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Abstract

We consider the problem of conserving energy in a single node in a wireless sensor network
by turning off the node’s radio for periods of a fixed time length. While packets may continue
to arrive at the node’s buffer during the sleep periods, the node cannot transmit them until it
wakes up. The objective is to design sleep control laws that minimize the expected value of
a cost function representing both energy consumption costs and holding costs for backlogged
packets. We consider a discrete time system with a Bernoulli arrival process. In this setting,
we characterize optimal control laws under the finite horizon expected cost and infinite horizon
expected average cost criteria.
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I. I NTRODUCTION

Wireless sensor networks have recently been utilized in an expanding array of applications,
including environmental and structural monitoring, surveillance, medical diagnostics, and manu-
facturing process flow. In many of these applications, sensor networks are intended to operate for
long periods of time without manual intervention, despite relying on batteries or energy harvesting
for energy resources. Conservation of energy is therefore well-recognized as a key issue in the
design of wireless sensor networks [1].

Motivated by this issue, there have been numerous studies on methods to effectively manage
energy consumption while minimizing adverse effects on other quality of service requirements
such as connectivity, coverage, and packet delay. For example, [2], [3], and [4] adjust routes
and power rates over time to reduce overall transmission power and balance energy consumption
amongst the network nodes. Reference [5] aggregates data to reduce unnecessary traffic and
conserve energy by reducing the total workload in the system. Reference [6] makes the observation
that when operating in ad hoc mode, a node consumes nearly as much energy when idle as it does
when transmitting or receiving, because it must still maintain the routing structure. Accordingly,
many studies have examined the possibility of conserving energy by turning nodes on and off
periodically, a technique commonly referred to as duty-cycling. Of particular note, GAF [7] makes
use of geographic location information provided for example by GPS; ASCENT [8] programs
the nodes to self-configure to establish a routing backbone; Span [9] is a distributed algorithm
featuring local coordinators; and PEAS [10] is specifically intended for nodes with constrained
computing resources that operate in harsh or hostile environments. While the salient features of
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these studies are quite different, the analytical approach is similar. For the most part, they discuss
the qualitative features of the algorithm, and then perform numerical experiments to arrive at an
energy savings percentage over some baseline system.

In this report, we also consider a wireless sensor network whose nodes sleep periodically;
however, rather than evaluating the system with a given sleep control policy, we impose a cost
structure and search for an optimal policy amongst a class of policies. In order to approach
the problem in this manner, we need to consider a far simpler system than those used in the
aforementioned studies. Thus, we consider only a single sensor node and focus on the tradeoffs
between energy consumption and packet delay. As such, we do not consider other quality of
service measures such as connectivity or coverage. The single node under consideration in our
model has the option of turning its transmitter and receiver off for fixed durations of time in order
to conserve energy. Doing so obviously results in additional packet delay. We attempt to identify
the manner in which the optimal (to be defined in the following section) sleep schedule varies
with the length of the sleep period, the statistics of arriving packets, and the charges assessed for
packet delay and energy consumption.

The only other works we are aware of that take a similar approach are by Sarkar and Cruz,
[11] and [12]. Under a similar set of assumptions to our model, with the notable exceptions that a
fixed cost is incurred for switching sleep modes and the duration of the sleep periods is flexible,
these papers formulate an optimization problem and proceed to numerically solve the optimal
duration and timing of sleep periods through a dynamic program.

Our model of the duty-cycling node falls into the general class of vacation models. Applicable
to a wide range of problems from machine maintenance to polling systems, vacation models date
back to the late 1950s. Many important results on vacation models in discrete time can be found
in [13] and [14]. Reference [15] was the first study to analyze the steady-state distribution of the
queue length and unfinished work of the Geo/D/1 queue, which is the uncontrolled analog to the
controlled queue in our system. Reference [16] extends these results to the Geo/D/1 queue with
priorities.

Within the class of vacation models, we are particularly interested in systems resulting from
threshold policies; i.e., control policies that force the queue to empty out and then resume work
after a vacation when either the queue length or the combined service time of jobs in queue
(learned upon arrival of jobs to the system) reaches a critical threshold. The introduction of [17]
provides a comprehensive overview of the results on different types of threshold policies. Of
these models, [17] is the most relevant to our model, and we discuss it further in Section III-D.
The relevant discrete time infinite horizon optimization results are covered in [18] and [19], and
are discussed further in Section III-A. Finally, for more on the equivalence of continuous and
discrete time Markov decision processes, see [20].

The rest of this report is organized as follows. In the next section, we describe the general
system model and formulate the finite horizon expected cost and infinite horizon average expected
cost optimization problems. In Section III, we provide a brief review of some key results in
average cost optimization theory for countable state spaces, and then characterize completely the
optimal sleep policy for the infinite horizon problem. In Section IV, we partially characterize the
optimal sleep policy for the finite horizon problem, and present two conjectures concerning the
optimal control at the one state for which we have not yet specified the optimal policy. Section
V concludes the report.
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II. PROBLEM DESCRIPTION

In this section we present an abstraction of the sleep scheduling problem outlined in the
previous section that captures the essential features of the network model described above. We
formulate the optimization problem along with a summary of assumptions and notation.

A. System Model

We consider a single node in a wireless sensor network. The node is modeled as a single-
server queue that accepts packet arrivals and transmits them over a reliable channel. In order
to conserve energy, the node goes to sleep (turns off its transmitter) from time to time. While
asleep, the node is unable to transmit packets; however, packets continue to arrive at the node.
This essentially results in a queueing system with vacations.

We consider time evolution in discrete time steps indexed byt = 0, 1, . . . , T , with each
increment representing a slot length. Slott refers to the slot defined by the interval[t, t +1). We
assume that packets arrive randomly to the node according to a Bernoulli process, and that they
are of equal length such that one packet transmission time occupies one time slot.

In general, switching on and off is also an energy consuming process. Therefore, we want
to avoid putting the node to sleep very frequently. There are different ways to model this. One
is to charge a switching cost whenever we turn on the node. In this study we adopt a different
model. Instead of charging the node for switching, we require that the sleep period of the node
has to be an integer multiple of some constantN in time slots. By adjusting the value ofN we
can prevent the node from switching too frequently.

We assume that even while asleep, the node accurately learns its current queue size at each
time t. A node makes the sleeping decision (i.e., whether to remain awake or go to sleep) based
on the current backlog information, as well as the current time slot. We assume that the sleep
decision for thet-th slot is made at timet, while packet arrivals during thet-th slot start att+.
Therefore packets arriving in a given slot are not eligible for transmission until the next slot.

There are two objectives in determining a good sleep policy. One is to minimize the packet
queueing delay and the other is to conserve energy in order to continue operating for an extended
amount of time. Accordingly, our model assesses costs to backlogged packets and energy con-
sumed during the slots in which the node remains awake. The goal of this study is to characterize
the control laws that minimize these costs over a finite or infinite time horizon.

