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Introduction

Wireless sensor networks have recently been utilized in an expanding array of
applications

Energy conservation is a key design issue

Wide range of solutions proposed
— Adjust routes and power rates over time
— Aggregate data to reduce unnecessary traffic
— Turn nodes off and on periodically (duty-cycling)

Algorithms utilize different techniques to selectively turn nodes on and off
— Leverage geographic information provided by GPS (GAF)
— Distributed algorithms featuring local coordination (Span)

— Frequent probing of neighboring sensors to actively replace failed nodes without
maintaining information about neighbors (PEAS)



" A
Introduction (cont.)

* We also study periodic sleeping, but proceed in a different direction
— Consider a broad class of sleep scheduling policies, and attempt to identify the optimal
— Restrict attention to a single node

— Focus solely on the tradeoffs between energy consumption and packet delay

* Related models
— Vacation models

» A. Federgruen and K.C. So, “Optimality of threshold policies in single-server queueing
systems with server vacations,” Adv. Appl. Prob., vol. 23, no. 2, pp. 388-405, June 1991

— M. Sarkar and R. Cruz (UC San Diego)
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Problem Description
Overview of System Model

Single Node

Two Control
Objectives

Key Modeling

Assumptions

Consider a single node in a wireless sensor network

Modeled as a single-server queue

Conserve energy through duty-cycling

- While asleep, the node is unable to transmit packets, but packets continue to
arrive at the node

Minimize packet queuing delay

Node sleeps for N time slots at a time
- In place of additional costs or setup time for switching modes
- Multiple vacations are allowed

Bernoulli arrival process with success probability p
Packets arriving in one slot cannot be transmitted until the following slot
Only one packet transmission per slot, and successful w.p.1

Node has an infinite buffer size
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Finite and Infinite Horizon Problem Formulation
Information State, Action Space, and System Dynamics

Information

State

Action Space

System

Dynamics

+ X; : two-dimensional vector
-B; : current queue length
=S, : number of slots remaining until node awakes

* Two control actions available when node is awake:
- U, =1 (“Awake”)
- U, =0 (“Sleep”)

» Controlled Markov Chain model

B + A
A , if S, >0
_St_l_
B B+ A
X, =f(X, U ,A)=| "= " ifS =0andU, =0
t+1 (t tA[) |:St+1:| <_N—1_ t t
[Bt_lg +At] if S, =0andU, =1




Finite and Infinite Horizon Problem Formulation
Cost Structure and Optimization Criteria

Cost Constant, positive cost D incurred at each time slot the node is awake

Structure

Constant, positive cost ¢ incurred at each time slot, by each backlogged packet

Infinite horizon average expected cost problem

Optimization criterion:

Problem (P1) -

1 1 T
J7:=limsup =-E"<> D-U,+>c-B,
0 =1

T > T t=

:

Finite horizon expected cost problem

Optimization criterion:

T-1 T
JF=E"{3D-U, +Yc-B
t=0 t=1

Problem (P2)

g

Optimization * In both problems, the minimization is over the space of all randomized and
Space deterministic history-dependent control laws




" oSS

Outline

Problem Description and Formulation

Infinite Horizon Average Expected C_

Finite Horizon Expected Cost Problem

Concluding Remarks



Infinite Horizon Average Expected Cost Optimization

Optimal * Problem (P1) satisfies the (BOR) assumptions of Sennott’s Theorem

Stationary 7.5.6, guaranteeing the existence of an optimal stationary Markov policy?
Policy Exists

« Optimal policy is to stay awake and serve
When Queue

Is Non-
Empty — Proof via interchange argument utilizes this fact and linear holding cost structure

— Eventually, node must serve to avoid infinite average cost

0
» Optimal control at boundary state X {O} is given by the threshold

decision rule:
When Queue X
is Empty Awake (U; =1)
p -(N —1) > D R
1-p 2 < c
SIeep(Ut*=O)

1See L.I. Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, John Wiley and Sons, 1999.



" «MEEN—

Outline

Problem Description and Formulation

Infinite Horizon Average Expected Cost Problem

Finite Horizon Expected Cost Proble_

Concluding Remarks



Finite Horizon Expected Cost Optimization
Goal: Identify Optimal Markov Policy at Each State and Time Slot Pair

The Finite Horizon State Space Over T Time Slots

Node’s
Queue
Length
Slots Remaining N @ e
Until the Node N-2 1
Awakes
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Finite Horizon Expected Cost Optimization
Goal: Identify Optimal Markov Policy at Each State and Time Slot Pair

The Finite Horizon State Space Over T Time Slots

Node’s 1
Queue 3
Length

Slots Remaining A )
Until the Node N-2 1
Awakes
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Finite Horizon Expected Cost Optimization
Optimal Policy at the End of the Time Horizon and When Queue is Non-Empty

Node Awake at the End of the Time Horizon

* When T — b <t <T, the optimal control is to
sleep C

Node’s
Queue
Length

» Basic idea is that marginal benefit of serving is at

co k N w ~

D : :
most C-{—J < D, the marginal cost of serving
C

» Proof by backwards induction

Slots Remaining

Until the Node er’ . . * D
Awales \ + For notation purposes, we define z = [T ——
: C
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Finite Horizon Expected Cost Optimization
Optimal Policy at the End of the Time Horizon and When Queue is Non-Empty

