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We make a novel connection between an energy-efficient wireless transmission scheduling problem and a

multi-period, multi-item inventory control problem with stochastic convex ordering costs, deterministic

demands, and a joint budget constraint. In the special case of a single item, we show that a state-dependent

modified base-stock policy is optimal when the stochastic ordering costs are linear, and a state-dependent

finite generalized base-stock policy is optimal when the stochastic ordering costs are piecewise-linear convex.

We also present an efficient method to compute the target stock-up levels characterizing these policies when

certain technical conditions are satisfied. For the case of two items with a joint budget constraint, we state

and prove the structure of the optimal policy, which is somewhat surprisingly not a base-stock policy. We

show that due to the stochastic nature of the ordering costs, structural phenomena may arise that are not

possible in a two-item inventory model with a joint budget constraint and the more classical configuration

of stochastic demands and deterministic ordering costs.
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1. Introduction

Transporting multimedia over wireless networks is a promising application that has seen recent

advances. At the same time, certain resource allocation issues need to be addressed in order to

provide high quality and efficient media over wireless. First, streaming applications tend to have

stringent quality of service (QoS) requirements (e.g., they can be delay and jitter intolerant).

Second, because streaming is bandwidth-demanding, it is especially desirable to operate the wireless

system in an energy-efficient manner.
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When the sender is a battery-powered mobile device, energy-efficiency is crucial to extending its

lifetime. Miao et al. (2009) explain succinctly why this problem is unlikely to disappear anytime

soon: “Although silicon technology is progressing exponentially, doubling every 2 years, processor

power consumption is also increasing by 150% every 2 years. In contrast, the improvement in battery

technology is much slower, increasing a modest 10% every 2 years, leading to an exponentially

increasing gap between the demand for energy and the battery capacity offered.”

When the media comes from a base station, it is still desirable to conserve power in order to (i)

limit potential interference to other base stations and their associated mobiles; (ii) maximize the

number of receivers the sender can support; and (iii) reduce the energy costs incurred by operators.

Energy costs represent up to half of a mobile operator’s operating expenses (Ericsson 2008), and

Kremling (2008) estimates these energy costs will increase six-fold between 2002 and 2012. The

trend is similar in mobile video, where the number of subscribers is expected to grow 37% annually

from 2008 to 2014 (Pyramid Research 2009). Aleaf (2007) estimates mobile video in the U.S. will

consume 17,850 gigawatt-hours in 2010, which is equivalent to the power output of two typical

nuclear reactors. Most of this power consumption takes place at the base stations.

In this paper, we examine the problem of energy-efficient transmission scheduling over a wireless

channel. We consider a single source wirelessly transmitting data to one or more receivers/users.

Each user has a buffer to store received packets before they are drained at a known rate. Due

to random fading, the condition of the wireless channel, which determines how much power is

required to reliably transmit a given amount of data, varies with time and from user to user. The

transmitter’s goal is to minimize total power consumption, while preventing any user’s buffer from

emptying (we refer to the latter as strict underflow constraints). In the context of media streaming,

enforcing these strict underflow constraints reduces playout interruptions to the end users.

1.1. Opportunistic Scheduling and Related Work

This problem falls into the general class of opportunistic scheduling problems, where the common

theme is to exploit the temporal and spatial variation of the wireless channel. The scheduler can

exploit the temporal diversity of the channel by sending more data in the time slots when a user’s

channel is in a “good” state (requiring less power per data packet), and less data when the channel

is in a “bad” state. Much of the challenge for the scheduler lies in determining how good or bad

a channel condition is, and how much data to send accordingly. Similarly, in the case of multiple

receivers, the scheduler can exploit the spatial diversity of the channel by transmitting only to

those receivers who have the best channel conditions in each time slot. The benefit of increasing
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system throughput and reducing total power consumption through such a joint resource allocation

policy is commonly referred to as the multiuser diversity gain.

Sending more data when the channel is in a good state can increase system throughput and/or

reduce total energy consumption; however, an important competing QoS consideration in many

applications is delay. Different notions of delay have been incorporated into opportunistic scheduling

problems. One proxy for delay is the stability of all of the sender’s queues for arriving packets

awaiting transmission. The motivation for this criterion is that if none of these queues blows up,

then the delay is not “too bad.” Tassiulas and Ephremides (1993), Neely et al. (2003), and Andrews

et al. (2004) examine stability in different settings. A second notion of delay is the average end-to-

end delay (i.e., the time between a packet’s arrival at the sender’s buffer and its decoding by the

receiver) of all packets over a long horizon. Collins and Cruz (1999) and Berry and Gallager (2002)

are two of the many works that consider average delay, either as a constraint or by incorporating it

directly into the objective function. However, the average delay criterion allows for the possibility

of long delays; thus, strict end-to-end delay constraints, such as those considered by Luna et al.

(2003) and Chen et al. (2009), are more appropriate for delay-sensitive applications.

A strict constraint on the end-to-end delay of each packet is one particular form of a deadline

constraint, as each packet has a deadline by which it must be received. Fu et al. (2006) and Lee

and Jindal (2009a,b) consider point-to-point communication when a fixed amount of data is in

the sender’s buffer at the start of the time horizon and the individual deadlines coincide, so that

all packets must be transmitted and received by a common deadline. Fu et al. (2006) specify the

optimal transmission policy when the power-rate curves under each channel condition are linear

and the transmitter is subject to a per slot peak power constraint. Lee and Jindal (2009a,b) model

the power-rate curve under each channel condition as convex, first in the form of the so-called

Shannon cost function based on the capacity of the additive white Gaussian noise channel, and

then as a convex monomial function.1 Uysal-Biyikoglu and Gamal (2004) and Tarello et al. (2008)

consider opportunistic scheduling problems with multiple receivers and a single deadline constraint

at the end of a finite horizon. The model of Tarello et al. (2008) is perhaps the closest to our

general model for M receivers; however, two key differences are (i) the transmitter is not subject

to a power constraint in Tarello et al. (2008); and (ii) the transmitter can transmit to at most one

receiver in each time slot in Tarello et al. (2008).

1 In our notation of Section 2.1, these two cases correspond to power-rate curves of the form c(z, s) = 2z−1
g1(s)

and

c(z, s) = zζ

g2(s)
, respectively, where c(z, s) is the power required to transmit z bits under channel condition s, g1(·) and

g2(·) are known functions, and ζ is a fixed parameter.
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In our model, the strict underflow constraints also serve as a notion of delay, and can be seen as

multiple deadline constraints - certain packets must arrive by the end of the first slot, another group

by the end of the second slot, and so forth. Therefore, Sections 3 and 4 of this paper generalize

the works of Fu et al. (2006) and Lee and Jindal (2009a,b), respectively, by considering multiple

deadlines in the point-to-point communication problem, rather than a single deadline at the end

of the horizon.

1.2. Summary of Contribution

We formulate the task of energy-efficient transmission scheduling subject to strict underflow con-

straints as three different Markov decision problems (MDPs), with the finite horizon discounted

expected cost, infinite horizon discounted expected cost, and infinite horizon average expected cost

criteria. These three MDPs feature a continuous component of the state space and a continuous

action space at each state. Therefore, unlike finite MDPs, they cannot in general be solved exactly

via dynamic programming, and suffer from the well-known curse of dimensionality (Chow and

Tsitsiklis 1989, Rust 1997). Our aim is to analyze the dynamic programming equations in order to

(i) determine if there are circumstances under which we can analytically derive optimal solutions

to the three problems; and (ii) leverage our mathematical analysis and results on the structures of

the optimal scheduling policies to improve our intuitive understanding of the problems.

We make a novel connection between the wireless transmission scheduling problem described

above and a multi-period, multi-item inventory control problem with stochastic ordering costs,

deterministic demands, and a joint budget constraint. Because the inventory models corresponding

to our wireless communications models have not been examined previously, our results also repre-

sent a contribution to the inventory theory literature. Specifically, we (i) establish that in the case

of a single receiver under linear power-rate curves, the optimal policy is an easily-implementable

modified base-stock policy featuring target levels that depend on the current channel condition;2 (ii)

show that the optimal policy for a single receiver with piecewise-linear convex power-rate curves

is a state-dependent finite generalized base-stock policy; (iii) provide an efficient method to recur-

sively calculate the critical numbers for both of these single-receiver models, when certain technical

conditions are satisfied; and (iv) state and prove the structure of the optimal policy for the case of

a single sender transmitting to two receivers over a shared wireless channel, and show how the peak

power constraint in each slot couples the optimal scheduling of the two receivers’ packet streams.

To our knowledge, contribution (iii) represents the first exact computation of the critical numbers

2 We use the terms target level and critical number interchangeably throughout the paper.
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for an optimal finite generalized base-stock policy, and (iv) represents the first structural result on

any multi-item inventory model with a joint resource constraint and stochastic ordering costs.

Certain features of the wireless communications model result in technical challenges from an

inventory theory perspective, but others afford a means to develop new results. The power-rate

curves in the transmission scheduling problem are often convex, corresponding to convex ordering

costs. Structural results exist for classical inventory problems with stochastic demands and deter-

ministic, convex ordering costs; however, we are not aware of any methods to exactly compute

the optimal decisions. The deterministic demands in our model, which are quite reasonable in the

streaming context, allow us to exactly compute the optimal decisions when the channel condition is

independently and identically distributed, the holding costs are linear, and the slopes of the power-

rate curves change at integer multiples of the demand. This result is also important for computing

good suboptimal policies when the power-rate curves are convex, but not piecewise-linear.

The time-varying stochastic channel conditions (which correspond to time-varying stochastic

ordering costs) also provide a new technical challenge for multiple-item inventory theory. Namely,

the value functions in our dynamic programming equations lack functional properties that lead to

additional structure in the optimal policy for inventory models with deterministic ordering costs.

For the case of two items, the functional property of interest is µ-difference monotonicity, which

we connect to submodularity with respect to the direct value partial orders.3 To highlight the

importance of these absent functional properties, we provide an example of the two-item inventory

problem with stochastic ordering costs whose optimal policy exhibits counterintuitive structural

phenomena that cannot appear in the two-item inventory problem with stochastic demands and

deterministic ordering costs. Namely, when both inventories start below their target levels, the

unique optimal decision calls for bringing the inventory of one item past its target level while

keeping the inventory of the other item below its target level. This example therefore shows that

while a base-stock policy (in the sense of Porteus (1990))4 is optimal for the two-item inventory

model with stochastic demands, a joint budget constraint, and deterministic ordering costs, it may

be strictly suboptimal for our two-item inventory model with deterministic demands, a joint budget

constraint, and stochastic ordering costs. Moreover, the absence of submodularity with respect

to the direct value orders necessitates new proof techniques for the property of supermodularity

(which both problems share) and the structure of the optimal policy. We supply these techniques

in the proofs of our two-item structural results of Section 5.

3 See Appendix D for definitions and origins of these properties and partial orders.

4 (Porteus 1990, p. 626) writes: “We formally say that a policy is a base stock policy if it is not possible to get at least
as close to the base stock levels for every product and strictly closer for at least one item.”
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1.3. Organization of the Paper

In the next section, we describe the system model, formulate finite and infinite horizon MDPs,

and relate our model to models in inventory theory. In Sections 3 and 4, we consider a single

receiver under linear power-rate curves and piecewise-linear convex power-rate curves, respectively.

We analyze the structure of the optimal policy when there are two receivers with linear power-rate

curves in Section 5. Section 6 compares our model to a two-item inventory model with deterministic

ordering costs, Section 7 discusses extensions, and Section 8 concludes the paper.

2. Problem Description

In this section, we present an abstraction of the transmission scheduling problem outlined in the

previous section and formulate three optimization problems. While most of this paper focuses on

the cases of one and two users, the formulation in this section is for the more general multi-user

(multi-receiver) case, so that we can discuss the most general case in Section 7.3.

2.1. System Model and Assumptions

We consider a single source transmitting media sequences to M users/receivers over a shared

wireless channel. The sender maintains a separate buffer for each receiver, and is assumed to always

have data to transmit to each receiver.5 We consider a fluid packet model that allows packets to be

split, with the receiver reassembling fractional packets. Each receiver has a playout buffer at the

receiving end, assumed to be infinite. While in reality this cannot be the case, it is nevertheless a

reasonable assumption considering the decreasing cost and size of memory, and the fact that our

system model allows holding costs to be assessed on packets in the receiver buffers. See Figure 1

for a diagram of the system.
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Figure 1 System model.

5 This assumption is commonly referred to as the infinite backlog assumption.
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We consider time evolution in discrete steps, indexed backwards by n=N,N − 1, . . . ,1, with n

representing the number of slots remaining in the time horizon. N is the length of the time horizon,

and slot n refers to the time interval [n,n− 1).