B. Notation

Before proceeding, we present the following definitions and notation.

T The length in slots of the time horizon under consideration.
N The fixed number of slots for which the node must stay asleep once it goes to sleep.
Bt The node’s queue length at the beginning of thet-th slot. This quantity is observed att−.

Note that this is also the queue length at the end of the(t− 1)-th slot. B0 is the initial
queue length.

St The number of slots remaining until the node awakes, including thet-th slot.
This quantity is also observed at timet−. St = 0 indicates the node is awake at timet.

Xt :=
[

Bt

St

]
, the information state at timet.

X The state space.
Yt The output/observation available to the node at timet.



4

At The number of random arrivals during thet-th time slot. As mentioned earlier, arrivals are
assumed to occur within(t, t + 1).

p The probability of an arrival in each time slot.
U := {0, 1} = {Sleep, Stay Awake}, the space of control actions.
Ut The control random variable denoting the sleep decision for time slott.
c The per packet holding cost assessed at the end of each time slot.
D The cost incurred in each time slot during which the node is awake.
Ft The σ-field induced by all information through timet.
π := (π1, π2, . . .), a sleep policy. When a distinction between policies must be made,

we write π̂ and π̃.

[x]+ :=
{

x, x ≥ 0
0, otherwise

C. Assumptions

Below we summarize the important assumptions adopted in this study. These assumptions
apply to both problems described in the next subsection.

1) We consider a node, which upon going to sleep, must remain asleep for a fixed number,N,
slots. The node is allowed to take multiple vacations of lengthN in a row.

2) We assume a Bernoulli arrival process with known arrival rate,p, strictly between 0 and
1. Furthermore, we assume that the arrivals are independent of both the queue size and the
allocation policy.

3) We assume that theAt packets arriving in time slott arrive within (t, t + 1), and cannot
be transmitted by the node until the next time slot, i.e., the(t + 1)-st slot, [t + 1, t + 2).

4) We assume attempted transmission of a queued packet is successfulw.p.1. Only one packet
may be transmitted in a slot, and the transmission time of one packet is assumed to be one
slot.

5) We assume the node has an initial queue size ofB0, a random variable taking on finite
valuesw.p.1.

6) We assume the node has an infinite buffer size. Without this assumption we would need to
introduce a penalty for packet dropping/blocking.

7) We assume that in addition to perfect recall, the node has perfect knowledge of its queue
length at the beginning of each time slot, immediately before making its control decision
for the t-th slot exactly at timet.

D. Problem Formulation

We consider two distinct problems. The first, Problem (P1), is the infinite horizon average
expected cost problem. The second, Problem (P2), is the finite horizon expected cost problem.
The two problems feature the same information state, action space, system dynamics, and cost
structure, but different optimization criteria.

For both problems, the system dynamics are given by:
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Xt+1 =





[
Bt + At

St − 1

]
, if St > 0

[
Bt + At

N − 1

]
, if St = 0 andUt = 0

[
[Bt − 1]+ + At

0

]
, if St = 0 andUt = 1

Yt = Xt .

(1)

The information state,Xt, tracks both the current queue length and the current sleep status.
Given the current state,Xt, the probability of transition to the next state,Xt+1, depends only on
the random arrival,At, and the sleep decision,Ut. Note that when the node is asleep(St > 0),
the only available action is to sleep(Ut = 0); however, when the node is awake(St = 0), both
control actions are available. Model (1) is a controlled Markov chain with time-invariant matrix
of transition probabilities,Pij(u), given by the following (here statei is given byi =

[
ib

is

]
, and

statej is given byj =
[

jb

js

]
):

Pij(0) =





p, j =
[

ib + 1
is − 1

]
and is > 0

1− p, j =
[

ib
is − 1

]
and is > 0

p, j =
[

ib + 1
N − 1

]
and is = 0

1− p, j =
[

ib
N − 1

]
and is = 0

0, otherwise

and

Pij(1) =





p, j =
[

ib
0

]
, ib > 0, andis = 0

1− p, j =
[

ib − 1
0

]
, ib > 0, andis = 0

p, j =
[

1
0

]
and i =

[
0
0

]

1− p, j =
[

0
0

]
and i =

[
0
0

]

0, otherwise

, (2)

whereis is the sleep status component of the state vectori, andib is the queue length ofi.
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Finally, we present the optimization criterion for each problem. For Problem (P1), we wish
to find a sleep control policyπ that minimizesJπ, defined as:

Jπ := lim sup
T→∞

1
T
· Eπ

{
T−1∑

t=0

D · Ut +
T∑

t=1

c ·Bt | F0

}
. (3)

In Problem (P2), the cost function for minimization isJπ
0 , where the expected cost-to-go at time

k, Jπ
k , is defined as:

Jπ
k := Eπ

{
T−1∑

t=k

D · Ut +
T∑

t=k+1

c ·Bt | Fk

}
. (4)

In both cases, we allow the sleep policyπ to be chosen from the set of all randomized and
deterministic control laws,Π, such thatUt = πt(Y t, U t−1), ∀t, whereY t := (Y0, Y1, . . . , Yt) and
U t−1 := (U0, U1, . . . , Ut−1).

In the next two sections, we study the infinite horizon (P1) and finite horizon (P2) problems,
respectively.

III. A NALYSIS OF THE INFINITE HORIZON AVERAGE EXPECTEDCOST PROBLEM

In this section, we characterize the optimal sleep control policyπ∗ that minimizes (3). We
begin by showing the existence of an optimal stationary Markov policy. We then show that the
optimal policy is a threshold policy of the form: stay awake if and only ifS = 0 andB ≥ λ∗,
whereλ∗ = 0 (never sleep) orλ∗ = 1 (sleep only when the system empties out), depending on
the parametersN , p, c, and D. As a matter of notation, we refer to the threshold policy with
λ∗ = 0, often called the “0-policy,” asπ0, and the threshold policy withλ∗ = 1, often called the
“1-policy,” as π1 [17].

A. Existence of an Optimal Stationary Markov Policy

Due to the assumption of an infinite buffer size, the controlled Markov chain in Problem (P1)
has a countably infinite state space. Recall that for such systems, an average cost optimal stationary
policy is not guaranteed to exist. See [18, pp. 128–132] for such counterexamples. However, [18]
also presents sufficient conditions for the existence of an average cost optimal stationary policy.
We recall these conditions below and then show that the (BOR) set of assumptions is satisfied
by Problem (P1).

Theorem 1 (Sennott): Assume that the following set (BOR) of assumptions holds (notations
are explained following the theorem):
(BOR1). There exists az-standard policyg with positive recurrent classRg.
(BOR2). There existsε > 0 such thatG = {i|C(i, u)≤Jg + ε for someu} is a finite set.
(BOR3). Giveni ∈ {G−Rg}, there exists a policyθi ∈ <∗(z, i).

