loose upper bound on Amax

Task: Compute (T(L)f)n, k € {1,2,...,K} in a distributed manner

r N

n (TiL))n = LA~ (o= L (emssommm || (1)

\ J
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Distributed Processing

Distributed Computation

(@f)n - (%cof+é cm(c)f)n J

NODE n’S KNOWLEDGE:

(F)n Graph Fourier multiplier g(-), which
Neighbors and weights of edges to is used to compute o, Cy, .. -, Ck
its neighbors Loose upper bound on Amax

Task: Compute (T(L)f)n, k € {1,2,...,K} in a distributed manner

r N

n (TiL))n = LA~ (o= L (emssommm || (1)

\ J

= (Tu(0)f) = (2£Tica(0)f) = (2Ter(0)F) — (Tumal)f)

r N

m To get (Tz(ﬁ)f)n, suffices to compute (L?l(ﬁ)f)n = [[0£,,000£,,000]] |[T.cex

C J
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Distributed Processing

Distributed Computation

(@f)n - (%cof—i- é cﬁk(c)f)n J

NODE n’S KNOWLEDGE:

(F)n Graph Fourier multiplier g(-), which
Neighbors and weights of edges to is used to compute o, Cy, .. -, Ck
its neighbors Loose upper bound on Amax

Task: Compute (T(L)f)n, k € {1,2,...,K} in a distributed manner

r N

n (TiL))n = LA~ (o= L (emssommm || (1)
B B - B ’ » 2K|E
= (Tu(0)f) = (2£Tica(0)f) = (2Ter(0)F) — (Tumal)f) Sca"ar‘
_ N messages

m To get (T2(L)f)n, suffices to compute (LT1(L)f)n = [oEsouzes]] (e

C J
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Distributed Processing

Distributed Denoising - Method 1

m Prior: signal is smooth w.r.t the underlying graph structure
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Distributed Processing

Distributed Denoising - Method 1

m Prior: signal is smooth w.r.t the underlying graph structure

m Regularization term: f*Lf =1 3° ° wp,, [f(m) — f(n)]?

neV m~n

& fYLF = 0 iff f is constant across all vertices

& fYLf is small when signal f has similar values at neighboring vertices
connected by an edge with a large weight
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Distributed Processing

Distributed Denoising - Method 1

m Prior: signal is smooth w.r.t the underlying graph structure

m Regularization term: f*Lf =1 3° ° wp,, [f(m) — f(n)]?

neV m~n

& fYLF = 0 iff f is constant across all vertices

& fYLf is small when signal f has similar values at neighboring vertices
connected by an edge with a large weight

m Distributed regularization problem:

argmin %Hf —yl3+fcf (1)
f
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Distributed Processing

Distributed Denoising - Method 1

m Prior: signal is smooth w.r.t the underlying graph structure

m Regularization term: f*Lf =1 3° ° wp,, [f(m) — f(n)]?

neV m~n

& fYLF = 0 iff f is constant across all vertices

& fYLf is small when signal f has similar values at neighboring vertices
connected by an edge with a large weight

m Distributed regularization problem:

argmin %Hf —yl3+fcf (1)
f

Proposition

The solution to (1) is given by Ry, where R is a graph Fourier multiplier

operator with multiplier g(A¢) = JTM
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Distributed Processing

Distributed Denoising lllustrative Example

m Graph analog to low-pass filtering

m Modify the contribution of each Laplacian e

0.9 —— Chebyshev Polynomial Approximation, K=5
Chebyshev Polynomial Approximation, K=15

eigenvector

D ()= Rn = % [55x] 7Oxeln)

m Use Chebyshev approximation to compute R’y
in a distributed manner

m Over 1000 experiments, average mean square
error reduced from 0.250 to 0.013

Original Signal Noisy Signal Denoised Signal
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Distributed Processing

Distributed Denoising - Method 2

m Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse
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Distributed Processing

Distributed Denoising - Method 2

m Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse
m Regularize via LASSO (Tibshirani, 1996):

min 4y — W*al3 + sl alls
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Distributed Processing

