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Signal Processing on Graphs

Irregular Data Domains

Social Networks

Energy Networks

Transportation Networks
Biological Networks

Weighted graphs are a flexible tool to represent a wide variety of
topologically-complicated data domains
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Some Typical Processing Problems

Semi-Supervised Learning

Analysis / Information Extraction

Denoising

Visualization / Compression

Earth data source: Frederik Simons
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Orthonormal Dictionaries

= x#
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Basis        DictionarySignal Coefficients

Basis Element         Atom
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Orthonormal Dictionaries (cont.)

Synthesis
Synthesis	
  

= x	
  

Analysis

Analysis	
  

=x	
  

f =
∑

`

α`u` =
∑

`

〈f , u`〉u`
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Overcomplete Dictionaries and Sparsity

= x#

Given an overcomplete Φ, there are infinitely many choices of α that lead to the
same f

Criteria for useful dictionaries?

� Ability to sparsely represent signals – few non-zeros coefficients in α
� Ability to capture the relevant characteristics of the signal

� Computationally efficient to apply Φ and ΦT

Which signals? Need different dictionaries for different mathematical models of

data with different structural patterns and for different processing tasks

� E.g., different ingredient bundles for different cuisines
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The Fourier Transform

Collection of atoms:
{

e2πiξt
}
ξ∈R

=
{

cos(2πξt) + i sin(2πξt)
}
ξ∈R
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Synthesis example:
Synthesis	
  

= x	
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Fourier transform (analysis): f̂ (ξ) = 〈f , e2πiξt〉 =
∫
R

f (t)e−2πiξt dt
Analysis	
  

=x	
  

� e.g., if f is an audio signal, f̂ tells us which
frequencies are present

� A music expert could identify rhythmical patterns
from f and the key from dominant frequencies of f̂

David Shuman Signal Processing on Graphs February 11, 2013 8 / 35



Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Time-Frequency Dictionaries

Localized Fourier analysis – joint descriptions of signals’ temporal and spectral
behavior

� Localized oscillations appear frequently in audio processing,
vibration analysis, radar detection, etc.

� e.g., identify musical notes and melody at different times

Windowed (short-time) Fourier transform of f ∈ L2(R):

Sf (s, ξ) := 〈f , gs,ξ〉 =

∫ ∞
−∞

f (t)g(t − s)e−2πiξt dt

The atoms gs,ξ are localized in time and frequency: −10 −5 0 5 10
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Spectrogram Example

Frequency

|Sf (s, ξ)|2

Time

Source: Genesis
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Dictionary Design for Signals on Graphs

Main Problem

Design dictionaries to (i) reveal relevant structural properties of
signals on weighted, undirected graphs, and/or (ii) sparsely
represent different classes of signals on graphs
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Why Do We Need New Dictionaries?

G1 G2 G3

To identify and exploit structure in the data, we need to
account for the intrinsic geometric structure of the

underlying data domain
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The Essence of the Problem

Weighted graphs are irregular structures that lack a shift-invariant
notion of translation

Many simple yet fundamental concepts that underlie classical signal
processing techniques become significantly more challenging in the
graph setting
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Approach
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Spectral Graph Theory Notation

Connected, undirected, weighted graph
G = {V, E,W }

Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node

Non-normalized graph Laplacian:
L := D −W

Complete set of orthonormal eigenvectors and
associated real, non-negative eigenvalues:

Lu` = λ`u`,

ordered w.l.o.g. s.t.

0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax

1
.3 //

.1
��

2

.5
��

oo

.2

��
3

@@OO

.7
// 4

OO

oo

W =


0 .3 .1 0
.3 0 .2 .5
.1 .2 0 .7
0 .5 .7 0



D =


.4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1.2


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The Graph Laplacian

Discrete difference operator: (Lf )(i) =
∑

j∈Ni
Wi,j [f (i)− f (j)]

Example: Unweighted Grid Graph

(x0, y0+1)

(x0, y0-1)

(x0+1, y0)(x0-1, y0)

i=(x0, y0)

−Lf (i) =
[
f (x0 + 1, y0)− f (x0, y0)

]
−

[
f (x0, y0)− f (x0 − 1, y0)

]
+

[
f (x0, y0 + 1)− f (x0, y0)

]
−

[
f (x0, y0)− f (x0, y0 − 1)

]
∼
∂2f

∂x2
(x0, y0) +

∂2f

∂y2
(x0, y0) = (∆f )(x0, y0)
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Graph Laplacian Eigenvectors

Values of eigenvectors associated with lower frequencies (low λ`) change
less rapidly across connected vertices

u0 u1

u2 u50
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Graph Fourier Transform

Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line

Fourier Transform

f̂ (ξ) = 〈f , e2πiξt〉

=

∫
R

f (t)e−2πiξt dt

Inverse Fourier Transform

f (t) =
∫
R

f̂ (ξ)e2πiξt dξ

Functions on the Vertices of a Graph

Graph Fourier Transform (Analysis)

f̂ (λ`) = 〈f , u`〉

=
N∑

n=1

f (n)u∗` (n)

Analysis	
  

= x	
  

Inverse Graph Fourier Transform (Synthesis)

f (n) =
N−1∑
`=0

f̂ (λ`)u`(n)

Synthesis	
  

= x	
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Signals on Graphs in Two Domains

... ...