Then there exists a finite constantJ and a finite functionh, bounded below ini such that:

J + h(i) = min
u∈U



C(i, u) +

∑

j

Pij(u) · h(j)



 , ∀i ∈ X . (5)

Moreover, a stationary policye satisfying:

C(i, e(i)) +
∑

j

Pij(e(i)) · h(j) = min
u∈U



C(i, u) +

∑

j

Pij(u) · h(j)



 = J + h(i) , ∀i ∈ X (6)
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is average cost optimal.

Remarks on Theorem 1: A Markov chain is said to bez-standardif there exists a distinguished
statez such that the expected first passage time and expected first passage cost from statei to
statez are finite for alli ∈ X . A (randomized or stationary) policyg is said to be az-standard
policy if it induces a z-standard Markov chain.C(i, u) is the one slot cost incurred at statei
under control actionu. Jg is the average cost per unit time under policyg. <∗(z, i), wherez
refers to the distinguished state mentioned above, is the class of policiesθ such that:

(i) Pθ(Xt = i, for somet ≥ 1|X0 = z) = 1.
(ii) The expected time of first passage fromz to i is finite.
(iii) The expected cost of first passage fromz to i is finite.

The constantJ represents the minimum average cost per unit time. Note that under the (BOR)
assumptions, the minimum average cost is constant and therefore independent of the initial state.
This is not true in general, even when an optimal policy exists. References [19] and [21] interpret
the functionh as a rough measure of how much we would pay to stop the process, but continue to
incur a cost ofJ per slot thereafter. In this manner,h can be viewed as a cost potential function.

We now show that the hypotheses of Theorem 1 are met by Problem (P1).

Lemma 1: Problem (P1) satisfies the (BOR) assumptions of Theorem 1, and therefore, there
exists an optimal stationary policyπ∗ that minimizes (3).

Proof: Let the distinguished statez be
[

0
0

]
(the node is awake and the queue is empty).

Consider the policyπ0 of never sleeping (the case of aλ∗ = 0 threshold). Given a fixed but
arbitrary initial state

[
b0

0

]
, the policyπ0 induces a finite state Markov chain with a single positive

recurrent class. In particular, the finite set of transient states is

Tπ0 =
{[

b0

0

]
,

[
b0 − 1

0

]
, . . . ,

[
2
0

]}
,

the set of recurrent states is

Rπ0 =
{[

0
0

]
,

[
1
0

]}
,

and the transition diagram is shown in Figure 1.

0

10b

0

2

0

1

0

0

0
0b …

1-p

p p p p

1-p1-p1-p1-p1-p

p

0T 0R

Fig. 1. Transition diagram induced byπ0

For finite state Markov chains with a single positve recurrent class, the following three basic
facts are true (see for example [22], [23]):

(i) The process enters the positive recurrent class (exits the transient states) in finite time
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with probability 1, and subsequently reaches each state in the recurrent class in finite
time with probability 1.

(ii) There exists a unique stationary distribution,s̄g, with

s̄g = s̄g · P g and
∑

i∈X
s̄g(i) = 1.

(iii) The long run average costJg is equal tos̄g · c̄gT , wherec̄g(i) = C(i, g(i)), the one
slot cost at statei under actiong(i).

Thus, the first passage time from any state in the Markov chain induced by policyπ0 to state[
0
0

] ∈ Rπ0 is finite w.p.1 by (i) above. A finite sum of bounded one slot costs is finite, and it
therefore follows that the expected first passage cost from any state to

[
0
0

]
is also finite underπ0.

We concludeπ0 is az-standard policy with positive recurrent classRπ0 , and (BOR1) is satisfied.
Next, we calculate the average cost per unit time underπ0 and examine the setGπ0 . The

unique stationary distribution under this policy is given by:

s̄π0(i) =





1− p, i =
[

0
0

]

p, i =
[

1
0

]

0 , otherwise

. (7)

In general for our model,C(i, u) = c · ib + D · u. Under the 0-policy,u is always equal to 1, so
we have:

Cπ0(i, u) = C (i, π0(i)) = D + c · ib . (8)

Combining (7), (8), and property (iii) above, we get the average cost per unit time:

Jπ0 =
∑

i∈X
sπ0(i) · C (i, π0(i))

= (1− p) ·D + p · (D + c)

= D + pc . (9)

Taking ε = 1
2 and settingu = 0, we have:

Gπ0 = {i | C(i, u)≤Jπ0 + ε for someu}
=

{
i ∈ X | c · ib ≤ D + pc +

1
2

}

=
{

i ∈ X | ib ≤ D

c
+ p +

1
2c

}
.

Therefore,Gπ0 is a finite set, and (BOR2) is satisfied.
Finally, let j ∈ Gπ0 be arbitrary. Consider the policyθj of sleeping at statex ∈ X if xb < jb

or if xs > 0, and serving ifxs = 0 and xb ≥ jb. Then,θj ∈ <∗
([

0
0

]
, j

)
, as the induced chain

visits statej w.p.1, and the expected first passage time and cost from
[

0
0

]
to j under policyθj

are both finite. Thus, (BOR3) is also satisfied by Problem (P1), and we conclude that there exists
an optimal stationary policyπ∗ that minimizes (3).
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B. Optimal Policy When Queue Is Non-Empty

We now begin to identify the optimal stationary policy at each state in the state space.

Lemma 2: The optimal control at statei =
[

n
0

]
is U∗ = 1, for all n ∈ N, n ≥ 1.

Proof: Let n ∈ N, n ≥ 1 be arbitrary. Assume the state at timek is Xk =
[

n
0

]
. Consider

the following three policies:

π̂ : stay awake for the[k, k + 1) slot, and behave optimally thereafter.
π̄ : go to sleep for N slots, and behave optimally thereafter.
π̃ : stay awake for the[k, k + 1) slot, and then sleep; ifŪl0 = 1 (i.e. the server stays

awake under̄π) at any timel0 ≥ k + N, then letŨl = Ūl, ∀l > l0; otherwise,
continue to sleep.

It is clear thatπ̂ is superior toπ̃ by construction, so we need to show thatπ̃ is superior toπ̄.
If the node continues to sleep forever underπ̄, the queue length growsad infinitumsincep > 0.
This results inJ π̄ = ∞, due to the linear holding cost structure. Yet, we have already shown
there exists at least one policy,π0, with a finite average cost. Therefore, the policy of sleeping
for all slots after timek + N is suboptimal, and cannot occur underπ̄. So eventually the node
will awake underπ̄.

Let τ denote the number of slots from timek until the first time the node awakes under policy
π̄. We now compare the evolution of the Markov chain underπ̄ and π̃. For all realizations, a
single packet is servedτ slots later under̄π, and all other packets are served at the same time
under both policies. Thus, the total cost from timek underπ̄ is almost surelyτ · c greater than
the total cost from timek under π̃, and we concludẽπ is superior toπ̄. By transitivity, π̂ is
superior toπ̄. Therefore, it is optimal to stay awake and serve at

[
n
0

]
, for all n ∈ N, n ≥ 1.