In general, wireless channel conditions are time-varying. Adopting a block fading model, we

assume that the slot duration is within the channel coherence time such that the channel conditions

within a single time slot are constant. User m’s channel condition in slot n is modeled as a random

variable, Smn . We assume that the evolution of a given user’s channel condition is independent of

all other users’ channel conditions and the transmitter’s scheduling decisions.

We begin by modeling the evolution of each user’s channel condition as a finite-state ergodic

homogeneous Markov process, {Smn }n=N,N−1,...,1 with state space Sm.6 Conditioned on the channel

state, Smn , at time n, user m’s channel states at future times (n− 1, n− 2, . . .) are independent

of the channel states at past times (n+ 1, n+ 2, . . .). We also consider the case that each user’s

channel condition is independent and identically distributed (IID) over time. In this case, we can

say more about the optimal transmission policy, as will be seen in Sections 3.2 and 4.2.

Associated with each channel condition for a given user is a power-rate function. If user m’s

channel is in condition sm, then the transmission of r units of data to user m incurs a power

consumption cost of cm(r, sm). This power-rate function cm(·, sm) is commonly assumed to be linear

(in the low SNR regime) or convex (in the high SNR regime). In this paper, we consider power-rate

functions that are linear or piecewise-linear convex, the latter of which can be used to approximate

more general convex power-rate functions.

At the beginning of each time slot, the scheduler learns all the channel states through a feedback

channel. It then allocates some amount of power (possibly zero) for transmission to each user,

which is equivalent to deciding how many packets to send to each user. The total power consumed

in any one slot must not exceed the fixed power constraint, P . Following transmission and reception

in each slot, a certain number of packets are removed/purged from each receiver buffer for playing.

The transmitter (or scheduler) knows precisely the packet requirements of each receiver (i.e., the

number of packets removed from the buffer) in each time slot. This is justified by the fact that the

transmitter knows the encoding and decoding schemes used. We assume that packets transmitted

in slot n arrive in time to be used for playing in slot n, and that the users’ consumption of packets

in each slot is constant, denoted by d = (d1, d2, . . . , dM). This latter assumption is less realistic, but

may be justified if the receiving buffers are drained at a constant rate by the media player. It is

6 Theorems 1, 3, 5, 6, and their proofs remain valid as stated when each user’s channel condition is given by a more
general homogeneous Markov process that is not necessarily finite-state and ergodic.
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also worth noting that the same techniques we use to analyze the constant drainage rate case can

be used to examine the case of time-varying drainage rates, which we discuss further in Section 3.1.

We assume the receiver buffers are empty at the beginning of the time horizon, and that even when

the channels are in their worst possible condition, the maximum power constraint P is sufficient to

transmit enough packets to satisfy one time slot’s packet requirements for every user. We discuss

the relaxation of this assumption in Section 7.2.

The goal of this study is to characterize the control laws that minimize the transmission power

and packet holding costs over a finite or infinite time horizon, subject to strict underflow constraints

and a maximum power constraint in each time slot.

2.2. Notation

Before proceeding, we introduce some notation. We define IR+ := [0,∞) and IN := {1,2, . . .}. A

single dot, as in a · b, represents scalar multiplication. We use bold font to denote column vectors,

such as w = (w1,w2, . . . ,wM). We include a transpose superscript whenever a vector is meant to

be a row vector, such as wT. The notations w� w̃ and w� w̃ denote component-wise inequalities;

i.e., wm ≤ (respectively,≥) w̃m, ∀m. Finally, we use the standard definitions of the meet and join

of two vectors:

w∧ w̃ :=
(

min
{
w1, w̃1

}
,min

{
w2, w̃2

}
, . . . ,min

{
wM , w̃M

})
,

and w∨ w̃ :=
(

max
{
w1, w̃1

}
,max

{
w2, w̃2

}
, . . . ,max

{
wM , w̃M

})
.

2.3. Problem Formulation

We consider three MDPs. Problem (P1) is the finite horizon discounted expected cost problem;

Problem (P2) is the infinite horizon discounted expected cost problem; and Problem (P3) is the

infinite horizon average expected cost problem. The three problems feature the same information

state, action space, system dynamics, and cost structure, but different optimization criteria.

The information state at time n is the pair (Xn,Sn), where the random vector Xn =

(X1
n,X

2
n, · · · ,XM

n ) denotes the receiver buffer queue lengths at time n, and Sn = (S1
n, S

2
n, · · · , SMn )

denotes the channel conditions in slot n (recall that n is the number of steps remaining until the

end of the horizon). The dynamics for the receivers’ queues are governed by the simple equation

Xn−1 = Xn+Zn−d at all times n=N,N−1, . . . ,1, where Zn is a controlled random vector chosen

by the scheduler at each time n that represents the number of packets transmitted to each user in

the nth slot. At each time n, Zn must be chosen to meet the peak power constraint:

M∑
m=1

cm(Zmn , S
m
n )≤ P ,
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and the underflow constraints:

Xm
n +Zmn ≥ dm , ∀m∈ {1,2, . . . ,M} .

Clearly, the scheduler cannot transmit a negative number of packets to any user, so it must also

be true that Zmn ≥ 0 for all m.

We now present the optimization criterion for each problem. In addition to the cost associated

with power consumption from transmission, we introduce holding costs on packets stored in each

user’s playout buffer at the end of a time slot. The holding costs associated with user m in each slot

are described by a convex, nonnegative, nondecreasing function, hm(·), of the packets remaining in

user m’s buffer following playout, with limx→∞ h
m(x) =∞. We assume without loss of generality

that hm(0) = 0. Possible holding cost models include a linear model, hm(x) = ĥm ·x for some positive

constant ĥm, or a barrier-type function such as:

hm(x) :=

{
0, if x≤ µ
κ · (x−µ), if x> µ (κ very large)

,

which could represent a finite receiver buffer of length µ.7

In Problem (P1), we wish to find a transmission policy π that minimizes JπN,α, the finite horizon

discounted expected cost under policy π, defined as:

JπN,α := IEπ

{
N∑
t=1

M∑
m=1

αN−t ·
{
cm
(
Zmt , S

m
t

)
+hm

(
Xm
t +Zmt − dm

)}
| FN

}
, (1)

where 0≤ α≤ 1 is the discount factor and FN denotes all information available at the beginning of

the time horizon. For Problem (P2), the discount factor must satisfy 0≤ α< 1, and the infinite hori-

zon discounted expected cost function for minimization is defined as Jπ∞,α := lim
N→∞

JπN,α. For Problem

(P3), the average expected cost function for minimization is defined as Jπ∞,1 := lim sup
N→∞

1
N
JπN,1. In all

three cases, we allow the transmission policy π to be chosen from the set of all history-dependent

randomized and deterministic control laws, Π (e.g. Hernández-Lerma and Lasserre 1996, Definition

2.2.3, p. 15).

Combining the constraints and criteria, we present the optimization formulations for Problem

(P1) (or (P2) or (P3)):

inf
π∈Π

JπN,α

(
or inf

π∈Π
Jπ∞,α or inf

π∈Π
Jπ∞,1

)
s.t.

M∑
m=1

cm (Zmn , S
m
n )≤ P, w.p.1, ∀n (2)

Zmn ≥max{0, dm−Xm
n } , w.p.1, ∀n, ∀m∈ {1,2, . . . ,M}.

7 Taking µ to be greater than the time horizon N in the finite horizon expected cost problem is equivalent to not
assessing any holding costs in Problem (P1).
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Problem (P1) may be solved using standard dynamic programming (e.g. Bertsekas and Shreve

1996, Hernández-Lerma and Lasserre 1996). The recursive dynamic programming equations are

given by:8

Vn(x, s) = min
z∈Ad(x,s)


M∑
m=1

{cm (zm, sm) +hm (xm + zm− dm)}

+α · IE
[
Vn−1(x + z−d,Sn−1)

∣∣ Sn = s
]
 ,

n=N,N − 1, . . . ,1 (3)

V0(x, s) = 0, ∀x∈ IRM
+ ,∀s∈ S := S1×S2× . . .×SM ,

where V (·, ·) is the value function or expected cost-to-go, and the action space is defined as:

Ad(x, s) :=

{
z∈ IRM

+ : z�max{0,d−x} and
M∑
m=1

cm (zm, sm)≤ P

}
, ∀x∈ IRM

+ ,∀s∈ S. (4)

The maximum in (4) is taken element-by-element (i.e., zm ≥max{0, dm− zm} ∀m). Note that our

assumption that the maximum power constraint P is always sufficient to transmit enough packets

to satisfy one time slot’s packet requirements for every user (i.e.,
∑M

m=1 c
m (dm, sm)≤ P, ∀s ∈ S)

ensures that the action space Ad(x, s) is always non-empty.

2.4. Relation to Inventory Theory

The model outlined in Section 2.1 corresponds closely to models used in inventory theory. Borrowing

that field’s terminology, our abstraction is a multi-period, single-echelon, multi-item, discrete-time

inventory model with random (linear or piecewise-linear convex) ordering costs, a joint budget

constraint, and deterministic demands. The items correspond to the streams of data packets, the

random ordering costs to the random channel conditions, the budget constraint to the power

available in each time slot, and the deterministic demands to the packet requirements for playout.

This particular problem has not been studied in the context of inventory theory, but similar

problems have been examined, and some of the techniques from the inventory theory literature are

useful in analyzing our model. Fabian et al. (1959), Kingsman (1969a,b), Kalymon (1971), Magirou

(1982), Golabi (1982, 1985), Gavirneni (2004), and Berling and Mart́ınez de Albéniz (2011) all

consider single-item inventory models with linear ordering costs and random prices. The key result

for the case of a single item with no resource constraint is that the optimal policy is a base-stock

policy with different target stock levels for each price. Specifically, for each possible ordering price

(translates into channel condition in our context), there exists a critical number such that the

optimal policy is to fill the inventory (receiver buffer) up to that critical number if the current

8 As shown in Appendix C of Shuman (2010), our model satisfies the measurable selection condition 3.3.3 of Hernández-
Lerma and Lasserre 1996, p. 28, justifying the use of min rather than inf in the dynamic programming equations.
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level is lower than the critical number, and not to order (transmit) anything if the current level is

above the critical number. Of the prior works, Kingsman (1969a,b) is the only one to consider a

resource constraint, and he imposes a maximum on the number of items that may be ordered in

each slot. The resource constraint we consider is of a different nature in that we limit the amount

of power available in each slot. This is equivalent to a limit on the per slot budget (regardless of

the stochastic price realization), rather than a limit on the number of items that can be ordered.

Of the related work on single-item inventory models with deterministic linear ordering costs

and stochastic demand, Federgruen and Zipkin (1986) and Tayur (1993) are the most relevant; in

those studies, however, the resource constraint also amounts to a limit on the number of items

that can be ordered in each slot, and is constant over time. Sobel (1970), Bensoussan et al. (1983),

and Zahrn (2009) consider single-item inventory models with deterministic piecewise-linear convex

ordering costs and stochastic demand. The key result in this setup is that the optimal inventory

level after ordering is a piecewise-linear nondecreasing function of the current inventory level (i.e.,

there are a finite number of target stock levels), and the optimal ordering quantity is a piecewise-

linear nonincreasing function of the current inventory level. Porteus (1990) refers to policies of this

form as finite generalized base-stock policies, to distinguish them from the superclass of generalized

base-stock policies, which are optimal when the deterministic ordering costs are convex (but not

necessarily piecewise-linear), as first studied in Karlin (1958). Under a generalized base-stock policy,

the optimal inventory level after ordering is a nondecreasing function of the current inventory level,

and the optimal ordering quantity is a nonincreasing function of the current inventory level. Evans

(1967), DeCroix and Arreola-Risa (1998), Chen (2004), and Janakiraman et al. (2009) consider

multi-item inventory systems under deterministic ordering costs, stochastic demand, and joint

resource constraints. We discuss related results from these studies in more detail in Section 6.

We are not aware of any prior work on (i) single-item inventory models with random piecewise-

linear convex ordering costs; (ii) exact computation of the critical numbers in any sort of finite

generalized base-stock policy; or (iii) multi-item inventory models with random ordering costs and

joint resource constraints.

3. Single Receiver with Linear Power-Rate Curves

In this section, we analyze the finite horizon discounted expected cost problem when there is

only a single receiver (M = 1), and the power-rate functions under different channel conditions

are linear. One such family of power-rate functions is shown in Figure 2, where there are three

possible channel conditions, and a different linear power-rate function associated with each channel
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condition. Note that due to the power constraint P in each slot, the effective power-rate function

is a two-segment piecewise-linear convex function under all channel conditions. We subsequently

simplify our notation and use cs to denote the power consumption per unit of data transmitted

when the channel condition is in state s. Because there is just a single receiver, we also drop the

dependence of the functions and random variables on m.

Power 

Consumed

c (•,sPOOR) c (•,sMEDIUM) c (•,sEXCELLENT)

P

POORsc=

Slope

POORsc

P

Packets Transmitted

Figure 2 A family of linear power-rate functions. Due to the power constraint, the effective power-rate function,
shown above for each of the three channel conditions, is a two-segment piecewise-linear convex function.
When the channel condition is s, the slope of the first segment is cs.