λ

f̂ () =Ce−5λ

f̂ (λ )

λ

f̂ () =Ce−5λ

f̂ (λ )

f̂ (λ ) = e
−5λ
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Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

∑

i∈V
‖Oif‖p2 =

1

p

∑

i∈V


∑

j∈Ni

Wi,j [f(j)− f(i)]
2




p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S2(f) =
1

2

∑

i∈V

∑

j∈Ni

Wi,j [f(j)− f(i)]
2

=
∑

(i,j)∈E
Wi,j [f(j)− f(i)]

2
= fTLf . (6)

S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm ‖f‖L is defined as

‖f‖L := ‖L 1
2 f‖2 =

√
fTLf =

√
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
‖f‖L is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

λ0 = min
f∈RN

‖f‖2=1

{fTLf} , (7)

and λ` = min
f∈RN

‖f‖2=1
f⊥span{u0,...,u`−1}

{fTLf} , ` = 1, 2, . . . , N − 1, (8)

where the eigenvector u` is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices

The basis {u`}`=0,1,...,N−1 of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1√

didj
. Doing so

leads to the normalized graph Laplacian, which is defined as
L̃ := D−

1
2LD−

1
2 , or, equivalently,

(L̃f)(i) =
1√
di

∑

j∈Ni

Wi,j

[
f(i)√
di
− f(j)√

dj

]
.

G1

λ

f̂ λ( )

G2

λ

f̂ λ( )

G3

λ

f̂ λ( )

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {λ̃`}`=0,1,...,N−1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = λ̃0 < λ̃1 ≤ . . . ≤ λ̃max ≤ 2,

with λ̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e ∈ E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ`}`=0,1,...,N−1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D−1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph
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Summary So Far

{Complex exponentials } ⇐⇒ { graph Laplacian eigenvectors }
� Dictionaries that provide notions of frequency

Analysis with these dictionaries ⇐⇒ Fourier / graph Fourier transform

Synthesis with these dictionaries ⇐⇒ inverse Fourier / graph Fourier
transform

Transforms and their inverses provide two different ways to represent the
same signal in two different domains

Next step: generate overcomplete dictionaries whose atoms are localized
in the vertex domain (time) and the graph spectral domain (frequency)
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7 Conclusion
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Generalized Translation on Graphs

Define a generalized convolution by imposing that convolution in the vertex
domain is multiplication in the graph spectral domain

Define generalized translation via generalized convolution with a delta

Functions on the Real Line

For f ∈ L2(R), in the weak sense

(Ts f )(t) := f (t − s)

= (f ∗ δs )(t)

=

∫
R

f̂ (ξ)e−2πiξs e2πiξt dξ

Functions on the Vertices of a Graph

For f ∈ RN , we define

(Ti f )(n) :=
√

N(f ∗ δi )(n)

=
√

N

N−1∑
`=0

f̂ (λ`)u∗` (i)u`(n)
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Properties of Generalized Translation Operators on Graphs

Warning 1: Do not have the group structure of classical translation:

Ti Tj 6= Ti+j

Warning 2: Unlike the classical case, generalized translation operators are
not unitary, so ‖Ti g‖2 6= ‖g‖2 in general

However, the mean is preserved:
∑

n(Ti g)(n) =
∑

n g(n)

Theorem (Smoothness of ĝ leads to localization of Ti g around vertex i)

Let ĝ : [0, λmax]→ R be a kernel and define din := dG(i , n). Then

|(Ti g)(n)| ≤
√

NBĝ (din − 1),

where Bĝ (K) is the minimax polynomial approximation error over all polynomials of
degree K:

Bĝ (K) := inf
p̂K

{
sup

λ∈[0,λmax]
|ĝ(λ)− p̂K (λ)|

}
.
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A Windowed Graph Fourier Transform

1 Translate a window g to each vertex of the graph

T100g T200g T2000g

2 Multiply each component of the graph signal f of interest by the
corresponding component of the translated window Ti g

3 Take the graph Fourier transform of f . ∗ Ti g (recall analysis)
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A Windowed Graph Fourier Transform (cont.)

Windowed graph Fourier atoms: gi,k := Mk Ti g

Windowed graph Fourier transform: Sf (i , k) := 〈f , gi,k〉

Example: Three different atoms on the Swiss Roll graph

g62,100

−1 0 1−1

0

1

−1

0

1  

 

−0.2 0 0.2

f̂ () =Ce−5λ

ĝ62,100 (λ )

λ

g62,450

−1 0 1−1

0

1

−1

0

1  

 

−0.8 0 0.8

f̂ () =Ce−5λ

ĝ62,450 (λ )

λ

g62,983

−1 0 1−1

0

1

−1

0

1  

 

−2 0 2

λ

f̂ () =Ce−5λ

ĝ62,983(λ )
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Example 1: The Path Graph

Signal f on the path graph comprised of three different graph Laplacian
eigenvectors restricted to three different segments of the graph:

... ...