C. Complete Characterization of the Optimal Policy

We now present the main result of this section.

Theorem 2: In Problem (P2), the optimal control at stateX =
[

B
0

]
such thatB > 0, is

U∗ = 1. At the boundary state
[

0
0

]
, the optimal control,U∗, is given by:

(
p

1− p

)(
N − 1

2

) U∗ = 0
≶

U∗ = 1

D

c
. (10)

Proof: The first statement follows directly from Lemma 2. We showed in the proof of
Lemma 1 that the average cost per unit time under the 0-policy (never sleep) isD + pc. We
now know from Lemma 2 that the 0-policy is optimal at every awake state, except possibly the
boundary

[
0
0

]
. To determine the optimal policy at this state, we must compare the average cost

per unit time of the 0-policy with that of the 1-policy (serve if the queue is non-empty, and sleep
otherwise). The transition diagram underπ1 is shown in Figure 2, withTπ1 denoting the set of
transient states, andRπ1 denoting the single positive recurrent class.
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Fig. 2. Transition diagram induced byπ1

Once again, this Markov chain has a unique stationary distribution, and it is straightforward
to verify that the balance equations hold for the following stationary distribution:

s̄π1(i) =





1−p
N , i =

[
0
0

]

1
N ·∑N−j

m=0

{(
N
m

) · (1− p)m · pN−m
}

, i =
[

j
0

]
, j = 1, 2, . . . , N

1−p
N · (k

l

) · pl · (1− p)k−l, i =
[

l
N − k

]
,

1 ≤ k ≤ N − 1
0 ≤ l ≤ k

0 , otherwise

(11)

From (11), we compute the average cost per unit time:
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Jπ1 =
∑

i∈X
sπ1(i) · C(i, π1(i))

= 0 · 1− p

N
+

N∑

j=1

{
(D + jc) · 1

N
·

N−j∑

m=0

{(
N

m

)
· (1− p)m · pN−m

}}

+
N−1∑

k=1

k∑

l=0

{
(lc) · 1− p

N
·
(

k

l

)
· pl · (1− p)k−l

}

=
D

N
·

N∑

j=1

N−j∑

m=0

{(
N

m

)
· (1− p)m · pN−m

}

+
c

N
·

N∑

j=1

j ·
N−j∑

m=0

{(
N

m

)
· (1− p)m · pN−m

}

+
c(1− p)

N
·

N−1∑

k=1

k∑

l=0

{
l ·

(
k

l

)
· pl · (1− p)k−l

}

=
D

N
· pN +

c

N
·
(

p2N(N − 1)
2

+ pN

)
+

c(1− p)
N

·
N−1∑

k=1

pk

= pD +
p2c(N − 1)

2
+ pc +

c(1− p)
N

· pN(N − 1)
2

= pD + pc +
pc(N − 1)

2
· (p + (1− p))

= pD +
pc(N + 1)

2
. (12)

Finally, combining (9) and (12), we compare the average costs for the two policies to determine
the optimal policy at the boundary state

[
0
0

]
:

Jπ1 = pD +
pc(N + 1)

2

U∗ = 0
≶

U∗ = 1
D + pc = Jπ0 . (13)

Rearranging (13) gives (10).

D. Related Work and Possible Extensions

The arguments presented above are quite similar to those applied to the embedded Markov
chain model of [17]. In that paper, Federgruen and So consider an analogous problem in continuous
time with compound Poisson arrivals. By formulating the problem as a semi-Markov decision
process embedded at certain decision epochs, they show that either a no vacation policy or a
threshold policy is optimal under a much weaker set of assumptions. Specifically, they allow
general non-decreasing holding costs, multiple arrivals, fixed costs for switching between service
and vacation modes, and general i.i.d. service and vacation times. It is quite possible that we
could similarly relax our assumptions, and still retain the structural result that either a threshold
policy or a no vacation policy is optimal. We have not yet explored this extension. By imposing
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the extra assumptions, however, we have arrived at the more specific conclusion that if the optimal
policy is an N-threshold policy, it is indeed a 1-policy; additionally, we have identified condition
(10), distinguishing the parameter sets on which the 0-policy is optimal from those on which the
1-policy is optimal.

IV. A NALYSIS OF THE FINITE HORIZON EXPECTEDCOST PROBLEM

In this section, we analyze the finite horizon problem, (P2), and attempt to characterize
the optimal sleep control policyπ∗ that minimizesJπ

0 . Due to the finite time horizon and the
assumption of a finite initial queue size, this problem features a finite state space (at most[B0 + T ]·
N states). Additionally, we have a finite number of available control actions at each time slot. For
such systems, we know the following from classical stochastic control theory (see for example
[24, pp. 78–79] ):

(i) There exists an optimal control policy; i.e., a policyπ∗ such that

Jπ∗
0 = inf

π
Jπ

0 , (14)

where the infimum in (14) is taken over all randomized and deterministic
history-dependent policies.

(ii) Furthermore, there exists an optimal deterministic Markov policy (a policy that
depends only on the current stateXk, not the past statesXk−1, Xk−2, . . .).

(iii) Define recursively the functions

VT (i) := c · ib

Vk(i) := min
u∈{0,1}



c · ib + u ·D +

∑

j∈X
[Pij(u) · Vk+1(j)]



 ∀k ∈ {0, 1, . . . , T − 1}. (15)

A deterministic Markov policyπ is optimal if and only if the minimum in (15) is
achieved byπk (i), for each statei at each timek.

Next, we define the “cost-to-go” random variable associated with policyπ over the time
interval [k, T ]:

Cπ
k :=

T∑

t=k+1

c ·Bt +
T∑

t=k

D · Ut ,

and the expected cost-to-go given all information through timek:

Jπ
k := E [Cπ

k | Fk] .

The interpretation of (iii) is that

Jπ∗
k = inf

π
Jπ

k ∀k ∈ {0, 1, . . . , T − 1}.
While, in principle, we can compute the optimal policy through the dynamic program (15),

we are more interested in deriving structural results on the optimal policy, e.g., by showing
that the optimal policy satisfies certain properties or is of a certain simple form. In order to
accomplish this, we use the above results throughout the section to identify the optimal control
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at each slot by comparing the expected cost-to-go under different deterministic Markov policies.
Before proceeding, we note that for the remainder of this section, when we refer to the timek,
we implicity assumek ∈ {0, 1, . . . , T − 1}.

A. Optimal Policy at the End of the Time Horizon

As with the infinite horizon problem, we identify the optimal policy in a piecewise manner,
this time beginning with the slots at the end of the time horizon.

Lemma 3: If T − D
c ≤ k < T , the optimal policy to minimizeJπ

k is U∗
t = 0 ∀t ∈

{k, k + 1, . . . , T − 1}; i.e. sleep for the duration of the time horizon.