We denote the “best” and “worst” channel conditions by sbest and sworst, respectively, and denote

the slopes of the power-rate functions under these respective conditions by cmin and cmax. That is,

0< csbest
= cmin := min

s∈S
{cs} ≤max

s∈S
{cs}=: cmax = csworst ≤

P

d
.

With these notations in place, the dynamic program (3) for Problem (P1) becomes:

Vn(x, s) = min
max{0,d−x}≤z≤ P

cs

{
cs · z+h(x+ z− d)
+α · IE

[
Vn−1(x+ z− d,Sn−1)

∣∣ Sn = s
]} (5)

= min
max{x,d}≤y≤x+ P

cs

{
cs · (y−x) +h(y− d)
+α · IE

[
Vn−1(y− d,Sn−1)

∣∣ Sn = s
]} (6)

= −cs ·x+ min
max{x,d}≤y≤x+ P

cs

{
gn(y, s)

}
, n=N,N − 1, . . . ,1 ,

V0(x, s) = 0, ∀x∈ IR+,∀s∈ S,

where gn(y, s) := cs · y+ h(y− d) +α · IE
[
Vn−1(y− d,Sn−1) | Sn = s

]
. Here, the transition from (5)

to (6) is done by the standard inventory theory change of variable in the action space from Zn

to Yn, where Yn =Xn +Zn. The controlled random variable Yn represents the queue length of the

receiver buffer after transmission takes place in the nth slot, but before playout takes place (i.e.,

before d packets are removed from the buffer).
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3.1. Structure of the Optimal Policy

With the above change of variable in the action space, the function gn does not depend on the

current buffer level, x. Without an upper bound on the action space (i.e., without the power

constraint), a state-dependent base-stock policy would be optimal. Instead, a state-dependent

modified base-stock policy is optimal, as stated in the following theorem.

Theorem 1. For every n∈ {1,2, . . . ,N} and s∈ S, define the critical number

bn(s) := min

{
ŷ ∈ [d,∞) : gn(ŷ, s) = min

y∈[d,∞)
gn(y, s)

}
.

Then, for Problem (P1) in the case of a single receiver with linear power-rate curves, the optimal

buffer level after transmission with n slots remaining is given by:

y∗n(x, s) :=


x, if x≥ bn(s)

bn(s), if bn(s)− P
cs
≤ x< bn(s)

x+ P
cs
, if x< bn(s)− P

cs

, (7)

or, equivalently, the optimal number of packets to transmit in slot n is given by:

z∗n(x, s) :=


0, if x≥ bn(s)

bn(s)−x, if bn(s)− P
cs
≤ x< bn(s)

P
cs
, if x< bn(s)− P

cs

. (8)

Furthermore, for a fixed s, bn(s) is nondecreasing in n:

N · d≥ bN(s)≥ bN−1(s)≥ . . .≥ b1(s) = d . (9)

If, in addition, the channel condition is independent and identically distributed from slot to slot,

then for a fixed n, bn(s) is nonincreasing in cs; i.e., for arbitrary s1, s2 ∈ S with cs1 ≤ cs2, we have:

n · d≥ bn(sbest)≥ bn(s1)≥ bn(s2)≥ bn(sworst) = d . (10)

The optimal transmission policy in Theorem 1 can be interpreted as follows. At time n, for each

possible channel condition realization s, the critical number bn(s) describes the target number of

packets to have in the user’s buffer after transmission in the nth slot. If that number of packets is

already in the buffer, it is optimal to not transmit any packets; if there are fewer than the target

and the available power is enough to transmit the difference, it is optimal to do so; and if there are

fewer than the target and the available power is not enough to transmit the difference, the sender

should use the maximum power to transmit. See Figure 3 for diagrams of the optimal policy.
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Figure 3 Optimal policy in slot n when the state is (x, s). (a) depicts the optimal transmission quantity, and (b)
depicts the resulting number of packets available for playout in slot n.

Details of the proof of Theorem 1 are included in Appendix A of Shuman (2010). The key realiza-

tion is that for all n and all s, gn(·, s) : [d,∞)→ IR+ is a convex function in y, with limy→∞ gn(y, s) =

∞. Thus, for all n and all s, gn(·, s) has a global minimum bn(s), the target number of packets to

have in the buffer following transmission in the nth slot. To prove (9), we fix s ∈ S, view gn(y, s)

as a function of y and n, say f(y,n), and show that the function f(·, ·) is submodular. From

the proof, one can also see that if we relax the stationary (time-invariant) deterministic demand

assumption to a nonstationary (time-varying) deterministic demand sequence, {dN , dN−1, . . . , d1}

(with dn ≤ P
cmax

for all n), then the structure of the optimal policy is still as stated in (7). If the

channel is IID, then the following statement, analogous to (10), is true for arbitrary s1, s2 ∈ S with

cs1 ≤ cs2 :

n∑
i=1

di ≥ bn(sbest)≥ bn(cs1)≥ bn(cs2)≥ bn(sworst) = dn , ∀n∈ {1,2, . . . ,N} . (11)

However, (9), the monotonicity of critical numbers over time for a fixed channel condition, is not

true in general under nonstationary deterministic demand. As one counterexample, (11) says that

under an IID channel, the critical numbers for the worst possible channel condition are equal to

the single period demands. Therefore, if the demand sequence is not monotonic, the sequence of

critical numbers, {bn (sworst)}n=1,2,...,N , is not monotonic.

3.2. Computation of the Critical Numbers

In this section, we consider the special case where the channel condition is independent and iden-

tically distributed from slot to slot, the holding cost function is linear (i.e., h(x) = h · x for some

h ≥ 0), and the following technical condition is satisfied: for each possible channel condition s,

P
cs

= l · d for some l ∈ IN ; i.e., the maximum number of packets that can be transmitted in any

slot covers exactly the playout requirements of some integer number of slots. Under these three

assumptions, we can completely characterize the optimal transmission policy.



Shuman et al.: Energy-Efficient Wireless Transmission Scheduling 15

Theorem 2. Define the threshold γn,j for n∈ {1,2, . . . ,N} and j ∈ IN recursively, as follows:

(i) If j = 1, γn,j =∞;

(ii) If j > n, γn,j = 0;

(iii) If 2≤ j ≤ n,

γn,j =−h+α ·


∑

s: cs≥γn−1,j−1

p(s) · γn−1,j−1 +
∑

s: cs<γn−1,j−1

p(s) · cs

+
∑

s: cs<γn−1,j−1+L(s)

p(s) ·
[
γn−1,j−1+L(s)− cs

]
 , (12)

where p(s) is the probability of the channel being in state s in a time slot, and L(s) := P
d·cs . For each

n ∈ {1,2, . . . ,N} and s ∈ S, if γn,j+1 ≤ cs < γn,j, define bn(s) := j · d. The optimal control strategy

for Problem (P1) is then given by π∗ =
{
y∗N , y

∗
N−1, . . . , y

∗
1

}
, where y∗n(x, s) is defined in (7).9

Compared to using standard numerical techniques to approximately solve the dynamic pro-

gram and find a near-optimal policy, the above result not only sheds more insight on the struc-

tural properties of the problem and its exactly-optimal solution, but also offers a computationally

simpler method. In particular, the optimal policy is completely characterized by the thresholds

{γn,j}n∈{1,2,...,N}, j∈IN . Calculating these thresholds recursively, as described in Theorem 2, requires

O(N 2 |S|) operations, which is considerably simpler from a computational standpoint than approx-

imately solving the dynamic program (see Rust 1997 and Chow and Tsitsiklis 1989). An intuitive

discussion of the recursion (12) is included in Appendix A, and Theorem 2 is a special case of

Theorem 4, the detailed proof of which can be found in Appendix A of Shuman (2010).

3.3. Intuitive Takeaways on the Role of the Strict Underflow Constraints

As mentioned earlier, the main idea of energy-efficient communication over a fading channel via

opportunistic scheduling is to minimize power consumption by transmitting more data when the

channel is in a “good” state, and less data when the channel is in a “bad” state. However, in order

to comply with the underflow or deadline constraints, the transmitter may be forced to send data

under poor channel conditions.

One intuitive takeaway from the analysis is that it is better to anticipate the need to comply with

these constraints in future slots by sending more packets (than one would without the deadlines)

under “medium” channel conditions in earlier slots. Doing so is a way to manage the risk of being

stuck sending a large amount of data over a poor channel to meet an imminent deadline constraint.

9 With n slots remaining, 0 = γn,n+1 ≤ γn,n ≤ γn,n−1 ≤ . . . ≤ γn,2 ≤ γn,1 =∞, so bn(s) is well-defined.



16 Shuman et al.: Energy-Efficient Wireless Transmission Scheduling

Another intuitive takeaway is that the closer the deadlines and the more deadlines it faces, the

less “opportunistic” the scheduler can afford to be. In summary, both the underflow constraints

and the power constraints shift the definition of what constitutes a “good” channel, and how much

data to send accordingly. For more detailed comparisons of single-receiver opportunistic scheduling

problems highlighting the role of the deadline constraints, see Shuman and Liu (2010).

4. Single Receiver with Piecewise-Linear Convex Power-Rate Curves

In this section, we analyze Problem (P1) when there is only a single receiver (M = 1), and the

power-rate functions under different channel conditions are piecewise-linear convex. Note that this

is a generalization of the case considered in Section 3.

We assume without loss of generality that under each channel condition s, the power-rate func-

tion has K + 1 segments, and thus the power consumed in transmitting z packets under channel

condition s can be represented as follows:

c(z, s) = z · c̃0(s) +
K−1∑
k=0

{(
c̃k+1(s)− c̃k(s)

)
·max

{
z− z̃k(s),0

}}
, where

0< c̃0(s)≤ c̃1(s)≤ · · · ≤ c̃K(s) , and (13)

0 = z̃−1(s)< z̃0(s)< z̃1(s)< · · ·< z̃K−1(s)< z̃K(s) =∞ .

The terms {c̃k(s)}k∈{0,1,...,K} represent the slopes of the segments of c(·, s), and the terms

{z̃k(s)}k∈{0,1,...,K−1} represent the points at which the slopes of c(·, s) change. An example of a

family of such power-rate functions is shown in Figure 4. For each channel condition s ∈ S, we

define the maximum number of packets that can be transmitted without exceeding the per slot

power constraint P as:

z̃max(s) := {z : c(z, s) = P} .

Note that z̃max(s) is well-defined due to the strictly increasing nature of c(·, s). Recall that we

assume z̃max(s)≥ d, ∀s∈ S. We also assume without loss of generality that z̃max(s)> z̃K−1(s), ∀s∈

S.

In this case, the dynamic program (3) for Problem (P1) becomes:

Vn(x, s) = min{
max{0,d−x}≤z≤z̃max(s)

}{c(z, s) + g̃n(x+ z, s)
}
, n=N,N − 1, . . . ,1 (14)

V0(x, s) = 0, ∀x∈ IR+,∀s∈ S ,

where g̃n(y, s) := h(y− d) +α · IE [Vn−1(y− d,Sn−1)|Sn = s].
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Figure 4 A family of piecewise-linear convex power-rate functions. Like Figure 2, we incorporate the power
constraint into each curve to show the effective power-rate curve. As an example, the power-rate
function c(·, sPOOR) is completely characterized by the sequence of slopes {c̃k(sPOOR)}k∈{0,1,2,3} and
the sequence of points where the slopes change {z̃k(sPOOR)}k∈{0,1,2}. The maximum number of packets
that can be transmitted in a slot when the channel condition is sPOOR is z̃max(sPOOR).

4.1. Structure of the Optimal Policy

With piecewise-linear power-rate curves, the optimal receiver buffer level after transmission (respec-

tively, optimal number of packets to transmit) is no longer a three-segment piecewise-linear non-

decreasing (respectively, nonincreasing) function of the starting buffer level as in Figure 3, but a

more general piecewise-linear nondecreasing (respectively, nonincreasing) function.

Theorem 3. In Problem (P1) with a single receiver under piecewise-linear convex power-rate

curves, for every n∈ {1,2, . . . ,N} and s∈ S, there exists a nonincreasing sequence of critical num-

bers
{
bn,k(s)

}
k∈{0,1,...,K} such that the optimal number of packets to transmit with n slots remaining

is given by:

z∗n(x, s) :=



z̃k−1(s), if bn,k(s)− z̃k−1(s)<x≤ bn,k−1(s)− z̃k−1(s) ,

k ∈ {0,1, . . . ,K}
bn,k(s)−x, if bn,k(s)− z̃k(s)<x≤ bn,k(s)− z̃k−1(s) ,

k ∈ {0,1, . . . ,K − 1}
bn,K(s)−x, if bn,K(s)− z̃max(s)<x≤ bn,K(s)− z̃K−1(s)

z̃max(s), if 0≤ x≤ bn,K(s)− z̃max(s)

, (15)

where bn,−1(s) := ∞, ∀s ∈ S. The optimal receiver buffer level after transmission is given by

y∗n(x, s) = x+ z∗n(x, s).