Node Awake at the End of the Time Horizon

* When T — b <t <T, the optimal control is to
sleep C

Node’s
Queue
Length

» Basic idea is that marginal benefit of serving is at

co k N w ~

D : :
most C-{—J < D, the marginal cost of serving
C

» Proof by backwards induction

Slots Remaining
Until the Node
Awakes

- , * D
* For notation purposes, we define z = [T ——J
C

Node Awake Before End and Queue Non-Empty

« Optimal policy is to stay awake and serve

Node’s
Queue
Length

* Proof follows from similar interchange argument
as the infinite horizon problem

co k N w >

Slots Remaining

0
0
Until the Node N-2
Awakes N-1
0
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Finite Horizon Expected Cost Optimization
Optimal Policy at the Boundary State, Before the End of the Time Horizon

Node’s
Queue
Length

co k N w ~

Slots Remaining
Until the Node
Awakes
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Finite Horizon Expected Cost Optimization
Optimal Policy at the Boundary State, Before the End of the Time Horizon

Node’s
Queue
Length

co k N w ~

Slots Remaining
Until the Node
Awakes




Finite Horizon Expected Cost Optimization
Optimal Policy at the Boundary State, Before the End of the Time Horizon

0
« The optimal control at XZ* = {0} IS to sleep

0
« Ifz~-N<t<z*and X, :{O} , the optimal control at slot t to minimize J;" is

given by the threshold decision rule:

Z*-N<t<z* Awake (U; =1)
7"t _ ' -t >
.Y {p!(T-t=j)j-D.3 p’ o

j=1 j= .
Sleep (U; =0)

Node’s
Queue
Length

co k N w ~

Slots Remaining
Until the Node
Awakes




Finite Horizon Expected Cost Optimization
Optimal Policy at the Boundary State, Before the End of the Time Horizon

0
« The optimal control at XZ* = {O} IS to sleep

0
« Ifz~-N<t<z*and X, :{O} , the optimal control at slot t to minimize J;" is

given by the threshold decision rule:

Z*-N<t<z* Awake (U; =1)
7t _ ' -t >
c.y {pI(T-t-j)}-D.Y p’ o
I = Sleep (Ut*:O)

» The optimal control when the node is awake and the queue is empty is

Implication non-increasing over time, from z*-N+1 until the end of the time horizon

Node’s
Queue
Length

co k N w ~

Slots Remaining
Until the Node
Awakes




Finite Horizon Expected Cost Optimization

Optimal Policy at the Boundary State, Before the End of the Time Horizon

0
« The optimal control at XZ* = {0} IS to sleep

0
« Ifz~-N<t<z*and X, :{O} , the optimal control at slot t to minimize J;" is

given by the threshold decision rule:

Z*-N<t<z* Awake (U; =1)
7"t _ ' -t >
c.y {pI(T-t-j)}-D.Y p’ o
I = Sleep (Ut*:O)

» The optimal control when the node is awake and the queue is empty is

Implication non-increasing over time, from z*-N+1 until the end of the time horizon

Question:

Is the optimal policy
at the boundary state
necessarily
monotonic over the
entire time horizon?

Node’s
Queue
Length

co k N w ~

Slots Remaining
Until the Node
Awakes




Finite Horizon Expected Cost Optimization
The Optimal Policy at the Boundary State Is Not Necessarily Monotonic in Time

Answer * No, as the following counterexample demonstrates

Optimal Control at X, =[0,0]" When T=15,N=3,c =10,D =21, and p = 2/3

Stay Awake - *——0—0—0—

Optimal
Control

1
1
1
1
1
1
1
1
1
1
1
\
1
1
1
1
1
1
1
1
1
1

L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

» Can we find sufficient conditions to guarantee the optimal policy at
the boundary state is non-increasing over the entire time horizon

More
Questions

» What behavior is possible in the optimal control at the boundary state
when such conditions are not met?




Finite Horizon Expected Cost Optimization
Conjectures

« If the parameters of Problem (P2) satisfy the following condition:

p ) (N-1),D
Conjecture 1 (1_ pj( > jz . (SC),

the optimal policy when the node is awake and the queue is empty is
non-increasing in time for the entire time horizon

» At most one jump
Conjecture 2

* Only three possible structural forms of the optimal policy at the boundary:

Stay Awake =~ —m—m—— 1]*:0 — /11*>0 AT:O

}

Implication | : 4,>0 A;>0 2;=0
}
1

Sleep

Time Time Time

(a) (b) (c)



Finite Horizon Expected Cost Optimization

Observations on Numerical Results = | 'y | =

« If the time horizon is sufficiently long, then the optimal control is of the form (a)
if (SC) holds, but of the form (b) or (c) if (SC) does not hold

— Sufficient condition (SC) is identical to (*) from the infinite horizon problem

Observation 1

» The three possible structural forms lie on a spectrum in a sense

Observation 2

« Underlying tradeoff at the boundary state is between extra backlog costs
from sleeping, and energy costs incurred during unutilized slots

t X t+1 \/ t+2 \/ t+3 X t+4 \/ t+5 X t+6 \/ t+7 X t+8 t+9
Why (b)? 0 - - M e P P
t X t+1 N t+2 J t+3 X t+4 A t" t+6 o t+7 X t+8 t+9
7 —lalalele l'l'l'l'=
~— P2 P3 P4

Vacation P3P PH (P2
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Summary and Future Work

* Infinite horizon average expected cost problem
— Demonstrated existence of optimal stationary Markov policy
— Completely characterized optimal control

* Finite horizon expected cost problem
— Characterized optimal control away from the boundary
— Posed two conjectures concerning structure of optimal control at boundary

* Possible extensions
— Formulate as constrained optimization problem instead of assigning energy costs
— Extend to multiple nodes