Distributed Denoising - Method 2

m Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse
m Regularize via LASSO (Tibshirani, 1996):

min 3l — W*al3 + ulall
m Solve via iterative soft thresholding (Daubechies et al., 2004):

28 _ 5M<a(,8—1) Yy (y _ W*a(ﬁ*)))? B=1,2,...
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Distributed Processing

Distributed Denoising - Method 2

Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse
m Regularize via LASSO (Tibshirani, 1996):

min 3l — W*al3 + ulall
m Solve via iterative soft thresholding (Daubechies et al., 2004):
8 = Sur (357w (y - wralP D)) =12,

D-LASSO (Mateos et al., 2010) solves in distributed fashion, but requires
2|E| messages of length N(J + 1) at each iteration
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Distributed Processing

Distributed Denoising - Method 2

m Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse
m Regularize via LASSO (Tibshirani, 1996):

min 3l — W*al3 + ulall
m Solve via iterative soft thresholding (Daubechies et al., 2004):
8 = Sur (357w (y - wralP D)) =12,

m D-LASSO (Mateos et al., 2010) solves in distributed fashion, but requires
2|E| messages of length N(J + 1) at each iteration

m We solve the LASSO with the approximate wavelet operator via the
distributed Chebyshev computation method
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Distributed Processing

Distributed Denoising - Method 2

m Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse

m Regularize via LASSO (Tibshirani, 1996):
min 3lly — W*al3 + pllal
m Solve via iterative soft thresholding (Daubechies et al., 2004):
a? = S,”<a(’871) +TW (y - W*a(ﬁ’1)>), 8=12,...

m D-LASSO (Mateos et al., 2010) solves in distributed fashion, but requires
2|E| messages of length N(J + 1) at each iteration

m We solve the LASSO with the approximate wavelet operator via the
distributed Chebyshev computation method

m The communication workload only scales with network size through |E|,
otherwise independent of N
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Distributed Processing

Distributed Denoising - Method 2

m Prior: signal is p.w. smooth w.r.t. graph < SGWT coefficients sparse
m Regularize via LASSO (Tibshirani, 1996):

min 3l — W*al3 + ulall
m Solve via iterative soft thresholding (Daubechies et al., 2004):
8 = Sur (357w (y - wralP D)) =12,

m D-LASSO (Mateos et al., 2010) solves in distributed fashion, but requires
2|E| messages of length N(J + 1) at each iteration

m We solve the LASSO with the approximate wavelet operator via the
distributed Chebyshev computation method

m The communication workload only scales with network size through |E|,
otherwise independent of N

w ||W*a, — Wa, 3 < %\/N(J+ 1)B(K)
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Distributed Processing

Distributed Deconvolution/Deblurring

m Noisy observation: y = ®x+ noise, where ® is a graph Fourier
multiplier operator with multiplier go

m Distributed regularization problem:

argming||yf¢f||§+ L f (2)
f
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Distributed Processing

Distributed Deconvolution/Deblurring

m Noisy observation: y = ®x+ noise, where ® is a graph Fourier
multiplier operator with multiplier go

m Distributed regularization problem:

argming||yf¢f||§+ L f (2)
f

Proposition

The solution to (2) is given by Ry, where R is a graph Fourier multiplier
T80(Ae)

operator with multiplier g(\;) = T2 02N
> 14

m Compute Ry in a distributed manner
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Distributed Processing

Distributed Semi-Supervised Classification

m Finite number of classes {1,2,...,C}
m We know the class labels for | vertices on the graph (/ << N)

m Want to determine the labels for the other vertices in a distributed manner
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Distributed Processing

Distributed Semi-Supervised Classification

m Finite number of classes {1,2,...,C}
m We know the class labels for | vertices on the graph (/ << N)
m Want to determine the labels for the other vertices in a distributed manner

m Many centralized solutions (e.g., Zhou et al., 2004) force the labels to be
smooth with respect to the intrinsic structure of the graph by

argmax F°P', where FOP! is the solution to - N
Je{1.2,....k} 1.0 0
I 4 0O 0 1
O 1 o
2 2 B .
Fort — argmm Z {7IIF.; = Y. l5+ IF. ;1% } o 0070
FERN X~ =
0O O O ([N
ol .
60 |[f||2, = (F,f)y := (F, Pf) = fTPf for different choices
of real, symmetric, positive semi-definite matrices P 0 o0 o
~ P4
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Distributed Processing

