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Intro

Signal Processing on Graphs

4
o
Energy Networks

United States
transmission grid

Weighted graphs are a flexible tool to represent a wide variety of
topologically-complicated data domains
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Intro

Some Typical Processing Problems

Visualization / Compression

._
”
' ——
7
)
!
o)

[‘ . 1*11l 11 1“1} | ..l[ .

I ]
= A l < l ‘ Analysis | Information Extraction

David Shuman Signal Processing on Graphs February 11, 2013 3/35
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Signal Transforms
Orthonormal Dictionaries

Signal Basis <}:{>lDictionary Coefficients
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Signal Transforms

Orthonormal Dictionaries (cont.)

David Shuman Signal Processing on Graphs February 11, 2013 6 /35



Signal Transforms

Overcomplete Dictionaries and Sparsity

m Given an overcomplete ®, there are infinitely many choices of « that lead to the
same f
m Criteria for useful dictionaries?

00 Ability to sparsely represent signals — few non-zeros coefficients in «
07 Ability to capture the relevant characteristics of the signal
07 Computationally efficient to apply ® and oT

m Which signals? Need different dictionaries for different mathematical models of

data with different structural patterns and for different processing tasks

oJ E.g., different ingredient bundles for different cuisines
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Signal Transforms

e Fourier Transform

m Collection of atoms: {62"i5t}€ T {cos(27rft) + I'Sin(27r§t)}
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m Fourier transform (analysis): 7(€) = (f, e2™/ét) = [ f(t)e=27iét dt
R

ol e.g., if f is an audio signal, f tells us which
< ||| - frequencies are present

A music expert could identify rhythmical patterns_
from f and the key from dominant frequencies of f
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Signal Transforms

Time-Frequency Dictionaries

m Localized Fourier analysis — joint descriptions of signals’ temporal and spectral

behavior

07 Localized oscillations appear frequently in audio processing,
vibration analysis, radar detection, etc.

oo e.g., identify musical notes and melody at different times

m Windowed (short-time) Fourier transform of f € L?(R):

Sf(s, &) == (f,gs,¢) = /_OO F(t)g(t — s)e 2™itt gt

m The atoms g5 ¢ are localized in time and frequency:
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Signal Transforms

Spectrogram Example

Frequency
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Source: Genesis
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engine.mp4
Media File (video/mp4)


Problem

Dictionary Design for Signals on Graphs

Main Problem

Design dictionaries to (i) reveal relevant structural properties of
signals on weighted, undirected graphs, and/or (ii) sparsely
represent different classes of signals on graphs
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Why Do We Need New Dictionaries?

To identify and exploit structure in the data, we need to
account for the intrinsic geometric structure of the
underlying data domain
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Problem

The Essence of the Problem

m Weighted graphs are irregular structures that lack a shift-invariant
notion of translation

m Many simple yet fundamental concepts that underlie classical signal
processing techniques become significantly more challenging in the
graph setting
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Problem

Approach

Generalized
Operators

Computational
Harmonic Analysis Signal
Applications + Transforms /
q Dicti i
Spectral and Algebraic ictionaries
Graph Theory
+

Numerical Linear Algebra

Theoretical Scalable

Underpinnings Algorithms
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Spectral Graph Theory

Outline

Spectral Graph Theory Background
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Spectral Graph Theory

Spectral Graph Theory Notation

m Connected, undirected, weighted graph
g={V,& W}

m Degree matrix D: zeros except diagonals,
which are sums of weights of edges incident
to corresponding node : )

m Non-normalized graph Laplacian: 0 3 1 0
]l 1 2 0 7
m Complete set of orthonormal eigenvectors and 0 5 7 0
associated real, non-negative eigenvalues: <
Luy = A\pup,
cT e 4 0 0 0
ordered w.l.o.g. s.t. 0 1 0 0
D =
0=20 <A <Aoo < Ayt = Amax Jooon g
0O 0 0 1.2
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Spectral Graph Theory
The Graph Laplacian

m Discrete difference operator: (Lf)(i) = 32, v, Wi lf(i) — f(J)]

J

ExAMPLE: UNWEIGHTED GRID GRAPH

e (x0, yo-1)

—LF() =[F(x0 + 1, y0) = F(x0,30)] = [0, %0) = Flx0 = 1, 30)]
+ [FG0.30 4+ 1) = F(30,30)] = [0, 50) = F(x0,30 = 1)]
2

92f o°f
~ ﬁ(xo,yo) + OT/Q(XO,}’O) = (Af)(x0, y0)
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Spectral Graph Theory

Graph Laplacian Eigenvectors

m Values of eigenvectors associated with lower frequencies (low \;) change
less rapidly across connected vertices
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Spectral Graph Theory

Graph Fourier Transform

m Fourier transform: expansion of f in terms of the eigenfunctions of the
Laplacian / graph Laplacian

Functions on the Real Line Functions on the Vertices of a Graph

FOURIER TRANSFORM GRAPH FOURIER TRANSFORM (ANALYSIS)

F(&) = (f, &) Fhe) = (F, up) Il H
:/f(t)e‘2”"§f dt :if(n)uﬂn) - || |

INVERSE FOURIER TRANSFORM INVERSE GRAPH FOURIER TRANSFORM (SYNTHESIS)
. ) N—1 L]
F(t) = [ F()e™™" d¢ fn) =" FOo)ue(n) ||~ |EEEEE |
R I
J £=0

o’
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Spectral Graph Theory

Signals on Graphs in Two Domains

fa)=e*
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Spectral Graph Theory