Proof: We proceed by backward induction onk. Let l = T − k. To prove this lemma, we
essentially need to prove that the following hypothesish(l) is true for all l:

h(l) := AssumingD
c ≥ l, the policyU∗

t = 0, ∀t ∈ {T − l, T − l + 1, . . . , T − 1}
minimizesJπ

T−l.
(16)

(i) Induction Basis: l = 1 (k = T − 1).

This is the case when we are choosing a control for the final slot,[T − 1, T ). If there are
no jobs queued, staying awake costsD and provides no reward. If there is a job queued, the net
reward for staying awake isc−D; however,l · c = c ≤ D by assumption ofh(1), and thus it is
optimal to sleep. We conclude hypothesish(1) is true.

(ii) Induction Step: Let l ∈ {
1, 2, . . . ,

⌊
D
c

⌋− 1
}

be arbitrary(corresponds to
k ∈ {

T − 1, T − 2, . . . ,
⌈
T − D

c

⌉
+ 1

}
). Assumeh(l) is true, and show

h(l + 1) is true.

We are now choosing the control for the slot[T − l−1, T − l). By the assumption ofh(l+1),
we know D

c ≥ l + 1, which implies D
c ≥ l. Thus, by the induction hypothesis, we know that the

node will go to sleep at timel, and remain asleep for the remainder of the time horizon. As with
the base case, if the queue length at timel is zero, staying awake costsD with no reward. If
XT−l−1 =

[
BT−l−1

0

]
for someBT−l−1 > 0, the net reward from staying awake is(l + 1) · c−D.

Yet, by h(l+1), (l+1) ·c ≤ D, and thus the net reward is non-positive. We conclude the optimal
control at timeT − l − 1 is U∗

T−l−1 = 0. Combined with the knowledge from the induction
hypothesis that the node will sleep for the duration of the time horizon beginning at timel, this
completes the induction step and the proof of the lemma.

The simple intuition behind the above lemma is that the incremental cost of staying awake
for an extra slot remains constant atD throughout the time horizon; however, the benefit of doing
so, as compared to sleeping for the duration of the horizon, diminishes ast approachesT .

B. Optimal Policy When Queue Is Non-Empty Before the End of the Time Horizon

The following lemma characterizes the optimal sleep policy when the node is awake, the
queue is non-empty, and the process is sufficiently far from the end of the time horizon.

Lemma 4: If 0 ≤ k < T − D
c andXk =

[
Bk

0

]
for someBk > 0, the optimal control at slot

k to minimizeJπ
k is U∗

k = 1; i.e., serve a job in slot[k, k + 1).

Proof: We consider two separate cases.

Case 1: k ≥ T −N .
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Consider the following three policies:

π̂ : stay awake for the[k, k + 1) slot, and behave optimally thereafter.
π̄ : go to sleep (and remain asleep for duration of time horizon).
π̃ : stay awake for the[k, k + 1) slot, and then sleep (for duration of time horizon).

Define the rewards for followinĝπ over π̄, π̃ over π̄, andπ̂ over π̃:

Rk := Cπ̄
k − Cπ̂

k ,

R1
k := Cπ̄

k − Cπ̃
k , and

R2
k := Cπ̃

k − Cπ̂
k , respectively.

To show thatπ̂ is optimal in this case, it suffices to show:

E [Rk | Fk] = E
[
R1

k | Fk

]
+ E

[
R2

k | Fk

] ≥ 0 w.p.1 . (17)

This is fairly straightforward as we have:

E
[
R1

k | Fk

]
= c · (T − k)−D w.p. 1, and (18)

E
[
R2

k | Fk

] ≥ 0 w.p.1, by construction. (19)

Combining these,

k < T − D
c , (18), and (19) ⇒ (17) , (20)

concluding the proof under Case 1.

Case 2: k < T −N .

Redefine the policieŝπ, π̄, andπ̃ as follows:

π̂ : stay awake for the[k, k + 1) slot, and behave optimally thereafter.
π̄ : go to sleep for N slots, and behave optimally thereafter.
π̃ : stay awake for the[k, k + 1) slot, and then sleep for N slots; if̄Ul0 = 1 (i.e. the server

stays awake under̄π) at any timel0 ≥ k + N, then letŨl = Ūl ∀l > l0; otherwise,
continue to sleep for the duration of the time horizon.

Let Rk, R1
k, andR2

k be as in Case 1. To show thatπ̂ is optimal in this case, it once again suffices
to show:

E [Rk | Fk] = E
[
R1

k | Fk

]
+ E

[
R2

k | Fk

] ≥ 0 w.p.1 . (21)

In the case that̄π results in the node sleeping for the duration of the time horizon, we have:

E
[
R1

k | Fk

]
= c · (T − k)−D ≥ 0 w.p.1 , (22)

where the last inequality follows from the assumptionk ≤ T − D
c . In the case that̄π results in

the node eventually staying awake for a slot, we have:

E
[
R1

k | Fk

] ≥ c ·N w.p.1 , (23)

because the best case scenario forπ̄ is that the service occurs in thek + N th slot, N slots after
the same job is served under policỹπ. Under all realizations, all other jobs are served at the
same time bȳπ and π̃. From (22) and (23),we conclude:

E
[
R1

k | Fk

] ≥ 0 w.p.1 . (24)
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Note also that, once again by construction:

E
[
R2

k | Fk

] ≥ 0 w.p.1 . (25)

From (24) and (25), we conclude (21) holds, completing the proof of the lemma.

C. Optimal Policy When Node Is Awake and Queue Is Empty (Boundary State)

We know from Lemma 3 that the optimal control atXk =
[

0
0

]
is to sleep whenk ≥ T − D

c .
We now examine the optimal control at this state whenk < T − D

c .

Lemma 5: If k = z∗ :=
⌊
T − D

c

⌋
and Xk =

[
0
0

]
, the optimal control policy to minimize

Jπ
k is to sleep for the duration of the time horizon.

Proof: This is trivial as, due to Lemma 3, the optimal policy entails sleeping for the duration
of the time horizon, beginning at the following time slot,z∗+1. Therefore, staying awake in the
z∗ time slot costsD and does not provide any benefit, because the node will not serve any jobs
for the remainder of the time horizon.

Lemma 6: If z∗−N < k < z∗ andXk =
[

0
0

]
, the optimal control at slot k to minimizeJπ

k

is described by the threshold decision rule:

c ·
z∗−k∑

j=1

{
pj (T − k − j)

}−D ·
z∗−k∑

j=0

pj
U∗ = 0

≶
U∗ = 1

0 . (26)

Proof: We once again proceed by backward induction onk. Let l = z∗ − k, and note that
in order to prove this lemma, we need to prove the following hypothesish(l) for all l:

h(l) := If Xz∗−l =
[
0
0

]
, the optimal control at timez∗ − l to minimizeJπ

z∗−l

is described by the threshold decision rule:

c ·
l∑

j=1

{
pj (T − z∗ + l − j)

}−D ·
l∑

j=0

pj
U∗ = 0

≶
U∗ = 1

0 . (27)

Redefine the policieŝπ, π̄, andπ̃ once more as follows:

π̂ : stay awake for the[k, k + 1) slot, and behave optimally thereafter.
π̄ : go to sleep for N slots, and behave optimally thereafter.
π̃ : stay awake for the[k, k + 1) slot. At each timek + 1, k + 2, . . . , z∗ if there is a job

in the queue, serve it; otherwise, go to sleep.