The optimal transmission policy in Theorem 3, which is shown in Figure 5, is a finite generalized

base-stock policy. It can be interpreted as follows. Under each channel condition s, there is a

target level or critical number associated with each segment of the associated piecewise-linear
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convex power-rate curve shown in Figure 4. If the starting buffer level is below the critical number

associated with the first segment, bn,0(s), the scheduler should try to bring the buffer level as

close as possible to the target, bn,0(s). If the maximum number of packets sent at this per packet

power cost, z̃0(s), does not suffice to reach the critical number bn,0(s), then those z̃0(s) packets are

scheduled, and the next segment of the power-rate curve is considered. This second segment has a

slope of c̃1(s) and an associated critical number bn,1(s), which is no higher than bn,0(s), the first

critical number. If the starting buffer level plus the z̃0(s) already-scheduled packets brings the buffer

level above bn,1(s), then no more packets are scheduled for transmission. Otherwise, it is optimal

to transmit so as to bring the buffer level as close as possible to bn,1(s), by transmitting up to

z̃1(s)− z̃0(s) additional packets at a cost of c̃1(s) power units per packet. This process continues with

the sequential consideration of each segment of the power-rate curve. At each successive iteration,

the target level is lower and the starting buffer level, updated to include already-scheduled packets,

is higher. Eventually, the buffer level reaches or exceeds a critical number, or the full power P is

consumed. Note that this sequential consideration is not actually done online, but only meant to

provide an intuitive explanation of the optimal policy.

4.2. Computation of Critical Numbers

While finite generalized base-stock policies have been considered in the inventory literature for

almost three decades, we are not aware of any previous studies that explicitly compute the critical

numbers for any model where such a policy is optimal. In this section, we compute the critical

numbers under each channel condition when technical conditions similar to those of Section 3.2 are

satisfied. We consider the special case when the channel condition is independent and identically

distributed from slot to slot; the holding cost function is linear (i.e., h(x) = h ·x); and the following

technical condition on the power-rate functions is satisfied for each possible channel condition
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Figure 5 Optimal transmission policy in slot n when the state is (x, s). (a) depicts the optimal transmission
quantity, and (b) depicts the resulting number of packets available for playout in slot n.
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s∈ S: z̃max(s) = l̃max ·d for some l̃max ∈ IN , and for every k ∈ {0,1, . . . ,K−1}, z̃k(s) = l̃k ·d for some

l̃k ∈ IN ; i.e., the slopes of the effective power-rate functions only change at integer multiples of the

drainage rate d.

As in Theorem 2, we recursively define a set of thresholds, and use them to determine the critical

numbers, {bn,k(s)}k∈{−1,0,...,K}, for each channel condition, at each time.

Theorem 4. Define the thresholds γ̃n,j for n∈ {1,2, . . . ,N} and j ∈ IN recursively, as follows:

(i) If j = 1, γ̃n,j =∞;

(ii) If j > n, γ̃n,j = 0;

(iii) If 2≤ j ≤ n,

γ̃n,j =−h+α ·



∑
s: c̃0(s)≥γ̃n−1,j−1

p(s) · γ̃n−1,j−1

+
K−1∑
k=0


∑

s: γ̃
n−1,j−1+L̃k(s)

≤c̃k(s)<γ̃
n−1,j−1+L̃k−1(s)

p(s) · c̃k(s)

+
∑

s: c̃k(s)<γ̃
n−1,j−1+L̃k(s)

≤c̃k+1(s)

p(s) · γ̃n−1,j−1+L̃k(s)


+

∑
s: γ̃

n−1,j−1+L̃max(s)
≤c̃K(s)<γ̃

n−1,j−1+L̃K−1(s)

p(s) · c̃K(s)

+
∑

s: c̃K(s)<γ̃
n−1,j−1+L̃max(s)

p(s) · γ̃n−1,j−1+L̃max(s)


, (16)

where p(s) is the probability of the channel being in state s in a time slot, L̃k(s) := z̃k(s)

d
for all s∈ S

and k ∈ {0,1, . . . ,K− 1}, and L̃max(s) := z̃max(s)

d
for all s∈ S. For each n∈ {1,2, . . . ,N} and s∈ S,

define bn,−1(s) :=∞ and for all k ∈ {0,1, . . . ,K}, if γ̃n,j+1 ≤ c̃k(s)< γ̃n,j, define bn,k(s) := j ·d. The

optimal control strategy for Problem (P1) is then given by π∗ =
{
z∗N , z

∗
N−1, . . . , z

∗
1

}
, where for all

n∈ {N,N − 1, . . . ,1}, z∗n(x, s) is given by (15).

In Theorem 4, the threshold γ̃n,j may be interpreted as the per packet power cost at which, with

n slots remaining in the horizon, the expected cost-to-go of transmitting packets to cover the user’s

playout requirements for the next j−1 slots is the same as the expected cost-to-go of transmitting

packets to cover the user’s requirements for the next j slots. The intuition behind the recursion

(16) is similar to the detailed explanation of (12) given in Appendix A, and a detailed proof of

Theorem 4 is included in Appendix A of Shuman (2010).

4.3. General Convex Power-Rate Curves

As mentioned in Section 2.1, in general, the power-rate curve under each possible channel condition

is convex. It can be shown that under convex power-rate curves at each time, the optimal number of
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packets to send is a nonincreasing function of the starting buffer level. However, without any further

structure on the power-rate curves, it is not computationally tractable to compute such optimal

policies, known as generalized base-stock policies (a superclass of the finite generalized base-stock

policies discussed above). This is why we have chosen to analyze piecewise-linear convex power-rate

curves, which can be used to approximate general convex power-rate curves. More specifically, our

analysis suggests approximating the general convex power-rate curves by piecewise-linear convex

power-rate curves where the slopes change at integer multiples of the demand d, in order to be

able to apply Theorem 4 to compute the critical numbers in an extremely efficient manner. Doing

so represents an approximation at the modeling stage followed by an exact solution, as compared

to modeling the power-rate curves as more general convex functions and having to approximate

the solution.

5. Two Receivers with Linear Power-Rate Curves

In this section, we analyze the finite horizon discounted expected cost problem when there are

two receivers (M = 2), and the power-rate functions under different channel conditions are lin-

ear for each user. Each user m’s channel condition evolves as a homogeneous Markov process,

{Smn }n=N,N−1,...,1. As discussed in Sections 1 and 2, the time-varying channel conditions of the two

users are independent of each other, and the transmission scheduler can exploit this spatial diver-

sity. Like Section 3, we denote the power consumption per unit of data transmitted to receiver m

under channel condition sm by cms . The row vector of these per unit power consumptions is given

by cT
s , so that the total power consumption in slot n is given by

∑2

m=1 c
m(Zmn , S

m
n ) = cT

sZn. We

denote the total holding costs
∑2

m=1 h
m(Xm

n +Zmn − dm) by h(Xn + Zn−d).

With these notations, the dynamic program (3) for Problem (P1) becomes:

Vn(x, s) = min
z∈Ad(x,s)

{
cT
sz +h(x + z−d)

+α · IE
[
Vn−1(x + z−d,Sn−1)

∣∣ Sn = s
]} (17)

= min
y∈Ãd(x,s)

{
cT
s [y−x] +h(y−d)

+α · IE
[
Vn−1(y−d,Sn−1)

∣∣ Sn = s
]} (18)

= −cT
sx + min

y∈Ãd(x,s)

{
Gn(y, s)

}
n=N,N − 1, . . . ,1 ,

V0(x, s) = 0, ∀x∈ IR2
+,∀s∈ S := S1×S2,

where

Gn(y, s) := cT
sy +h(y−d) +α · IE

[
Vn−1(y−d,Sn−1)

∣∣ Sn = s
]
, ∀y∈ [d1,∞)× [d2,∞),∀s∈ S, and

Ãd(x, s) :=

{
y∈ IR2

+ : y� d∨x and cT
s [y−x]≤ P

}
, ∀x∈ IR2

+,∀s∈ S.



Shuman et al.: Energy-Efficient Wireless Transmission Scheduling 21

The transition from (17) to (18) follows again from a change of variable in the action space from

Zn to Yn, where Yn = Xn + Zn.

Without the per slot peak power constraint, this two-dimensional problem could be separated

into two instances of the one-dimensional problem of Section 3; however, the joint power constraint

couples the queues.10 As a result, the optimal transmission quantity to one receiver depends on

the other receivers’ queue length, as the following example shows.

Example 1. Assume receiver 1’s channel is currently in a “poor” condition, receiver 2’s channel

is currently in a “medium” condition, and receiver 2’s buffer contains enough packets to satisfy the

demand for the next few slots. We consider two different scenarios for receiver 1’s buffer level to

show how the optimal transmission quantity to receiver 2 depends on receiver 1’s buffer level. In

Scenario 1, receiver 1’s buffer already contains many packets. In this scenario, it may be beneficial

for the scheduler to wait for receiver 2 to have a better channel condition, because it will be able

to take full advantage of an “excellent” condition when it comes. In Scenario 2, receiver 1’s queue

only contains enough packets to satisfy the demand in the current slot. It may be optimal to

transmit some packets to receiver 2 in the current slot in this scenario. To see this, note that even

if receiver 2 experiences the best possible channel condition in the next slot, the scheduler will

need to allocate some power to receiver 1 in order to prevent receiver 1’s buffer from emptying.

Therefore, the scheduler anticipates not being able to take full advantage of receiver 2’s “excellent”

condition in the next slot, and may compensate by sending some packets in the current slot under

the “medium” condition.

5.1. Structure of the Optimal Policy

Before proceeding to the structure of the optimal transmission policy, we state key properties of

the value functions in the following theorem, a detailed proof of which is included in Appendix B.

Theorem 5. With two receivers and linear power-rate curves, the following statements are true

for n= 1,2, . . . ,N , and for all s∈ S:

(i) Vn−1(x,s) is convex in x.

(ii) Vn−1(x,s) is supermodular in x; i.e., for all x̄, x̃∈ IR2
+,

Vn−1(x̄,s) +Vn−1(x̃,s)≤ Vn−1(x̄∧ x̃,s) +Vn−1(x̄∨ x̃,s) .

(iii) Gn(y,s) is convex in y.

10 This problem therefore falls into the class of weakly coupled stochastic dynamic programs, discussed in Hawkins
(2003) and Adelman and Mersereau (2008).
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(iv) Gn(y,s) is supermodular in y; i.e., for all ȳ, ỹ∈ [d1,∞)× [d2,∞),

Gn(ȳ,s) +Gn(ỹ,s)≤Gn(ȳ∧ ỹ,s) +Gn(ȳ∨ ỹ,s) .

(v) y1
n < ŷ

1
n implies:

inf

{
arg min
y2
n∈[d2,∞)

{
Gn

(
y1
n, y

2
n, s

1, s2
)}}

≥ inf

{
arg min
y2
n∈[d2,∞)

{
Gn

(
ŷ1
n, y

2
n, s

1, s2
)}}

and y2
n < ŷ

2
n implies:

inf

{
arg min
y1
n∈[d1,∞)

{
Gn

(
y1
n, y

2
n, s

1, s2
)}}

≥ inf

{
arg min
y1
n∈[d1,∞)

{
Gn

(
y1
n, ŷ

2
n, s

1, s2
)}}

.

The following theorem on the structure of the optimal transmission policy for the finite horizon

discounted expected cost problem leverages the functional properties of Theorem 5.

Theorem 6. For every n ∈ {1,2, . . . ,N} and s ∈ S1 × S2, define the nonempty set of global

minimizers of Gn(·,s):

Bn(s) :=

{
ŷ∈ [d1,∞)× [d2,∞) : Gn(ŷ,s) = min

y∈[d1,∞)×[d2,∞)
Gn(y,s)

}
.

Define also

b1
n (s) := min

{
y1 ∈ [d1,∞) : (y1, y2)∈Bn(s) for some y2 ∈ [d2,∞)

}
, and

b2
n (s) := min

{
y2 ∈ [d2,∞) :

(
b1
n (s) , y2

)
∈Bn(s)

}
.

Then the vector bn(s) =
(
b1
n (s) , b2

n (s)
)
∈ Bn(s) is a global minimizer of Gn(·,s). Define also the

functions:

f1
n(x2,s) := inf

{
arg min
y1∈[d1,∞)

{
Gn

(
y1, x2, s1, s2

)}}
, for x2 ∈ [d2,∞), and

f2
n(x1,s) := inf

{
arg min
y2∈[d2,∞)

{
Gn

(
x1, y2, s1, s2

)}}
, for x1 ∈ [d1,∞).