Distributed Semi-Supervised Classification (cont'd)

m Equivalent to k separate minimization problems:

Fort — argmin{THffY;,jH% +fTPf} (3)
fERN

m Solution to (3) is given by RY.;, where R is a generalized graph
multiplier operator (with respect to P) with a multiplier of P~y

m This type of framework provides a way to distribute a number of existing
(centralized) semi-supervised classification and regression methods from
the machine learning literature
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Distributed Processing

Summary

m A number of distributed signal processing tasks can be represented as
applications of graph multiplier operators

m We approximate the graph multipliers by Chebyshev polynomials

m The recurrence relations of the Chebyshev polynomials make the
approximate operators readily amenable to distributed computation

m The communication required to perform distributed computations only
scales with the size of the network through the number of edges in the
communication graph

m The proposed method is well-suited to large-scale networks with sparse
communication graphs
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Open lIssues

Outline

@ Open Issues and Challenges
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Open lIssues

Further Reading

SPECTRAL GRAPH THEORY, LAPLACIAN EIGENVECTORS, AND NODAL DOMAINS

‘ F. K. Chung, Spectral Graph Theory. Vol. 92 of the CBMS Regional Conference Series in Mathematics,
AMS Bokstore, 1997.

Q T. Biyikoglu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs. Lecture Notes in
Mathematics, vol. 1915, Springer, 2007.

SPECTRAL CLUSTERING

@ U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, no. 4, pp. 395-416, 2007.

CHEBYSHEV POLYNOMIALS

Q J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Chapman and Hall, 2003.

SPECTRAL GRAPH WAVELET TRANSFORM AND DISTRIBUTED PROCESSING

@ D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”
Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129-150, Mar. 2011.

@ D. | Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial approximation for distributed
signal processing,”in Proc. Int. Conf. Distr. Comput. Sensor Sys. (DCOSS), Barcelona, Spain, Jun. 2011.
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Best Minimax Appoximation

Weierstrass Approximation Theorem

For any continuous function f on [a, b] and any € > 0, there exists a polynomial p
such that
If = plloc = sup |F(x) — p(x)| < e.

x€E|a,b]
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Best Minimax Appoximation

Weierstrass Approximation Theorem

For any continuous function f on [a, b] and any € > 0, there exists a polynomial p
such that
If = plloc = sup |F(x) — p(x)| < e.

x€E|a,b]

P Catch: The degree of the approximating polynomial may be large

670 What is the best we can do when the degree of the approximating polynomial is
bounded?

&0 Consider approximation space Pp, with elements p,(x) = ag + aix + ... + anx”
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Best Minimax Appoximation

Weierstrass Approximation Theorem

For any continuous function f on [a, b] and any € > 0, there exists a polynomial p
such that
If = plloc = sup |F(x) — p(x)| < e.

x€E|a,b]

P Catch: The degree of the approximating polynomial may be large

670 What is the best we can do when the degree of the approximating polynomial is
bounded?

&0 Consider approximation space Pp, with elements p,(x) = ag + aix + ... + anx”
QUESTIONS
Does there exist p; € P, such that ||f — p}|lcc = inf ||f — pnllcc?
Pn€Pn
If so, is it unique?
What are the characteristic properties of p;?

How do we compute p;?
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Best Minimax Appoximation

Weierstrass Approximation Theorem

For any continuous function f on [a, b] and any € > 0, there exists a polynomial p
such that
If = plloc = sup |F(x) — p(x)| < e.

x€E|a,b]

P Catch: The degree of the approximating polynomial may be large

670 What is the best we can do when the degree of the approximating polynomial is
bounded?

&0 Consider approximation space Pp, with elements p,(x) = ag + aix + ... + anx”
QUESTIONS

Does there exist p;; € P, such that ||f — p}|lcc = pnigf[)n\\f — Pnlloc? Yes

If so, is it unique? Yes

What are the characteristic properties of p;?

