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Signal Processing on Graphs
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Irregular Data Domains

Social Networks

Energy Networks

Transportation Networks
Biological Networks
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Some Typical Processing Problems
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Semi-Supervised Learning

Analysis / Information Extraction

Denoising

Compression / Visualization

Earth data source: Frederik Simons
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Simple Motivating Examples
l Tikhonov regularization for denoising:
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Simple Motivating Examples
l Tikhonov regularization for denoising:

l Wavelet denoising:
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Research Questions
l For signals on Euclidean data domains, we have results 

characterizing classes of signals that are well-approximated by 
different transforms
- e.g., piecewise-smooth 1D signals by wavelets, 2D cartoons with 

curvilinear discontinuities by curvelets/shearlets 

l Which multiscale transforms for signals on graphs are well-
suited for which signal processing tasks, which classes of 
signals, and which types of graphs?

l Connections between properties of graph signals and the decay 
of their wavelet coefficients?

5
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Smoothness of Graph Signals

To identify and exploit structure in the data, we need to account for the 
intrinsic geometric structure of the underlying graph data domain

6
Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Why Do We Need New Dictionaries?

G1 G2 G3

To identify and exploit structure in the data, we need to

account for the intrinsic geometric structure of the

underlying data domain
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Global Regularity of Graph Signals
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Notions of Global Regularity for Graph Signals
8
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Notions of Global Regularity for Graph Signals
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Smoothness of Graph Signals Revisited
9
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Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

S
p

(f) :=
1

p
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i2V
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2
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When p = 1, S
1

(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S
2

(f) =
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i2V
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[f(j)� f(i)]2
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(i,j)2E
W

i,j
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S
2

(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1

2 fk
2

=

p
fTLf =

p
S
2

(f).

Note from (6) that the quadratic form S
2

(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S

2

(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�
0

= min

f2RN

kfk
2

=1

{fTLf} , (7)

and �
`

= min

f2RN

kfk
2

=1

f?span{u
0

,...,u`�1

}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u
`

is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u

0

is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u

`

}
`=0,1,...,N�1

of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight W

i,j

by a factor 1p
didj

. Doing so
leads to the normalized graph Laplacian, which is defined as
˜L := D� 1

2LD� 1

2 , or, equivalently,

(
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d
i

X

j2Ni

W
i,j

"
f(i)p
d
i

� f(j)p
d
j

#
.

G1

λ

f̂ λ( )

G2

λ
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Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G

1

, and least smooth with
respect to the intrinsic structure of G

3

. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL

1

f = 0.14, fTL
2

f = 1.31, and fTL
3

f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of ˆf on G

1

, and
more energy in the higher frequencies in the graph
spectral plot of ˆf on G

3

.

The eigenvalues {˜�
`

}
`=0,1,...,N�1

of the normalized graph
Laplacian of a connected graph G satisfy

0 =

˜�
0

< ˜�
1

 . . .  ˜�
max

 2,

with ˜�
max

= 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V

1

and V
2

such
that every edge e 2 E connects one vertex in V

1

and one vertex
in V

2

. We denote the normalized graph Laplacian eigenvectors
by {˜u

`

}
`=0,1,...,N�1

. As seen in Figure 3(b), the spectrum of
˜L also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u

0

, the normalized graph Laplacian
eigenvector ˜u

0

associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry P

i,j

describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its

underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35
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10Notions of Global Regularity for Graph Signals
Generalizations

1
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p-Dirichlet Form
(Elmoataz et al., 2008)

kfkHp := kLpfk2 = kdLpfk2 =

sX
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|�`|2p|f̂(`)|2Discrete Sobolev 
Semi-Norm

kfkHp

||f ||2  �p
max

for all f 2 RN

• In the continuous setting, the space          of p-times 
differentiable Sobolev functions are those satisfying

• In the graph setting,

Wp(R)
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Wavelet Coefficient Decay of 
Globally Regular Graph Signals
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l Generalized translation
‣ Classical setting:

‣Graph setting:
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ĝ(�`)u
⇤
` (n)u`(i)

12

http://lts4.epfl.ch
http://lts4.epfl.ch


l Generalized translation
‣ Classical setting:

‣Graph setting:

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Spectral Graph Wavelets
12

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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l Generalized translation
‣ Classical setting:

‣Graph setting:

l Generalized dilation:

l Spectral graph wavelet at scale s, 
centered at vertex n:

(Tsg)(t) = g(t� s) =

Z

R
ĝ(⇠)e�2⇡i⇠se2⇡i⇠td⇠

dDsg(�) = ĝ(s�)

Spectral Graph Theory Generalized Operators Transforms Scalable Algorithms and Distributed Processing