Note that by construction, f1
n

(
b2
n(s),s

)
= b1

n(s) and f2
n

(
b1
n(s),s

)
= b2

n(s). Partition IR2
+ into the

following seven regions:

RI(n,s) :=
{
x∈ IR2

+ : x�
(
f1
n(x2,s), f2

n(x1,s)
)

and x 6= bn(s)
}

RII(n,s) :=
{
x∈ IR2

+ : x� bn(s) and cT
s [bn(s)−x]≤ P

}
RIII−A(n,s) :=

{
x∈ IR2

+ : x2 > b2
n(s) and f1

n(x2,s)− P/cs1 ≤ x1 < f1
n(x2,s)

}
RIII−B(n,s) :=

{
x∈ IR2

+ : x1 > b1
n(s) and f2

n(x1,s)− P/cs2 ≤ x2 < f2
n(x1,s)

}
RIV−A(n,s) :=

{
x∈ IR2

+ : x2 > b2
n(s) and x1 < f1

n(x2,s)− P/cs1
}

RIV−B(n,s) :=
{
x∈ IR2

+ : x� bn(s) and cT
s [bn(s)−x]>P

}
RIV−C(n,s) :=

{
x∈ IR2

+ : x1 > b1
n(s) and x2 < f2

n(x1,s)− P/cs2
}
,
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and define RIV (n,s) :=RIV−A(n,s)∪RIV−B(n,s)∪RIV−C(n,s).

Then for Problem (P1) in the case of two receivers with linear power-rate curves, for all x /∈

RIV (n,s), an optimal control action with n slots remaining is given by:

y∗n(x,s) :=


x, if x∈RI(n,s)
bn(s), if x∈RII(n,s)(
f1
n(x2,s), x2

)
, if x∈RIII−A(n,s)(

x1, f2
n(x1,s)

)
, if x∈RIII−B(n,s)

. (19)

For all x ∈ RIV (n,s), there exists an optimal control action with n slots remaining, y∗n(x,s),

which satisfies:

cT
s [y∗n(x,s)−x] = P . (20)

A detailed proof is included in Appendix C. Equation (20) says that it is optimal for the trans-

mitter to allocate the full power budget for transmission when the vector of receiver buffer levels

at the beginning of slot n falls in region RIV (n, s). We cannot say anything in general about the

optimal allocation (split) of the full power budget between the two receivers when the starting

buffer levels lie in region RIV (n, s). Figure 6 shows the partition of IR2
+ into the seven regions,

and a diagram of the structure of the optimal transmission policy. Note that the figure shows the

seven regions of the optimal policy for a fixed realization of the pair of channel conditions. Under

different pairs of channel realizations, the seven regions have the same general form, but the targets

bn(s) are shifted and the boundary functions f1
n(x2, s) and f2

n(x1, s) are different.

In some sense, the structure of the optimal policy outlined in Theorem 6 can be interpreted as

an extension of the modified base-stock policy for the case of a single receiver outlined in Theorem

1. Namely, under each channel condition at each time, there is a critical number for each receiver(
bmn (s)

)
such that it is optimal to bring both receivers’ buffer levels up to those critical numbers

if it is possible to do so
(
region RII(n, s)

)
, and it is optimal to not transmit any packets if both

receivers’ buffer levels start beyond their critical numbers
(
region RI(n, s)

)
. However, this extended

notion of the modified base-stock policy only captures the optimal behavior in two of the seven

regions, and does not account for the coupling behavior between users that arises through the

joint power constraint. For instance, possible starting buffer levels for Scenario 1 and Scenario 2

in Example 1 are illustrated in Figure 6 by the F and �, respectively. Even though the buffer

level of receiver 2 before transmission is the same under both scenarios, the optimal transmission

quantity to receiver 2 is different under the two scenarios due to the different starting buffer levels

of receiver 1.
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Figure 6 Optimal transmission policy for the two receiver case in slot n when the state is (x, s). The seven regions
described in Theorem 6 are labeled. The tails of the arrows represent the vectors of the receiver buffer
levels at the beginning of slot n, and the heads of the arrows represent the vectors of the receiver
buffer levels after transmission but before playout in slot n under the optimal transmission policy. In
region RI(n, s), a single dot represents that it is optimal to not transmit any packets to either user.
The F and � represent possible starting buffer levels for Scenarios 1 and 2, respectively, in Example 1.

6. Comparison with Deterministic Ordering Costs

In this section, we compare the results of the previous section to the two-item resource-constrained

inventory model with the more classical assumptions of deterministic, time-invariant prices and

stochastic demands. Variants of this model are considered in Evans (1967), Chen (2004), DeCroix

and Arreola-Risa (1998), and Janakiraman et al. (2009). Our purpose in discussing this model is

to compare the qualitative properties of the optimal policy to those of Problem (P1). Specifically,

the question at hand is whether models with stochastic prices deserve their own analysis or if the

qualitative behavior follows in a straightforward manner from analysis of models with deterministic

prices. The main thesis of the section is that inventory models with stochastic prices do indeed

merit their own line of analysis as structural phenomena that cannot appear in the corresponding

models with deterministic prices are liable to appear in the stochastic price inventory models.

6.1. Problem Formulation with Stochastic Demands and Deterministic Ordering
Costs

We consider a two-item inventory model where the total ordering cost in each period cannot

exceed a joint budget, P . The ordering costs for each item are linear, with the deterministic, time-

invariant vector of ordering prices given by c. The vector of inventories in period n is given by

Xn, and the vector of controlled order quantities is denoted by Zn. The demands for each item

are stochastic, and represented by the random vector Dn in period n. We assume the vector of

demands is IID across time. Unmet demands are completely backlogged until future slots (i.e.,

X can take on negative values). The total shortage and holding costs at the end of each period
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are given by l(x) := l1(x1) + l2(x2), where lj(0) = 0 and lj(·) is convex, nondecreasing above 0,

and nonincreasing below 0, for item j = 1,2. We consider the following finite horizon discounted

expected cost problem, which we refer to as Problem (D1):

inf
π∈Π

IEπ

{
N∑
n=1

αN−n ·
{

cTZn + l(Xn + Zn−Dn)
}
| FN

}
s.t. cTZn ≤ P, w.p.1, ∀n

and Zn � 0, w.p.1, ∀n .

Using the normal change of variable Yn = Xn + Zn, the dynamic program for Problem (D1) is

given by:

Vn(x) = −cTx + min
y∈Â(x)

{
Ĝn(y)

}
, n=N,N − 1, . . . ,1,

V0(x) = 0, ∀x∈ IR2,

where Ĝn(y) := cTy + IE
[
l(y−D)

]
+α · IE

[
Vn−1(y−D)

]
, and the action space is defined as:

Â(x) :=

{
y∈ IR2 : x� y and cT(y−x)≤ P

}
.

6.2. Structure of the Optimal Policy

Problem (D1) is essentially the same problem as the one considered in Chen (2004). However,

in order to maintain comparability with the corresponding statements about Problem (P1), we

present the structure of the optimal policy for Problem (D1) in our notation.11 We define B̂n, the

global minimizers of Ĝn(·, s); the vector b̂n; the functions f̂1
n and f̂2

n; and the seven regions R̂I(n)

through R̂IV−c(n) in an analogous manner to Theorem 6 with the exception that none depend on

the current ordering cost condition s, which is time-invariant in Problem (D1).

Theorem 7. For Problem (D1), for all x /∈ R̂IV−B(n), an optimal control action with n slots

remaining is given by:

y∗n(x) :=



x, if x∈ R̂I(n)

b̂n, if x∈ R̂II(n)(
f̂1
n(x2), x2

)
, if x∈ R̂III−A(n)(

x1, f̂2
n(x1)

)
, if x∈ R̂III−B(n)(

x1 + P
c1
, x2
)
, if x∈ R̂IV−A(n)(

x1, x2 + P
c2

)
, if x∈ R̂IV−B(n)

. (21)

11 We derived this result independently before learning of Chen (2004), and our proof of Theorem 7 is different from
that of (Chen 2004, Theorem 2), as we decouple the proof of the supermodularity from the submodularity with
respect to the direct value orders.
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For all x∈ R̂IV−B(n), there exists an optimal control action with n slots remaining, y∗n(x), which

satisfies:12

cT [y∗n(x)−x] = P and y∗n(x)� b̂n . (22)

6.3. Comparison of Problems (P1) and (D1)

As first glance, the structures of the optimal policies for Problems (P1) and (D1), described in

Theorems 6 and 7, respectively, may seem extremely similar. However, there are two fundamental

differences that distinguish these two problems.

First, in addition to convexity and supermodularity, the function Ĝn(·) in Problem (D1) has the

properties of submodularity with respect to the direct (c,1) and (c,2) value orders. These partial

orders, introduced in Antoniadou (1996, 2007), are defined and briefly discussed in Appendix D.

The extra functional properties of Ĝn(·) lead to two additional structural results on the optimal

control action: (i) when the initial vector of inventories (corresponds to the vector of receivers’

buffer levels in Problem (P1)) is in region R̂IV−B(n), there exists an optimal control action such

that y∗n(x)� bn; and (ii) when the initial vector of inventories is in region R̂IV−A(n) (respectively,

R̂IV−C(n)), there exists an optimal control action that includes not ordering any of item 2 (respec-

tively, item 1), corresponding to not transmitting any packets to user 2 (respectively, user 1) in

Problem (P1). Due to the time-varying ordering prices (channel conditions), this property does

not hold for the function Gn(·, s) in Problem (P1), and these two additional statements on the

structure of the optimal policy are not true in general for Problem (P1), as shown by the following

example.

Example 2. Consider the following instance of Problem (P1). The two items are statistically

identical, the ordering costs are linear, and the possible ordering prices are 1.750, 2.000, 2.001, and

2.100. The associated probabilities of these ordering prices are 0.4, 0.4, 0.1, and 0.1, respectively.

The total budget constraint in each slot is P = 4.2, and the deterministic demand is d = (1,1).

We consider a finite horizon problem with the discount rate α= 1, and no holding costs. We are

interested in the optimal control action with T = 3 time slots remaining, and the current prices are

2.000 and 2.001 for users 1 and 2, respectively.

Exactly solving the dynamic program by hand shows that the unique global minimizer of the

function G3(·, ·, s3) is the vector ( 101
75
, 101

75
). However, if the vector of starting receiver inventory levels

at time T = 3 is x3 = (0.2,0.2), the unique optimal ordering decision in the slot is to order 0.8 units

12 Chen (2004) elaborates on the optimal allocation of the budget between the two items in Region R̂IV−B(n) by
defining a curve splitting the region into the area where item 1 should be ordered and the area where item 2 should
be ordered. Chen refers to this policy as a hedging point policy.
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of item 2, and use the remaining budget on item 1, which results in the purchase of 1.2996 units of

item 1. A diagram of this optimal control action is shown in Figure 7. The interesting thing to note

here is that despite being budget-constrained (the vector of starting inventory levels is in Region

RIV−B), the unique optimal decision calls for filling item 1’s inventory beyond its critical number

b1
3(s3) = 101

75
. That is, the optimal decision brings the vector of inventory levels from Region RIV−B

to Region RIII−B rather than Region RII . Thus, the optimal policy is somewhat surprisingly not

a base-stock policy in the sense of Porteus (1990).
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Figure 7 Optimal scheduling decision with 3 slots remaining in Example 2. The action space is represented by
the triangle Ãd(x3, s3). The critical vector b3(s3) is not reachable from the starting inventory levels
x3 = (0.2,0.2). The unique optimal control action is to choose y3(x3, s3) to be (1.5, 1.0). The interesting
feature of the example is that even though x3 � b3(s3), we have y∗3(x3, s3) � b3(s3).

The second fundamental difference is also a consequence of the time-varying ordering prices

in Problem (P1). In the infinite horizon version of Problem (D1), the critical vector b̂ is time-

invariant. Combined with the above property that it is optimal to not order inventory so as to move

out of regions R̂II and R̂IV−B, the time-invariant critical vector means that the region R̂II ∪R̂IV−B
(i.e., the lower-left square below the critical vector) is a “stability” region.13 Eventually, the vector

of inventories enters this region under the optimal ordering policy, and once it does, it never leaves.

This behavior both simplifies the analysis and opens the door for new mathematical techniques.

For instance, Tayur (1993) and Janakiraman et al. (2009) analyze shortfall to compute the critical

numbers and determine the optimal allocation between items in the budget-constrained region. In

13 A key assumption needed to ensure the stability region is that cTIE[D]<P ; that is, the budget in a period suffices
to purchase inventory to fulfill the aggregate average demand. Without this assumption, the infinite horizon average
cost is infinite as the shortage costs accumulate (Janakiraman et al. 2009).
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the infinite horizon Problems (P2) and (P3) (which are discussed further in Section 7.1), even

though the boundaries of the seven regions for each possible channel condition are time-invariant,

no such stability region exists, because the critical numbers vary over time due to the time-varying

channel conditions. Therefore, the same vector of inventories may be in region RII(s) in one time

slot and say RIII−A(s′) in the next time slot. This makes it significantly more difficult to determine

optimal and near-optimal policies.