Let Rk, R1
k, andR2

k be as in Lemma 4.

(i) Induction Basis: l = 1 (k = z∗ − 1).

The goal is to determine the optimal control for slot[z∗ − 1, z∗). From Lemmas 4 and 5, we
know that if there is a job in the queue atz∗, the optimal policy is to serve, but if there is not,
the optimal policy is to sleep. Furthermore, we know from Lemma 3 that the optimal policy is to
sleep for the duration of the time horizon beginning at timez∗ + 1, regardless of the queue size.
This knowledge allows us to directly calculate the expected reward from followingπ̂ over π̄:

E [Rz∗−1 | Fz∗−1] = E
[
Cπ̄

z∗−1 − Cπ̂
z∗−1 | Fz∗−1

]
= −D + p · [c · (T − z∗)−D] w.p.1 . (28)
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Note that forl = 1, the LHS of (27) is equal to the RHS of (28). Therefore, if the LHS of (27)
is greater than0, we haveE [Rz∗−1 | Fz∗−1] > 0 w.p.1, and the optimal policy isu∗z∗−1 = 1.
Alternatively, if the LHS of (27) is less than0, we haveE [Rz∗−1 | Fz∗−1] < 0 w.p.1, and the
optimal policy isU∗

z∗−1 = 0. Thus,h(1) is true, and the base case holds.

(ii) Induction Step: Let l ∈ {1, 2, . . . , N − 2} be arbitrary(corresponds to
k ∈ {z∗ − 1, z∗ − 2, . . . , z∗ −N + 2} ). Assumeh(1), h(2), . . . , h(l) are true, and show
h(l + 1) is true.

We now define the index

w(k) := c ·
z∗−k∑

j=1

{
pj (T − k − j)

}−D ·
z∗−k∑

j=0

pj . (29)

The following calculation demonstrates thatw(◦) is a non-increasing function ink:

w(k − 1)− w(k) =


c ·

z∗−k+1∑

j=1

{
pj (T − k + 1− j)

}−D ·
z∗−k+1∑

j=0

pj




−

c ·

z∗−k∑

j=1

{
pj (T − k − j)

}−D ·
z∗−k∑

j=0

pj




= pz∗−k+1 · [−D + c · (T − z∗)] + c ·
z∗−k∑

j=1

pj

= pz∗−k+1 ·
(

c ·
⌈

D

c

⌉
−D

)
+ c ·

z∗−k∑

j=1

pj

≥ 0 ∀k ∈ {z∗ −N + 1, z∗ −N + 2, . . . , z∗ − 1} . (30)

From (30), it follows that

w(K) ≤ 0 for someK ∈ {z∗ −N + 1, z∗ −N + 2, . . . , z∗ − 1}
⇒ w(k) ≤ 0 ∀k ∈ {K,K + 1, . . . , z∗ − 1} . (31)

To demonstrate the validity ofh(l + 1), we now consider two exhaustive cases:

Case 1: w(z∗ − l − 1) ≤ 0.

By (31) andw(z∗−l−1) ≤ 0, we know thatw(t) ≤ 0, for all t ∈ {z∗ − l, z∗ − l + 1, . . . , z∗ − 1};
thus, ifXt =

[
0
0

]
for anyt ∈ {z∗ − l, z∗ − l + 1, . . . , z∗ − 1}, the node will sleep for the duration

of the time horizon under the optimal policy. Equipped with this full characterization of the optimal
policy in all subsequent slots, we can directly calculate the expected reward for followingπ̂ over
π̄:

E [Rz∗−l−1 | Fz∗−l−1] = E
[
Cπ̄

z∗−l−1 − Cπ̂
z∗−l−1 | Fz∗−l−1

]
= w (z∗ − l − 1) ≤ 0 w.p.1. (32)

From (32), we conclude that for case 1, the optimal policy isu∗z∗−l−1 = 0 andh(l + 1) holds.

Case 2: w(z∗ − l − 1) > 0.

In this case, we once again make use of an interchange argument through the policyπ̃. By
construction,

E
[
R2

z∗−l−1 | Fz∗−l−1

] ≥ 0 w.p.1 ,
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so to show that

E [Rz∗−l−1 | Fz∗−l−1] ≥ 0 w.p.1 . (33)

it suffices to show that

E
[
R1

z∗−l−1 | Fz∗−l−1

] ≥ 0 w.p.1 .

Because we know the the control policy corresponding to every realization under both policies,
we can directly calculate the expected reward for followingπ̃ over π̄:

E
[
R1

z∗−l−1 | Fz∗−l−1

]
= E

[
Cπ̄

z∗−l−1 − Cπ̃
z∗−l−1 | Fz∗−l−1

]
= w (z∗ − l − 1) > 0 w.p.1. (34)

(34) implies (33), which in turn impliesu∗z∗−l−1 = 1 and h(l + 1) holds. This concludes the
induction step under case 2, and the proof of the lemma.

We note that Lemma 6 and its proof tell us that from slotz∗ − N + 1 until slot z∗ − 1, the
optimal policy when the node is awake and the queue is empty is non-increasing over time. We
also know from Lemmas 3 and 5 that the optimal control isU∗

k = 0, for all k ≥ z∗. Combining
these, we know the optimal policy atXk =

[
0
0

]
is non-increasing over time, from slotz∗−N +1

until the end of the time horizon. The natural follow-up question to ask is whether or not the
optimal policy atXk =

[
0
0

]
is necessarily monotonic over the entire duration of the time horizon.

Intuitively, this might make sense if we extend the logic behind Lemma 3 to conclude that the
marginal reward for serving a packet continues to increase as we move away from the end of the
time horizon. However, as we explain further in Section IV-D, this intuition is not quite correct,
as the following counterexample demonstrates.

Counterexample 1: Consider Problem (P2) with the parametersT = 15, N = 3, c = 10,
D = 21, andp = 2

3 . The optimal sleep control policy at the boundary stateXk =
[

0
0

]
, computed

through the dynamic program (15), is displayed in Figure 3. Clearly, this policy is not monotonic
in time.

1 140 4

Stay Awake

Sleep
2 3 10 12 1311 15

Optimal
Control

Time

5 6 7 8 9

Fig. 3. Optimal control policy atXk =
[

0
0

]
whenT = 15, N = 3, c = 10, D = 21, andp = 2

3

With such counterexamples in mind, we seek sufficient conditions for the optimal policy at
the boundary state to be non-increasing over the entire time horizon. Based on the extensive
numerical experiments we conducted, we believe the following conjecture is true, but have not
yet been able to prove it.
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Conjecture 1: If the parameters of problem(P2) satisfy the following condition:
(

p

1− p

)
·
(

N − 1
2

)
≥ D

c
, (35)

the optimal policy when the node is awake and the queue is empty is non-increasing in time;
i.e., if the expected cost-to-goVr

([
0
0

])
is minimized by sleeping, then for allt > r, the expected

cost-to-goVt

([
0
0

])
is minimized by sleeping.