How do we compute p}?
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Polynomial Interpolation and the Runge Phenomenon

m Fix n+ 1 points in [—1,1]
m Unique polynomial of degree n passing through those points

m If you pick n+ 1 points uniformly, max error may increase with n (despite
Weierstrass theorem)

Red is function to be approximated, blue is fifth order approx., green is ninth order approx. Source: Wikipedia.
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Chebyshev Polynomials

m To(x) :=cos(narccos(x)), x € [-1,1], n=0,1,2,...
m Chebyshev nodes: T,(x) =0 at x; = cos (3-27), i=1,2,...,n
m T,(x) has n+ 1 extrema at cos (kT”) ,k=0,1,...,n

m Maximum magnitude alternates between 1 and -1 at these n + 1 points

-0.5 n=>5

T

il

T T
Lilall

Ty (x)
S

T T
Lalalal

Source: Wikipedia.
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The Minimax Property of Chebyshev Polynomials

Answer to Question 3

m Necessary and sufficient conditions for ||[f — p;llcc = in; If — pnlloo
Pn€Pn

There exist n + 2 distinct points x; < x2 < ... < Xpt2 such that:
@ |f(xi) = py(xi)l = IIf = pillos s i=1,2,...,n+2

07 Residuals at these points alternate signs
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The Minimax Property of Chebyshev Polynomials

Answer to Question 3

m Necessary and sufficient conditions for ||[f — p;llcc = in; If — pnlloo
Pn€Pn

There exist n + 2 distinct points x; < x2 < ... < Xpt2 such that:
@ |f(xi) = py(xi)l = IIf = pillos s i=1,2,...,n+2

07 Residuals at these points alternate signs

Application: argmin [x" — pr_1lcc = x" — 5755 Ta(x)
Pn—1€Pn—1
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The Minimax Property of Chebyshev Polynomials

Answer to Question 3

m Necessary and sufficient conditions for ||[f — p;llcc = in; If — pnlloo
Pn€Pn

There exist n + 2 distinct points x; < x2 < ... < Xp42 such that:
@ |f(xi) = py(xi)l = IIf = pillos s i=1,2,...,n+2

07 Residuals at these points alternate signs

Application: argmin [x" — pr_1lcc = x" — 5755 Ta(x)
Pn—1€Pn—1

Answer to Question 4

m Polynomial interpolation with the n + 1 points chosen to be the Chebyshev
nodes (zeros) of T,41(x)

m Puts more of the interpolation points towards the ends than uniform choice

m Can iterate by setting new interpolation points to be those with the largest
magnitude of error in previous round

m Near-optimal and the error decreases as you consider higher degree polynomials
o
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Recurrence Relations of Chebyshev Polynomials

To(x) =1
Ti(x) = x
Ti(x) = 2xT—1(x) — Tk—2(x) for k >2

Tk(X) Tur(x) = 5 [ Thawr (%) + Tipemier) (%))
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Recurrence Relations of Chebyshev Polynomials

To(x) =1
Ti(x) = x
Ti(x) = 2xT—1(x) — Tk—2(x) for k >2

Tk(X) Tur(x) = 5 [ Thawr (%) + Tipemier) (%))

SHIFTED CHEBYSHEV POLYNOMIALS

@ To shift the domain from [-1,1] to [0,A], define

— A
Tr(x) := Tk (g - 1) , Where o 1= 5

@ Ti(x)=2(x — )Tk 1(x) — Tk_a(x) for k>2

T«
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Chebyshev Expansion

m Chebyshev polynomials form an orthogonal basis for L2 ([ 1,1],
0 ifm#n
& (T, Tn) L m =13 ¥m=n>0
s ifm=n=0

o0 Every h € L2 ([71, 1], \/%) can be represented as
—X

1 = 2 ("
h(x) = zco + Z ¢k Tk(x), where ¢, = f/ cos(k@)h(cos(0))do
2 =1 ™ Jo

o Coefficients usually decrease rapidly

m If h(-) has M + 1 continuous derivatives
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h(x) — %CoJr;cka(x) ‘: kglcm(x) = O(KM),vx e [-1,1]
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