7. Extensions

In this section, we briefly discuss the infinite horizon problems, the relaxation of the strict underflow

constraints, and the extension to the general case of M receivers.

7.1. The Infinite Horizon Problems

The structure of the optimal stationary (or time-invariant) policy for the infinite horizon discounted

expected cost problem, Problem (P2), is the same as the structure of the optimal policy for the

finite horizon discounted expected cost problem. Namely, for the case of a single receiver under

linear power-rate curves, it is a modified base-stock policy; for the case of a single receiver under

piecewise-linear convex power-rate curves, it is a finite generalized base-stock policy; and for the

case of two receivers under linear power-rate curves, it is of the seven-region form shown in Figure

6. Moreover, with a single receiver, the time-invariant sequences of critical numbers that complete

the characterizations of the modified base-stock and finite generalized base-stock policies are equal

to the limits of the sequences of critical numbers that characterize the finite horizon optimal policies

as the time horizon N goes to infinity. Similarly, with two receivers, the boundaries of the seven

regions of the finite horizon optimal policy shown in Figure 6 converge to the boundaries of the

seven regions of the infinite horizon discounted expected cost optimal policy as the time horizon

N goes to infinity.

For all three cases, optimal policies for the infinite horizon average expected cost problem,

Problem (P3), exist and can be represented as the limit of optimal policies for Problem (P2) as

the discount factor increases to one. This technique is called the vanishing discount approach (e.g.

Hernández-Lerma and Lasserre 1996). Thus, the modified base-stock, finite generalized base-stock,

and seven-region structures are also average cost optimal for the three cases, respectively. For

precise statements and proofs of the structures of the optimal policies for Problems (P2) and (P3),

see Theorems 5.5, 5.6, 5.10, and 5.11 of Shuman (2010).
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7.2. Relaxation of the Strict Underflow Constraints

In some applications, it may not be the case that the peak power per slot is always sufficient to

transmit one slot’s worth of packets to each receiver, even under the worst channel conditions. In

this case, a more appropriate model is to relax the strict underflow constraints, and allow underflow

at a cost. One way to model this situation is to allow the receivers’ queues to be negative, with a

negative buffer level representing the number of packets that the playout process is behind. Then,

in addition to the holding costs assessed on positive buffer levels, shortage costs are assessed on

negative buffer levels. With some minor alterations to the proofs, it is straightforward to show that

as long as the shortage cost function is a convex function of the negative buffer level, the structural

results of Theorems 1, 3 and 6 are essentially unchanged by the relaxation of the strict underflow

constraints to loose underflow constraints with penalties on underflow. This is not too surprising

as the strict underflow constraint case we consider can be thought of as the limiting case as the

penalties on underflow go to infinity.14

7.3. The Most General Case of M Receivers

Our ongoing work includes the extension to the most general case of M receivers. It is unlikely

that the structure of the optimal policy in this case has a simple, intuitive, and implementable

form. Therefore, our approach is to find lower bounds on the value function and a feasible policy

whose expected cost is as close as possible to these bounds. One simple lower bound to the value

function can be found by relaxing the per slot joint power constraint of P , and allowing up to P

units of power to be allocated to each receiver in a single slot (for a total of up to M · P ). The

advantage of this technique is that it is easy to compute the lower bound, as the M -dimensional

problem separates into M instances of the 1-dimensional problem we know how to solve from

Section 3. However, the resulting bound is likely to be loose. A second lower bounding method we

are investigating is the information relaxation method of Brown et al. (2010). The main idea is to

assume the scheduler has access to future channel conditions, but penalize the scheduler for using

this information. A clever choice of the penalty function often leads to tight lower bounds on the

value function. A third method is the Lagrangian relaxation method discussed in Hawkins (2003)

and Adelman and Mersereau (2008). For our problem, this method is equivalent to relaxing the per

slot peak power constraint to an average power constraint (i.e., the scheduler may allocate more

than P units of power in some slots, but the average power consumed per slot over the duration of

14 Tracking the number of packets that the playout process is behind in this manner corresponds to the complete
backlogging assumption in inventory theory. An alternate model is to say that a packet is of no use once it misses its
deadline, penalize missed packets, and keep the receiver queue length at zero. Li and Bambos (2004) consider such a
model, which corresponds to the lost sales assumption in inventory theory.
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the horizon cannot exceed P ). In the case of M statistically identical receivers, the resulting relaxed

problem under this method separates into M instances of a 1-dimensional problem, this time with

an average power constraint of P
M

instead of a strict power constraint of P for each receiver. A fourth

lower bounding method is the linear programming approach to approximate dynamic programming

discussed in Schweitzer and Seidmann (1985), de Farias and Van Roy (2003), and Adelman and

Mersereau (2008). The main idea is to formulate the dynamic program as a linear program, and

approximate the value functions as linear combinations of a set of basis functions. For a more in-

depth comparison of the Lagrangian relaxation and approximate linear programming approaches,

see Adelman and Mersereau (2008). Once lower bounds to the value function are determined from

any of these methods, feasible policies can be generated based on our structural results or via

one-step greedy optimization with the lower bounds substituted into the right-hand side of the

dynamic programming equation.

These same numerical techniques are most likely also the best way to approximate the boundaries

of the seven regions of the two receiver optimal policy, and determine a near-optimal split of the

power P between the two receivers when the vector of starting receiver buffer levels is in the

power-constrained region RIV (n, s).

8. Conclusion

We considered the problem of transmitting data to one or more receivers over a shared wireless

channel in a manner that minimizes power consumption and prevents the receivers’ buffers from

emptying. We presented a novel connection between this wireless communications model and an

inventory model with stochastic ordering costs. We showed that the optimal transmission policy

to a single receiver has an easily implementable modified base-stock structure when the power-

rate curves are linear, and a finite generalized base-stock structure when they are piecewise-linear

convex. When additional technical conditions are satisfied, we presented an efficient method to

compute the critical numbers that fully characterize the optimal modified base-stock and finite

generalized base-stock policies. For the case of two receivers, the structure of the optimal policy is

in some sense an extension of the modified base-stock policy; however, the peak power constraint

couples the optimal scheduling of the two data streams.

The literature on inventory models with stochastic ordering costs is relatively thin compared

to the more classical inventory models with deterministic ordering costs and stochastic demands.

While some of our results follow in an expected manner from the more classical setup (e.g., the

optimality of a modified base-stock policy), the time-varying channel conditions may result in
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counterintuitive optimal scheduling decisions that are not possible in the analogous inventory

theory problems with deterministic ordering costs. The class of multi-item inventory models with

stochastic ordering costs and a joint resource constraint therefore merits its own line of analysis.

Specifically, the M -item inventory problem with stochastic prices and a joint resource constraint

remains open, and does not lend itself to known techniques such as shortfall analysis. Many of the

numerical approaches to this most general case of M items proposed in Section 7.3 relax the higher

dimensional problem so as to decouple it into multiple instances of a lower dimensional subproblem.

Therefore, the results presented in this paper for the cases of one and two items may also indirectly

improve the quality of approximate numerical solutions to related higher dimensional problems.
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Appendix A: Intuitive Explanation of the Recursion (12)

The threshold γn,j may be interpreted as the per packet power cost at which, with n slots remaining in the
horizon, the expected cost-to-go of transmitting packets to cover the user’s playout requirements for the next
j−1 slots is the same as the expected cost-to-go of transmitting packets to cover the user’s requirements for
the next j slots. That is, γn,j should satisfy:

α · IE
[
Vn−1

(
(j− 1) · d,Sn−1

)]
+ γn,j · d+h · d= α · IE

[
Vn−1

(
(j− 2) · d,Sn−1

)]
,

which is equivalent to:

γn,j

=−h+
α

d
· IE

[
Vn−1

(
(j− 2) · d,Sn−1

)
−Vn−1

(
(j− 1) · d,Sn−1

)]
(23)

=−h+
α

d
·
∑
s∈S

p(s) ·

[
Vn−1

(
(j− 2) · d, s

)
−Vn−1

(
(j− 1) · d, s

)]

=−h+
α

d
·



∑
s: bn−1(s)≤(j−2)·d

p(s) ·
{
−h · d+αIE

[
Vn−2

(
(j− 3) · d,Sn−2

)
−Vn−2

(
(j− 2) · d,Sn−2

)]}
+

∑
s: (j−2)·d<bn−1(s)≤

(
j−2+L(s)

)
·d

p(s) · cs · d

+
∑

s: bn−1(s)>
(
j−2+L(s)

)
·d

p(s) ·

−h · d+αIE

 Vn−2

((
j− 3 +L(s)

)
· d,Sn−2

)
−Vn−2

((
j− 2 +L(s)

)
· d,Sn−2

)


(24)

=−h+α ·


∑

s: bn−1(s)≤(j−2)·d

p(s) · γn−1,j−1 +
∑

s: (j−2)·d<bn−1(s)≤
(
j−2+L(s)

)
·d

p(s) · cs +
∑

s: bn−1(s)>
(
j−2+L(s)

)
·d

p(s) · γn−1,j−1+L(s)


(25)

=−h+α ·

 ∑
s: cs≥γn−1,j−1

p(s) · γn−1,j−1 +
∑

s: γn−1,j−1+L(s)≤cs<γn−1,j−1

p(s) · cs +
∑

s: cs<γn−1,j−1+L(s)

p(s) · γn−1,j−1+L(s)

 . (26)

Here, (24) follows from the structure of the optimal control action (7). If the channel condition s in the
(n−1)st slot is such that bn−1(s)≤ (j−2) ·d, then no packets are transmitted when the starting buffer level
is either (j− 2) · d or (j− 1) · d, and the respective buffer levels at the beginning of slot n− 2 are (j− 3) · d
and (j − 2) · d. The instantaneous costs resulting from the two starting buffer levels differ by −h · d. When
(j−2) ·d< bn−1(s)≤

(
j−2+L(s)

)
·d, the power constraint is not tight starting from (j−1) ·d, so the buffer

level after transmission is the same starting from (j − 2) · d or (j − 1) · d. The instantaneous costs resulting
from the two starting buffer levels differ by cs ·d, as an extra d packets are transmitted if the starting buffer is
(j−2) ·d. Finally, when bn−1(s)>

(
j−2+L(s)

)
·d, the power constraint is tight starting from both (j−2) ·d

and (j − 1) · d. Therefore, the instantaneous cost difference is −h · d, and the respective buffer levels at the
beginning of slot n− 2 are (j − 3 + L(s)) · d and (j − 2 + L(s)) · d. Equation (25) follows from (23), with
n− 1, j− 1 substituted for n, j, and (26) follows from the definition that bn(s) = j · d if γn,j+1 ≤ cs <γn,j .

Comparing the threshold γn,j defined in (12) to the corresponding threshold in the uncapacitated (no
power constraint) single user problem studied in Kingsman (1969a) and Golabi (1985), the only difference
is the third term of the right-hand side of (12):

α ·
∑

{s: cs<γn−1,j−1+L(s)}

p(s) ·
[
γn−1,j−1+L(s)− cs

]
,

which is absent in the uncapacitated case. For all n ∈ {1,2, . . . ,N} and j ∈ IN , this term is nonnegative.
Thus, for a fixed n and j, the threshold in the capacitated case is at least as high as the corresponding
threshold in the uncapacitated case. It follows that the optimal stock-up level bn(s) is also at least as high
in the capacitated case for all n ∈ {1,2, . . . ,N} and s ∈ S. The intuition behind this difference is that the
sender should transmit more packets under the same (medium) conditions, because it is not able to take
advantage of the best channel conditions to the same extent due to the power constraint.
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Appendix B: Proof of Theorem 5

We prove statements (i)-(v) by joint induction on the time remaining, n.

Base Case: n= 1
V0(x, s0) = 0, for all s0, so (i) and (ii) hold trivially. Let s1 ∈ S be arbitrary. G1(y1, s1) = cT

s1
y1 +h(y1−d),

which is convex and supermodular. Thus, (iii) and (iv) are true. Additionally,

G1(y1, s1) =

2∑
m=1

{cms · ym1 +hm (ym1 − dm)} ,

so inf

{
arg min
y21∈[d2,∞)

{
G1 (y1

1 , y
2
1 , s

1
1, s

2
1)

}}
is independent of y1

1 , and vice versa.

Induction Step
Assume statements (i)-(v) are true for n= 2,3, . . . , l− 1. We want to show they are true for n= l. We let
s∈ S be arbitrary, and proceed in order.

(i) Consider two arbitrary points, x̄, x̃ ∈ IR2
+. Let λ ∈ [0,1] be arbitrary, and define x̂ := λx̄ + (1− λ)x̃.