We have been able to show that if the expected cost-to-go function satisfies the following
“supermodularity” condition:

Vt

([
1
0

])
− Vt

([
0
0

])
≤ Vt+1

([
1
0

])
− Vt+1

([
0
0

])
∀t ∈ {0, 1, . . . , z∗ −N} , (36)

then the optimal policy when the node is awake and the queue is empty is monotonically non-
increasing in time. Thus, one possible method to complete the proof of Conjecture 1 would be
to show that (35)⇒ (36), and then invoke the above fact; however, we have not yet been able
to show this relationship.

Assuming the previous conjecture turns out to be true, we would also like to characterize
the optimal policy at the boundary state when the parameters of Problem(P2) do not satisfy
condition (35). One might think that the periodic nature of sleeping would lead to a periodic
optimal policy at the boundary; however, based on numerical results, we believe the optimal
policy at the boundary is still relatively “smooth,” and can be characterized by the following
conjecture.

Conjecture 2: If the parameters of problem(P2) satisfy the following condition:
(

p

1− p

)
·
(

N − 1
2

)
<

D

c
, (37)

and if for somek, the optimal control at stateXk =
[

0
0

]
is U∗

k = 0 and the optimal control at
stateXk+1 =

[
0
0

]
is U∗

k+1 = 1, then for all0 ≤ t < k, the optimal control at stateXt =
[

0
0

]
is

U∗
t = 0.

Conjecture 2 essentially says that there can be at most one jump up in the optimal control from
U∗

t = 0 at Xt =
[

0
0

]
to U∗

t+1 = 1 at Xt+1 =
[

0
0

]
.

D. Discussion

In this section, we discuss the numerical results supporting our belief in Conjectures 1 and
2, the intuition behind the conjectures, their implications if they turn out to be true, and the
challenges we face in proving them.

If Conjectures 1 and 2 turn out to be true, then they imply, in combination with Lemmas 3-6,
that the optimal control policy atXk =

[
0
0

]
is of the form:

U∗
k =

{
1 (serve), if λ∗1 ≤ k < λ∗2
0 (sleep), otherwise ,

for someλ∗1, λ
∗
2 ∈ {0, 1, . . . , z∗}, with λ∗1 ≤ λ∗2. Specifically, only three structural forms of the

optimal control policy at
[

0
0

]
are possible. These are shown in Figure 4.
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( a ) ( b ) ( c )

, ,Sleep

Stay Awake

Time Time Time

*

*

*

*

*

*
Optimal
Control

Fig. 4. Possible structural forms for the optimal control policy atXk =
[

0
0

]

Moreover, Conjecture 1 states that form (b) is not possible if condition (35) holds. Our numerical
results not only support these conclusions, but also show the following:

Observation 1: If the time horizon is sufficiently long, then in fact the optimal control is of
the form (a) if condition (35) holds, but of the form (b) or (c) if the negation, (37), holds.

We now attempt to provide some intuition as to why the optimal policy at the boundary state
could be of form (b). The underlying tradeoff at the state

[
0
0

]
is between staying awake to reduce

backlog costs and sleeping to avoid unutilized slots. In the infinite horizon problem, consider the
two policiesπ0 (always awake) andπ1 (sleep only at boundary state) described in Section III,
and assume the node is at state

[
0
0

]
at some timek. In our model, the order in which packets

are served is of no importance (e.g. FIFO, LIFO). Therefore, let us assume that for every sample
path, the packets arriving from timek +N − 1 onward are served at exactly the same time under
the two policies (by appropriate reordering of packets). Then the extra backlog charges incurred
underπ1 are entirely due to the packets arriving during(k, k + N − 1). If there areM arrivals
during this period, the queue length at timek + N underπ1 is M more than the queue length
underπ0. With each non-arrival after timek + N − 1, π1 “catches up” toπ0 by one packet.
Eventually, afterM non-arrivals, the two policies will have served the same number of jobs and
both will end up back at the state

[
0
0

]
. If we compare the expected energy charges incurred by

π1 during theN unutilized slots of one such cycle to the expected extra backlog costs incurred
by π0, we get (10), which describes the optimal stationary policy at the boundary state in the
infinite horizon case.

Returning to the finite horizon problem, we see that (35) and (37) together are equivalent to
(10). Let us now reconsider the two policies from the previous paragraph in the finite horizon
context. The probability that the sleep policy catches up to the always awake policy beforez∗+1,
the time at which the node goes to sleep for good, increases ast → 0. So Observation 1 makes
intuitive sense as it just states that the optimal control at the boundary state in the finite horizon
problem converges to the optimal control at the boundary state in the infinite horizon problem as
we move farther and farther back from the end.

As we move closer to the end of the horizon, there is a higher probability of reaching time
z∗ + 1 before the two policies reach the same state again. Any “extra” packets atz∗ + 1 will be
charged for the rest of the time horizon, which has length

⌊
D
c

⌋
. This extra risk of going to sleep

is likely the reason why form (b) is a possible form of the optimal policy. The middle bump in the
policy plays the role of a “buffer zone” that incorporates the risk of unserved packets incurring
charges throughout the shutdown zone at the end of the horizon.

Observation 2: The structural forms in Figure 4 lie on a spectrum in the sense that changing
one parameter at a time leads to a shift in the form of the optimal policy from either form (a)
to form (b) to form (c), or from form (c) to form (b) to form (a). In particular, holding all other
parameters constant, the form of the optimal policy shifts from (c) to (b) to (a) as we individually
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(or collectively) increasep, N , or c, but shifts from (a) to (b) to (c) asD increases. Analogous
statements can also be made concerning the movements of the two individual thresholds with
variations in the parameters.

We want to mention one last implication of the conjectures regarding the actual computation
of the optimal policy. If Conjecture 1 turns out to be true, then we can use an index to calculate
the thresholdλ∗2, which completes the specification of the optimal sleep policy when (35) is true.
This is done in the following manner:

(i) For everyk ∈ {0, 1, . . . , z∗ − 1}, write k = z∗ − j ·N − l, wherej ∈ N, and
l ∈ {0, 1, . . . , N − 1}.

(ii) Derive the general form of the indicesw(j)(l), the expected reward for staying awake
at stateXz∗−j·N−l =

[
0
0

]
and then acting optimally, as compared to sleeping forN

slots and then acting optimally.w(0), the index forz∗ −N < k < z∗, is given in (29),
and we showw(1), the index forz∗ − 2N < k ≤ z∗ −N , in the appendix. We have
not yet generalized these indices tow(j).