Example: Image Denoising by Low-Pass Graph Filtering

f (n) // GFT // f̂ (�`) // ĝ // ĝ(�`)f̂ (�`) // IGFT // �f (n)

Semi-Local Graph Tikhonov Regularization

argmin
f

�

kf � yk22 + �fTLf
 

=) ĝ(�`) =
1

1 + ��`
λ

ĝ(λ) = 1
1+10λ

ĝ(λ)

7

Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f
0

+ ⌘, where ⌘ is uncorrelated additive
Gaussian noise, and wish to recover f

0

. To enforce a priori information that the clean signal f
0

is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed � > 0, solve the optimization
problem

argmin

f

�
kf � yk2

2

+ �fTLf
 
. (16)

The first-order optimality conditions of the convex objective function in (??) show that (see, e.g., [?], [?, Section III-A],
[?, Proposition 1]) the optimal reconstruction is given by

f⇤(i) =
N�1X

`=0


1

1 + ��
`

�
ŷ(�

`

)u
`

(i), (17)

or, equivalently, f = ˆh(L)y, where ˆh(�) := 1

1+��

can be viewed as a low-pass filter.
As an example, in the figure below, we take the 512 x 512 cameraman image as f

0

and corrupt it with additive
Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take ✓ = 0.1 and  = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.

Gaussian-Filtered Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered

comprising any path connecting i and j) is greater than k [?,
Lemma 5.2]. Therefore, we can write (??) exactly as in (??),
with the constants defined as

b
i,j

:=

KX

k=dG(i,j)

a
k

�
Lk

�
i,j

.

So when the frequency filter is an order K polynomial,
the frequency filtered signal at vertex i, f

out

(i), is a linear
combination of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property
can be quite useful when relating the smoothness of a filtering

kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t�⌧). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors
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Semi-Local Graph
(Tng)(i) :=

N�1X

`=0

ĝ(�`)u
⇤
` (n)u`(i)

 s,n(i) := (TnDsg)(i) =
N=1X

`=0

ĝ(s�`)u
⇤
` (n)u`(i)

14

http://lts4.epfl.ch
http://lts4.epfl.ch


EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

15Wavelet Coefficient Decay of Globally Regular 
Graph Signals

Let p � 1, and assume that Cp :=
R1
0 |ĝ(s)|2/s2pds < 1. Then

Z 1

0
s�2p

X

n

|hf, s,ni|2ds = Cp||f ||H(2p�1)/2 .

Proposition 
1

Assume that ĝ(�) =
Pq

k=p ak�
k
for some p � 1 (implying ĝ = 0)

Then

| f(s, n)| = |hf, s,ni| 
qX

k=p

|ak|sk||f ||Hk .

Proposition 
2
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Ongoing Work: 
Local Regularity and Wavelet 
Coefficient Decay of Locally 

Regular Graph Signals
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Notions of Local Regularity
17

Local 
Variation ||Omf ||2 =

"
X

n2Nm

w(m,n) [f(n)� f(m)]2
# 1

2

 f(s, n) =
qX

k=p

aks
k
�
Lkf

�
(n)

Laplacian 
as 

Derivative

(Lkf)(n)            as a measure of local regularity of f in a 
neighborhood of radius k around vertex n

• For polynomial kernel:

A graph signal f is (C,↵, r)-Hölder regular with respect

to the graph G at vertex n 2 V if

|f(n)� f(m)|  C[dG(m,n)]↵, 8m 2 N (n, r)

Hölder 
Regularity
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Spectral Graph Wavelet Localization 
18

Characterizations of this localization
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Wavelet Coefficient Decay 
of Locally Regular Graph Signals

High-level intuition
l Far away from vertex n, for small scales s,              is small 

because      is highly localized around n
l Close to vertex n,             is small because f is locally regular

19

| f(s, n)|  Cr↵
X

m2N (n,r)

| s,n(m)|+ C2s
r+1

X

m/2N (n,r)

|f(m)� f(n)|.

Assume that f is (C,↵, r)-Hölder regular for some r � 1,

and let ĝ(�) =
Pq

k=r ak�
k
for some coe�cients {ak}k=r,r+1,...,q.

Then there exist constants C2 and s̄ such that for all s < s̄, we have

Proposition 
3

| f(s, n)|

| f(s, n)|

 s,n
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Outlook
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David Shuman Signal Processing on Graphs February 11, 2013 14 / 35• Application of graph signal processing techniques to real science and 
engineering problems is in its infancy 

• Theoretical connections between classes of graph signals, the underlying 
graph structure, and sparsity of transform coefficients
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