Let y∗(x̄, s), y∗(x̃, s), and y∗(x̂, s) be optimal buffer levels after transmission in slot l− 1, for each of the
respective starting points. We have:

λ ·Vl−1(x̄, s) + (1−λ) ·Vl−1(x̃, s) = −cT

s x̂ +λ ·Gl−1

(
y∗(x̄, s), s

)
+ (1−λ) ·Gl−1

(
y∗(x̃, s), s

)
≥ −cT

s x̂ +Gl−1

(
λy∗(x̄, s) + (1−λ)y∗(x̃, s), s

)
≥ −cT

s x̂ + min
y∈Ãd(x̂,s)

{Gl−1(y, s)}

= Vl−1(x̂, s) = Vl−1(λx̄ + (1−λ)x̃, s) , (27)

where the first inequality follows from the convexity of Gl−1(·, s) from the induction hypothesis. The second
inequality follows from the following argument. y∗(x̄, s)∈ Ãd(x̄, s) implies:

y∗(x̄, s)� d∨ x̄ and cT

s [y∗(x̄, s)− x̄]≤ P . (28)

Similarly, y∗(x̃, s)∈ Ãd(x̃, s) implies:

y∗(x̃, s)� d∨ x̃ and cT

s [y∗(x̃, s)− x̃]≤ P . (29)

Multiplying the equations in (28) by λ and the equations in (29) by 1−λ, and summing, we have:

λy∗(x̄, s) + (1−λ)y∗(x̃, s)� λ(d∨ x̄) + (1−λ)(d∨ x̃)� d∨ x̂, (30)

and

cT

s [λy∗(x̄, s) + (1−λ)y∗(x̃, s)− x̂] = λcT

s [y∗(x̄, s)− x̄] + (1−λ)cT

s [y∗(x̃, s)− x̃]≤ P . (31)

From (30) and (31), we conclude λy∗(x̄, s) + (1− λ)y∗(x̃, s) ∈ Ãd(x̂, s). Thus, the value of Gl−1(·, s) at this
point is greater than or equal to the minimum of Gl(·, s) over the region Ãd(x̂, s). From (27), we conclude
Vl−1(·, s) is convex. This argument is similar to the one used to show convexity in Evans (1967).

(ii) Recall that Vl−1(x, s) =−cT
sx+miny∈Ãd(x,s) {Gl−1(y, s)}. The first term,−cT

sx, is clearly supermodular
in x, so it suffices to show that the second term, miny∈Ãd(x,s) {Gl−1(y, s)}, is also supermodular in x. Let
x̄, x̃∈ IR2 be arbitrary. We want to show:

min
y∈Ãd(x̄,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gl−1(y, s)} ≤ min
y∈Ãd(x̄∧x̃,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} . (32)

If x̄ and x̃ are comparable (i.e., x̃1 ≥ x̄1 and x̃2 ≥ x̄2 or x̃1 ≤ x̄1 and x̃2 ≤ x̄2), then (32) is trivial. So we
assume they are not comparable, and also assume without loss of generality that x̄1 < x̃1 and x̃2 < x̄2. The
main idea going forward is to cleverly construct - depending on the relative locations of x̄, x̃, y∗(x̄∧ x̃, s),
and y∗(x̄∨ x̃, s) - points ȳ∈ Ãd (x̄, s) and ỹ∈ Ãd (x̃, s) such that:

Gl−1(ȳ, s) +Gl−1(ỹ, s) ≤ Gl−1

(
y∗(x̄∧ x̃, s), s

)
+Gl−1

(
y∗(x̄∨ x̃, s), s

)
= min

y∈Ãd(x̄∧x̃,s)
{Gl−1(y, s)}+ min

y∈Ãd(x̄∨x̃,s)
{Gl−1(y, s)} . (33)
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Then, ȳ∈ Ãd (x̄, s) and ỹ∈ Ãd (x̃, s) imply:

min
y∈Ãd(x̄,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gl−1(y, s)} ≤Gl−1(ȳ, s) +Gl−1(ỹ, s). (34)

Combining equations (33) and (34) yields the desired result, (32). We proceed with a lemma on the relative
locations of the points y∗(x̄ ∧ x̃, s) and y∗(x̄ ∨ x̃, s), and then construct ȳ and ỹ to satisfy (33) for two
exhaustive cases.

Lemma 1. There exist optimal buffer levels after transmission in slot l− 1, y∗(x̄∧ x̃,s) and y∗(x̄∨ x̃,s),
such that y∗(x̄∧ x̃,s) � y∗(x̄∨ x̃,s); i.e., such that y∗

1
(x̄∧ x̃,s)≤ y∗1(x̄∨ x̃,s) or y∗

2
(x̄∧ x̃,s)≤ y∗2(x̄∨ x̃,s).

Proof of Lemma 1: Fix a choice of y∗(x̄∨ x̃, s) such that

Gl−1

(
y∗ (x̄∨ x̃, s) , s

)
= min

y∈Ãd(x̄∨x̃,s)
{Gl−1(y, s)} .

Assume that for all optimal choices of y∗(x̄∧ x̃, s), we have y∗(x̄∧ x̃, s)� y∗(x̄∨ x̃, s), where we define a� b
to mean a1 > b1 and a2 > b2. Fix one such choice of y∗(x̄∧ x̃, s), and we have:

y∗(x̄∧ x̃, s)� y∗(x̄∨ x̃, s)� d∨ (x̄∨ x̃) . (35)

Further, y∗(x̄∧ x̃, s)∈ Ãd(x̄∧ x̃, s) implies cT
s [y∗(x̄∧ x̃, s)− x̄∧ x̃]≤ P , and thus:

cT

s [y∗(x̄∧ x̃, s)− x̄∨ x̃]≤ cT

s [y∗(x̄∧ x̃, s)− x̄∧ x̃]≤ P . (36)

Equations (35) and (36) imply y∗(x̄∧ x̃, s)∈ Ãd(x̄∨ x̃, s), and thus:

Gl−1

(
y∗ (x̄∨ x̃, s) , s

)
= min

y∈Ãd(x̄∨x̃,s)
{Gl−1(y, s)} ≤Gl−1

(
y∗ (x̄∧ x̃, s) , s

)
. (37)

However, we also have:

y∗(x̄∨ x̃, s)� d∨ (x̄∨ x̃)� d∨ (x̄∧ x̃) , (38)

and

cT

s [y∗(x̄∨ x̃, s)− x̄∧ x̃]≤ cT

s [y∗(x̄∧ x̃, s)− x̄∧ x̃]≤ P . (39)

Equations (38) and (39) imply y∗(x̄ ∨ x̃, s) ∈ Ãd(x̄ ∧ x̃, s), which, in combination with (37), implies it is
optimal to move from x̄∧ x̃ to y∗(x̄∨ x̃, s), contradicting the assumption that y∗(x̄∧ x̃, s)� y∗(x̄∨ x̃, s) for
all possible choices of y∗(x̄∧ x̃, s). �

Now let y∗(x̄∧ x̃, s) and y∗(x̄∨ x̃, s) be arbitrary optimal actions such that y∗(x̄∧ x̃, s) � y∗(x̄∨ x̃, s). We
show (32) by considering two exhaustive cases.

Case 1: y∗(x̄∨ x̃, s)� y∗(x̄∧ x̃, s)

Lemma 2. Let f : [d1,∞)× [d2,∞)→ IR be convex and supermodular, let σ,β ∈ [0,1] be arbitrary, and let
z= (z1, z2)� (ẑ1, ẑ2) = ẑ. Define

zλ1,λ2 :=
(
λ1ẑ1 + (1−λ1)z1, λ2ẑ2 + (1−λ2)z2

)
.

Then

f(z) + f(ẑ)≥ f(zσ,β) + f(z1−σ,1−β) . (40)

Proof of Lemma 2:
Step 1: Assume σ,β ≤ 1

2
. Assume without loss of generality that σ≤ β. By the convexity of f(·), we have:

f(z) + f(ẑ)≥ f(zσ,σ) + f(z1−σ,1−σ) , (41)

and

f(z1−σ,1−σ) + f(z1−σ,σ)≥ f(z1−σ,β) + f(z1−σ,1−β) . (42)
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Figure 8 Diagram of the points referred to in Step 1 of the proof of Lemma 2.

By the supermodularity of f(·), we have:

f(z1−σ,β) + f(zσ,σ)≥ f(zσ,β) + f(z1−σ,σ) . (43)

Figure 8 shows these relationships. Combining (41)-(43), we have:

f(z) + f(ẑ)≥ f(zσ,σ) + f(z1−σ,1−σ)≥ f(zσ,σ) + f(z1−σ,β)− f(z1−σ,σ) + f(z1−σ,1−β)≥ f(zσ,β) + f(z1−σ,1−β).

Step 2: Now let σ,β ∈ [0,1], and define σ̂ := min{σ,1−σ} and β̂ := min{β,1−β}. Then σ̂, β̂ ≤ 1
2
, so by Step

1, we have:

f(z) + f(ẑ)≥ f(zσ̂,β̂) + f(z1−σ̂,1−β̂) . (44)

Note that zσ,β ∧ z1−σ,1−β = zσ̂,β̂, and zσ,β ∨ z1−σ,1−β = z1−σ̂,1−β̂, so by the supermodularity of f(·), we have:

f(zσ̂,β̂) + f(z1−σ̂,1−β̂)≥ f(zσ,β) + f(z1−σ,1−β) . (45)

Combining (44) and (45) yields the desired result, (40). �

Next, define the following points, shown in the left-hand side of Figure 9:

ȳ :=

(
x̄1 + max

{
y∗

1
(x̄∧ x̃, s)− x̄1, y∗

1
(x̄∨ x̃, s)− x̃1

}
, x̄2 + min

{
y∗

2
(x̄∧ x̃, s)− x̃2, y∗

2
(x̄∨ x̃, s)− x̄2

})
,

and

ỹ :=

(
x̃1 + min

{
y∗

1
(x̄∧ x̃, s)− x̄1, y∗

1
(x̄∨ x̃, s)− x̃1

}
, x̃2 + max

{
y∗

2
(x̄∧ x̃, s)− x̃2, y∗

2
(x̄∨ x̃, s)− x̄2

})
.

Note that ȳ� d∨ x̄ and ỹ� d∨ x̃. Furthermore, we have:

cT

s (ȳ− x̄) = cT

s

(
max

{
y∗

1

(x̄∧ x̃, s)− x̄1, y∗
1

(x̄∨ x̃, s)− x̃1
}
,min

{
y∗

2

(x̄∧ x̃, s)− x̃2, y∗
2

(x̄∨ x̃, s)− x̄2
})

≤ max
{

cT

s

(
y∗

1

(x̄∧ x̃, s)− x̄1, y∗
2

(x̄∧ x̃, s)− x̃2
)
,cT

s

(
y∗

1

(x̄∨ x̃, s)− x̃1, y∗
2

(x̄∨ x̃, s)− x̄2
)}

= max
{

cT

s

(
y∗ (x̄∧ x̃, s)− (x̄∧ x̃)

)
,cT

s

(
y∗ (x̄∨ x̃, s)− (x̄∨ x̃)

)}
≤ P.

By a similar argument, cT
s (ỹ− x̃)≤ P , and thus ȳ∈ Ãd (x̄, s), and ỹ∈ Ãd (x̃, s). So (34) is true.

Now define15:

σ :=
y∗

1
(x̄∨ x̃, s)− ỹ1

y∗1(x̄∨ x̃, s)− y∗1(x̄∧ x̃, s)
and β :=

y∗
2
(x̄∨ x̃, s)− ỹ2

y∗2(x̄∨ x̃, s)− y∗2(x̄∧ x̃, s)
.

15 If y∗
1

(x̄∨ x̃, s)− y∗
1

(x̄∧ x̃, s) = 0, let σ be arbitrary in [0,1]. Similarly, if y∗
2

(x̄∨ x̃, s)− y∗
2

(x̄∧ x̃, s) = 0, let β be
arbitrary in [0,1].
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Figure 9 Construction of feasible points ȳ and ỹ in Cases 1 and 2 of the proof of supermodularity of Vl−1(·, s).

Rearranging the definitions of σ and β yields:

ỹ =
(

(1−σ) · y∗1(x̄∨ x̃, s) +σ · y∗1(x̄∧ x̃, s), (1−β) · y∗2(x̄∨ x̃, s) +β · y∗2(x̄∧ x̃, s)
)
.

It is also straightforward to check that:

ȳ =
(
σ · y∗1(x̄∨ x̃, s) + (1−σ) · y∗1(x̄∧ x̃, s), β · y∗2(x̄∨ x̃, s) + (1−β) · y∗2(x̄∧ x̃, s)

)
.