(iii) Given a parameter set{T, p, N, c, D}, use the enumeration ofk from (i) and the
general form of the indexw from (ii) to computew(k), for every
k ∈ {0, 1, . . . , z∗ − 1}.

(iv) If w(k) ≤ 0 for all k, let λ∗2 = 0; otherwise, letλ∗2 = max {k : w(k) > 0}.

Then the optimal policy at stateXk =
[

0
0

]
is to stay awake if and only ifk ≤ λ∗2. If Conjecture

2 also turns out to be true, thenλ∗1 can be calculated similarly by creating a second index that is
a function ofk andλ∗2. This methodology is computationally much simpler than computing the
entire optimal policy through the dynamic program (15).

We now discuss briefly the challenges we have faced in proving Conjectures 1 and 2. In
stochastic control problems, it is often the case that we can infer structural properties of the
optimal control from certain properties of the value function, such as monotonicity, convexity, and
supermodularity (see for example [25] and [26] for description of such techniques). In particular,
supermodularity and submodularity are used throughout the queuing theory literature (for one
such example, see [27]) to prove the optimal control policy has a threshold form. However, the
threshold in these cases has usually been a threshold in queue size (one control action is optimal
if the queue length is above a critical number and another is optimal if it is below the critical
number), as opposed to a threshold in time. In our model, such a result is true, but fairly trivial.
We can see from Lemmas 3-4 that not only is the optimal control monotonic in queue length at
each timek, but the threshold is always0 (always serve),1 (serve only if queue is non-empty),
or ∞ (never serve). We are looking to strengthen this result by finding a sufficient condition for
the optimal control to be monotonic in time (i.e., have those critical queue length numbers at
each slot be non-decreasing over the entire time horizon). We have not found any previous works
in which modularity properties are used to show the optimal control policy is monotonic in time.

Unfortunately, in our case, neither the value function nor its components display the nice
properties we desire, even when we restrict the parameter sets to those satisfying (35). For instance,
based on Lemmas 3-6, we can reduce part of the dynamic program (15) to the following form:

Vt

[
0
0

]
= min {αt, βt} , (38)

whereαt is the expected cost-to-go underUt = 1, andβt is the expected cost-to-go underUt = 0.
One way to show that the optimal control at the boundary state is of the form (a) or (c) (i.e.,
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monotonic in time) when condition (35) is satisfied would be to show:

(35) ⇒ βt − βt+1 < αt − αt+1 ∀t ≤ z∗ −N . (39)

Note that (39) would imply:

βt < αt ⇒ βt+1 < αt+1 , (40)

which guarantees the optimal policy at
[

0
0

]
is non-increasing in time. However, as we see in Figure

5, (39) is not necessarily true. We have tried numerous other approaches to prove Conjecture 1,
to no avail.
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Fig. 5. Expected cost-to-go differences under the two available controls

V. CONCLUSION

In this report we studied the problem of optimal sleep scheduling for a wireless sensor
network node, and considered two separate discrete time optimization problems. For the infinite
horizon average expected cost problem, we demonstrated the existence of an optimal stationary
Markov policy, and completely characterized the optimal control at each state in the state space.
For the finite horizon expected cost problem, we completely characterized the optimal policy
for all states except the boundary state where the node is awake and the queue is empty. One
significant difference from the infinite horizon was the existence of a “shutdown” period at the
end of the time horizon in which the queue stops serving packets, regardless of the queue size.
We hypothesized a sufficient condition to guarantee an optimal control that is non-increasing over
time when the queue is empty and the node is awake. Based on extensive numerical experiments,
we also conjectured that even when this sufficient condition does not hold, there is at most one
jump in the optimal control, providing a single “buffer zone.”
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We now mention a few possible extensions to this work. First, as discussed in Section III-D,
it may be possible to relax a number of the assumptions (e.g., general non-decreasing holding
costs in place of linear holding costs) and add fixed switching costs to the model, while still
retaining the optimality of a threshold policy. However, we believe similar generalizations in the
finite case may not be nearly as straightforward due to the inability to collapse the problem to
certain decision epochs.

Second, an interesting alternative formulation of the problem is to frame it is a constrained
optimization problem. Under this approach, rather than associate arbitrary costs with packet delay
and energy consumption, one could directly minimize packet delay subject to a constraint that
the node must be asleep for a certain portion of the time horizon. The obvious benefit of this
methodology is the replacement of arbitrary costs with a user-friendly constraint which has a
clear physical interpretation. We have not yet considered this model, but believe analysis on this
front may be tractable.

Finally, one might consider optimal sleep scheduling for multiple nodes in a wireless sensor
network. This extension is not at all straightforward, but there may be some hope to leverage the
structural results from the single node case in a team-theoretic setting. Any attempt to incorporate
additional quality of service objectives concerning coverage, connectivity, etc., may also drastically
change the nature of the problem.

VI. A PPENDIX

We present here the general form ofw(1), referred to in Observation 2 in Section IV-D. The
following index applies toz∗ − 2N < k = z∗ −N − l ≤ z∗ −N , wherel ∈ {0, 1, . . . , N − 1}.

Define

w(1)(k) := E [Rk | Fk]

= E [Rz∗−N−l | Fz∗−N−l]

= Pr (T − z∗ + N + l arrivals in a row) · E [Rk | T − z∗ + N + l arrivals]

+
T−z∗+N+l−1∑

m=l+1

{Pr (m arrivals before 1st non-arrival) · E [Rk | m,Fk]}

+
l∑

m=0

{Pr (m arrivals before 1st non-arrival) ·

l+1∑
w=m

{Pr (π̄ sleeps for good atz∗ − l + w | m,Fk) ·

E [Rk | π̄ sleeps for good atz∗ − l + w,m,Fk]}}

= −D + pl+1 [c(l + 1)(N + 1)] +
N∑

j=2

pj+l [−D + c (T − z∗ + N − j)]

+
l∑

m=0

{
pm(1− p)

l+1∑
w=m

[Ψl,w,m · Γl,w,m]

}
w.p.1 ,

where
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Ψl,w,m := Pr (π̄ sleeps for good atz∗ − l + w | m arrivals before 1st non-arrival,Fz∗−N−l)

=





(1− p)N−1pw−m
[(

N−1
w−m

)
+

∑w−m−1
j=1

{(
N−1

j

) ∑w−m−j
i=1

(
j
i

)}]
,

w ∈ {m,m + 1, . . . , l}

1−∑l
w=m Ψl,w,m , w = l + 1

0 , otherwise

and

Γl,w,m := D + E [Rz∗−N−l | m arrivals before 1st non-arrival,̄π goes to sleep for good at

z∗ − l + w, Fz∗−N−l]

=





mc(N − 1)− c(w −m) +
∑l−w

j=1

{
pj [−D + c (T − z∗ + l − w − j)]

}
,

w ∈ {m,m + 1, . . . , l}

mc(N − 1)− c(l −m) + D − c (T − z∗) , w = l + 1

0 , otherwise
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