Incorporation of the Underlying Graph Connectivity

- 2 06 - }L 06 ~ y) 06
f(x),, F(x): F(A)
ol e o SO | o e J P ERN ) ! 3

v v

m Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

m Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013
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Spectral Graph Theory

Summary So Far

m {Complex exponentials } <= { graph Laplacian eigenvectors }

&7 Dictionaries that provide notions of frequency

m Analysis with these dictionaries <= Fourier / graph Fourier transform

m Synthesis with these dictionaries <= inverse Fourier / graph Fourier
transform

m Transforms and their inverses provide two different ways to represent the
same signal in two different domains

m Next step: generate overcomplete dictionaries whose atoms are localized
in the vertex domain (time) and the graph spectral domain (frequency)
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Generalized Operators

Outline

Generalized Operators for Signals on Graphs
@ Translation
@ Modulation
a@ Filtering
@@ Graph Coarsening
pi
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Generalized Operators

Generalized Translation on Graphs

m Define a generalized convolution by imposing that convolution in the vertex
domain is multiplication in the graph spectral domain

m Define generalized translation via generalized convolution with a delta

Functions on the Real Line

For f € L2(R), in the weak sense
(TsF)(t) :=1(t—s)
= (f % ds)(t)
— / ?(g)ef2ri.55627ri§td£
R

V.

Functions on the Vertices of a Graph

For f € RN, we define
(Tif)(n) := V'N(f * §;)(n)

N—-1

= VN Z F(O\e)uj (iug(n)

£=0

.
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Generalized Operators

Properties of Generalized Translation Operators on Graphs

m Warning 1: Do not have the group structure of classical translation:
TiT; # T

m Warning 2: Unlike the classical case, generalized translation operators are
not unitary, so || Tigll> # ||gl|2 in general

m However, the mean is preserved: > (Tig)(n) =>_,&(n)

Theorem (Smoothness of g leads to localization of T;g around vertex i)

Let g : [0, Amax] — R be a kernel and define d;, := dg(i,n). Then
(Tig)(n)| < VNBg(dip — 1),

where B;(K) is the minimax polynomial approximation error over all polynomials of
degree K:

By(K) = inf{ sup  [&() — ﬁz(w} .

Pk AE[0,Amax]

<
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Outline

@ Dictionary Example: Windowed Graph Fourier Atoms
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A Windowed Graph Fourier Transform

Translate a window g to each vertex of the graph

Ti008 Ta008 T20008

Multiply each component of the graph signal f of interest by the
corresponding component of the translated window T;g

Take the graph Fourier transform of f. x T;g (recall analysis)
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A Windowed Graph Fourier Transform (cont

m Windowed graph Fourier atoms: gj« := Mk T:g
m Windowed graph Fourier transform: Sf(i, k) := (f, gi «)

EXAMPLE: THREE DIFFERENT ATOMS ON THE SwiSS ROLL GRAPH

862,100 862,450 862,983

B (k) 01 Zoanh) Basm() 2
o 05
\

01 o

PR ol
012845678 8101112 0123456769101 01204567 860101112

2, 2, 2
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Example 1: The Path Graph

m Signal f on the path graph comprised of three different graph Laplacian
eigenvectors restricted to three different segments of the graph:

m “Spectrogram” of f showing |Sf(i, k)|?
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Example 2: A Signal on a Random Sensor Network

Any structure?
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WGFT

Example 2: A Signal on a Random Sensor Network

m Signal f comprised of three different graph Laplacian eigenvectors
(w10, o7, us) restricted to the three different clusters of vertices
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Conclusion

Summary

67 Weighted graphs are a flexible tool to represent a wide variety of
topologically-complicated data domains

0P To identify and exploit structure in the data, we need to design dictionaries that
incorporate the intrinsic geometric structure of the underlying data domain

ol Try to leverage intuition from computational harmonic analysis of signals on
Euclidean domains

B Some ideas generalize relatively straightforwardly (e.g., notion of frequency)
B However, signal and transforms on graphs can have surprising properties due to the irregularity of
the data domains (e.g., uncertainty)
o0 Field is emerging

B Requires more connections/iterations between dictionary design, theory, algorithms, and
applications

B Application of these techniques to real science and engineering problems is in its infancy

David Shuman Signal Processing on Graphs / 35
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Conclusion

Ongoing and Future Work

* Filtering

 Convolution and translation

Generalized * Modulation and dilation
Operators « Graph coarsening, downsampling,

and reduction

Computational .
. q Signal
o Harmonic Analysis
Applications Transforms /
v Dictionaries
Spectral and Algebraic
 Social, transportation, energy, * Spectral graph wavelets
and sensor networks Graph ThEOI‘V * Windowed graph Fourier transform
« Statistical learning 4y + Laplacian pyramid and graph filter banks
* Astrophysics e A * Regularity-preserving transforms
> cMB Numerical Linear Algebra + Dictionary learning
» Asteroids

Brain networks
Image processing

. Theoretical Scalable
Underpinnings Algorithms
* Connections between sparsity and * Goal: Avoid full eigen-decomposition
smoothness * Polynomial approximation algorithms
* Uncertainty principles »> Centralized (incl. GPU)
« Graph Laplacian eigenvector localization > Distributed

/ 35
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