“Spectrogram” of f showing |Sf (i , k)|2

i

k
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Example 2: A Signal on a Random Sensor Network

Any structure?
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Example 2: A Signal on a Random Sensor Network

Signal f comprised of three different graph Laplacian eigenvectors
(u10, u27, u5) restricted to the three different clusters of vertices

k"

Red" Blue" Green"
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Summary

� Weighted graphs are a flexible tool to represent a wide variety of
topologically-complicated data domains

� To identify and exploit structure in the data, we need to design dictionaries that
incorporate the intrinsic geometric structure of the underlying data domain

� Try to leverage intuition from computational harmonic analysis of signals on
Euclidean domains

Some ideas generalize relatively straightforwardly (e.g., notion of frequency)

However, signal and transforms on graphs can have surprising properties due to the irregularity of
the data domains (e.g., uncertainty)

� Field is emerging

Requires more connections/iterations between dictionary design, theory, algorithms, and
applications

Application of these techniques to real science and engineering problems is in its infancy
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Ongoing and Future Work

Computa(onal	
  
Harmonic	
  Analysis	
  

+	
  
Spectral	
  and	
  Algebraic	
  

Graph	
  Theory	
  
+	
  

Numerical	
  Linear	
  Algebra	
  

Signal	
  
Transforms	
  /	
  
Dic(onaries	
  

Generalized	
  
Operators	
  

Scalable	
  
Algorithms	
  

Theore(cal	
  
Underpinnings	
  

Applica(ons	
  

•  Filtering	
  
•  Convolu.on	
  and	
  transla.on	
  
•  Modula.on	
  and	
  dila.on	
  
•  Graph	
  coarsening,	
  downsampling,	
  
and	
  reduc.on	
  

•  Connec.ons	
  between	
  sparsity	
  and	
  
smoothness	
  

•  Uncertainty	
  principles	
  
•  Graph	
  Laplacian	
  eigenvector	
  localiza.on	
  

•  Goal:	
  Avoid	
  full	
  eigen-­‐decomposi.on	
  
•  Polynomial	
  approxima.on	
  algorithms	
  

Ø  Centralized	
  (incl.	
  GPU)	
  
Ø  Distributed	
  

•  Spectral	
  graph	
  wavelets	
  
•  Windowed	
  graph	
  Fourier	
  transform	
  
•  Laplacian	
  pyramid	
  and	
  graph	
  filter	
  banks	
  
•  Regularity-­‐preserving	
  transforms	
  
•  Dic.onary	
  learning	
  

•  Social,	
  transporta.on,	
  energy,	
  
and	
  sensor	
  networks	
  

•  Sta.s.cal	
  learning	
  
•  Astrophysics	
  

Ø  CMB	
  
Ø  Asteroids	
  

•  Brain	
  networks	
  
•  Image	
  processing	
  
•  …	
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35



Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading (cont.)

Scalable Algorithms

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

D. I Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial approximation for distributed

signal processing,”in Proc. Int. Conf. Distr. Comput. Sensor Sys. (DCOSS), Barcelona, Spain, Jun. 2011.

Applications

N. Leonardi and D. Van De Ville, “Wavelet frames on graphs defined by FMRI functional connectivity,”

Proc. IEEE Int. Symp. Biomed. Imag. Mar. 2011, Chicago, IL, pp. 2136-2139.

D. I Shuman, M. J. Faraji, and P. Vandergheynst, “Semi-supervised learning with spectral graph wavelets,”

in Proc. Int. Conf. Sampling Theory and Appl., Singapore, May 2011.

W. H. Kim et al., “Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness

discrimination,” in Proc. NIPS, Lake Tahoe, NV, Dec. 2012.

N. Tremblay and P. Borgnat, “Multiscale community mining in networks using spectral graph wavelets,”

ArXiv, Dec. 2012.

Theoretical Underpinnings

A. Agaskar and Y. M. Lu, “Uncertainty principles for signals defined on graphs: Bounds and

characterizations,” in Proc. IEEE Int. Conf. Acc., Speech, and Signal Process., Kyoto, Japan, Mar. 2012,
pp. 3493–3496.

N. Perraudin, “On localisation and uncertainty measures on graphs,” Master’s thesis, EPFL, Jun. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 35 / 35


	Introduction
	Signal Transforms, Dictionaries, and Sparse Representations
	Main Problem: Dictionary Design for Signals on Graphs
	Spectral Graph Theory Background
	Generalized Operators for Signals on Graphs
	Translation
	Modulation
	Filtering
	Graph Coarsening
	...

	Dictionary Example: Windowed Graph Fourier Atoms
	Conclusion