We also have:

y∗
1

(x̄∧ x̃, s) = min
{
y∗

1

(x̄∧ x̃, s), y∗
1

(x̄∧ x̃, s) + (x̃1− x̃2)
}

≤ min
{
y∗

1

(x̄∨ x̃, s), y∗
1

(x̄∧ x̃, s) + (x̃1− x̃2)
}

= ỹ1 ≤ y∗1(x̄∨ x̃, s) ,

and thus, σ ∈ [0,1]. Similarly, y∗
2
(x̄∧ x̃, s)≤ ỹ2 ≤ y∗2(x̄∨ x̃, s), and thus, β ∈ [0,1]. Since Gl−1(·, s) is convex

and supermodular, we can now apply Lemma 2, with y∗(x̄∧ x̃, s) playing the role of z; y∗(x̄∨ x̃, s) the role
of ẑ; ȳ the role of zσ,β; and ỹ the role of z1−σ,1−β, to get (33), which, in combination with (34), implies (32).

Case 2: y∗(x̄∨ x̃, s) � y∗(x̄∧ x̃, s)� y∗(x̄∨ x̃, s)
There are two possibilities for this case. The first possibility is that y∗

1
(x̄∧ x̃, s)> y∗

1
(x̄∨ x̃, s) and y∗

2
(x̄∧

x̃, s)≤ y∗2(x̄∨ x̃, s). The second possibility is that y∗
1
(x̄∧ x̃, s)≤ y∗1(x̄∨ x̃, s) and y∗

2
(x̄∧ x̃, s)> y∗

2
(x̄∨ x̃, s).

We show (32) under the first possibility, and a symmetric argument can be used to show (32) under the
second possibility. We have:

y∗
1

(x̄∧ x̃, s)> y∗
1

(x̄∨ x̃, s)≥max
{

(x̄∨ x̃)1, d1
}

= max
{
x̃1, d1

}
, (46)

y∗
2

(x̄∧ x̃, s)≥max
{

(x̄∧ x̃)2, d2
}

= max
{
x̃2, d2

}
, (47)

and

cT

s

[
y∗(x̄∧ x̃, s)− x̃

]
≤ cT

s

[
y∗(x̄∧ x̃, s)− (x̄∧ x̃)

]
≤ P . (48)

Equations (46), (47), and (48) imply y∗(x̄∧ x̃, s) ∈ Ãd (x̃, s). If it also happens that y∗(x̄∨ x̃, s) ∈ Ãd (x̄, s),
then we have:

min
y∈Ãd(x̄,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gl−1(y, s)} ≤Gl−1

(
y∗(x̄∧ x̃, s), s

)
+Gl−1

(
y∗(x̄∨ x̃, s), s

)
= min

y∈Ãd(x̄∧x̃,s)
{Gl−1(y, s)}+ min

y∈Ãd(x̄∨x̃,s)
{Gl−1(y, s)} .
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Otherwise, define:

γ :=
cT
s

[
y∗(x̄∨ x̃, s)− x̄

]
−P

cT
s

[
y∗(x̄∨ x̃, s)−y∗(x̄∧ x̃, s)

] .
From y∗(x̄∨ x̃, s) /∈ Ãd (x̄, s) and y∗(x̄∧ x̃, s)∈ Ãd (x̄∧ x̃, s), we know:

cT

sy
∗(x̄∨ x̃, s)> cT

s x̄ +P ≥ cT

s(x̄∧ x̃) +P ≥ cT

sy
∗(x̄∧ x̃, s) . (49)

It is clear from (49) that the numerator and denominator of γ are positive, and γ ∈ [0,1]. Now define:

ȳ := γy∗(x̄∧ x̃, s) + (1− γ)y∗(x̄∨ x̃, s) and ỹ := (1− γ)y∗(x̄∧ x̃, s) + γy∗(x̄∨ x̃, s).

It is somewhat tedious but straightforward to show that ȳ ∈ Ãd (x̄, s) and ỹ ∈ Ãd (x̃, s), implying (34). In
the right-hand side of Figure 9, ȳ is the point where the line segment connecting y∗(x̄∧ x̃, s) and y∗(x̄∨ x̃, s)
intersects the budget constraint (hypotenuse) of Ãd (x̄, s), and ỹ is a point along this line segment the same
distance from y∗(x̄ ∧ x̃, s) as ȳ is from y∗(x̄ ∨ x̃, s). Equation (33) follows from the convexity of Gl−1(·, s)
along this line segment. Combining (33) and (34) again yields the desired result, (32).

(iii) Gl(y, s) = cT
sy + h(y− d) + α · IE

[
Vl−1(y− d,S)

]
. By (i), for all s, Vl−1(x, s) is convex in x; thus,

Vl−1(y−d, s) is convex in y as it is the composition of a convex function with an affine function. IE
[
Vl−1(y−

d,S)
]

is also convex as it is the nonnegative weighted sum/integral of convex functions. It follows that
Gl(y, s), the sum of convex functions, is convex in y.

(iv) Supermodularity of Gl(y, s) follows from the same series of arguments as (iii), because, like convexity,
supermodularity is preserved under addition and scalar multiplication.

(v) This step follows from Topkis 1998, Theorem 2.8.1, p. 76.

Appendix C: Proof of Theorem 6

Let n∈ {1,2, . . . ,N} and s∈ S be arbitrary. We start by proving (19). First, let x∈RI(n, s) and ŷ∈ Ãd(x, s)
be arbitrary. We know from Theorem 5 that Gn(·, s) is convex on [d1,∞)× [d2,∞), which implies that Gn(·, s)
is also convex on any line segment in [d1,∞)× [d2,∞) (e.g. Rockafellar 1970, Theorem 4.1). Specifically, by
the convexity of Gn(·, s) along the line y1 = ŷ1 and the fact that ŷ2 ≥ x2 ≥ f2

n(ŷ1, s), we have:

Gn(ŷ, s)≥Gn

(
(ŷ1, x2), s

)
≥Gn

((
ŷ1, f2

n(ŷ1, s)
)
, s
)
. (50)

Similarly, by the convexity of Gn(·, s) along the line y2 = x2 and the fact that ŷ1 ≥ x1 ≥ f1
n(x2, s), we have:

Gn

(
(ŷ1, x2), s

)
≥Gn(x, s)≥Gn

((
f1
n(x2, s), x2

)
, s
)
. (51)

Combining (50) and (51) yields:

Gn(ŷ, s)≥Gn

((
ŷ1, x2

)
, s
)
≥Gn(x, s) ,

and we conclude Gn(x, s) = miny∈Ãd(x,s) {Gn(y, s)}.
Second, let x ∈RII(n, s) be arbitrary. Then bn(s) ∈ Ãd(x, s) and bn(s) is a global minimizer of Gn(·, s),

so it is clearly optimal to transmit to bring the receivers’ buffer levels up to bn(s).
Next, let x∈RIII−A(n, s) and ỹ∈ Ãd(x, s) be arbitrary. By definition of f1

n(·, s), we have:

Gn(ỹ, s)≥Gn

((
f1
n(ỹ2, s), ỹ2

)
, s
)
. (52)

Furthermore, the function miny1∈[d1,∞)

{
Gn

(
(y1, y2), s

)}
is convex in y2 since [d1,∞) is a convex set (e.g.

Boyd and Vandenberghe 2004, pp. 101-102). Thus, ỹ2 ≥ x2 ≥ b2n(s) implies:

Gn

((
f1
n(ỹ2, s), ỹ2

)
, s
)
≥Gn

((
f1
n(x2, s), x2

)
, s
)
≥Gn

((
f1
n(b2n(s), s), b2n(s)

)
, s
)

=Gn

(
bn(s), s

)
. (53)

Combining (52) and (53) yields:

Gn(ỹ, s)≥Gn

((
f1
n(x2, s), x2

)
, s
)
,
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and x ∈ RIII−A(n, s) implies
(
f1
n(x2, s), x2

)
∈ Ãd(x, s). Since ỹ ∈ Ãd(x, s) was arbitrary, we conclude

y∗n(x, s) =
(
f1
n(x2, s), x2

)
is optimal.

The optimality of y∗n(x, s) =
(
x1, f2

n(x1, s)
)

for x∈RIII−B(n, s) follows from a symmetric argument, using

the convexity of Gn(·, s) along the curve
(
x1, f2

n(x1, s)
)

.

Finally, we prove (20). Define:

Hd(x, s) :=
{

y∈ [d1,∞)× [d2,∞) : y� x and cT

s [y−x] = P
}
⊂ Ãd(x, s) .

First, let x∈RIV−B(n, s) and ŷ∈ Ãd(x, s) be arbitrary such that cT
s [ŷ−x]<P . Define

λ0 :=
cT
sbn(s)− cT

sx−P
cT
sbn(s)− cT

s ŷ
.

Note that cT
s [ŷ−x]<P and cT

s [bn(s)−x]>P imply λ0 ∈ (0,1). Then define:

ỹ := λ0ŷ + (1−λ0)bn(s) .

By the convexity of Gn(·, s) along the line segment from ŷ to bn(s), we have:

Gn(ŷ, s)≥Gn(ỹ, s)≥Gn

(
bn(s), s

)
.

Since ŷ∈ Ãd(x, s) was arbitrary, we conclude:

min
y∈Ãd(x,s)

{
Gn(y, s)

}
= min

y∈Hd(x,s)

{
Gn(y, s)

}
.

Next, let x∈RIV−C(n, s) and ŷ∈ Ãd(x, s) be arbitrary such that cT
s [ŷ−x]<P . We consider two exhaustive

cases, and for each case, we construct a ỹ∈Hd(x, s) such that Gn (ỹ, s)≤Gn (ŷ, s).

Case 1: ŷ2 < f2
n (ŷ1, s) and ȳ :=

(
ŷ1, f2

n (ŷ1, s)
)
/∈ Ãd(x, s)

Let ỹ :=
(
ŷ1, x2 +

P−c
s1
·[ŷ1−x1]

c
s2

)
. Then, by the convexity of Gn(·, s) along y1 = ŷ1, the definition of f2

n (ŷ1, s),

and ŷ2 ≤ ỹ2 ≤ f2
n (ŷ1, s), we have:

Gn (ȳ, s) =Gn

((
ŷ1, f2

n(ŷ1, s)
)
, s
)
≤Gn (ỹ, s)≤Gn (ŷ, s) .

It is also straightforward to check that ỹ∈Hd(x, s), as desired.

Case 2: All other ŷ∈ Ãd(x, s) such that cT
s [ŷ−x]<P

By the definition of f2
n (ŷ1, s), we have:

Gn (ŷ, s)≥Gn

((
ŷ1, f2

n(ŷ1, s)
)
, s
)
. (54)

Define:

ỹ1 := sup
{
y1 ∈

[
x1, ŷ1

)
: cT

s

(
y1, f2

n

(
y1, s

))
≥ cT

sx +P
}

and ỹ2 :=
P − cs1 · [ỹ1−x1]

cs2
.

By the convexity of Gn(·, s) along
(
y1, f2

n (y1, s)
)

, we have:

Gn

((
ŷ1, f2

n(ŷ1, s)
)
, s
)
≥Gn

((
ỹ1, f2

n(ỹ1, s)
)
, s
)
. (55)

Furthermore, we have:

Gn

((
ỹ1, f2

n(ỹ1, s)
)
, s
)

=Gn

((
ỹ1, ỹ2

)
, s
)

=Gn (ỹ, s) . (56)

If ỹ2 = f2
n (ỹ1, s), (56) is trivial. Otherwise, there is a discontinuity in f2

n(·, s) at ỹ1, and we have:

lim
y1↗ỹ1

f2
n

(
y1, s

)
≥ ỹ2 ≥ lim

y1↘ỹ1
f2
n

(
y1, s

)
, (57)
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with at least one of the inequalities being strict. Nonetheless, Gn

((
y1, f2

n(y1, s)
)
, s
)

is a continuous function

of y1, and therefore:

Gn

((
ỹ1, lim

y1↗ỹ1
f2
n

(
y1, s

))
, s
)

=Gn

((
ỹ1, lim

y1↘ỹ1
f2
n

(
y1, s

))
, s
)

=Gn

((
ỹ1, f2

n

(
ỹ1, s

))
, s
)
. (58)

The convexity of Gn(·, s) along the line y1 = ỹ1 and (58) imply:

Gn

((
ỹ1, y2

)
, s
)

=Gn

((
ỹ1, f2

n

(
ỹ1, s

))
, s
)
, ∀y2 ∈

[
lim
y1↘ỹ1

f2
n

(
y1, s

)
, lim
y1↗ỹ1

f2
n

(
y1, s

)]
,

which, in combination with (57), implies (56). Combining (54)-(56) yields the desired result: Gn (ỹ, s) ≤
Gn (ŷ, s) for a ỹ ∈ Hd(x, s). The validity of (20) for x ∈ RIV−A(n, s) follows from a symmetric argument,
completing the proof of (20) and Theorem 6. �

Appendix D: The Direct Value Order

Definition 1 (Antoniadou, 1996). Let c∈ IR++ and let x̄, x̃∈ IR2. Then the direct (c, i) value order,
≤dv(c,i) for i= 1,2, is defined by:

x̄≤dv(c,i) x̃ if and only if cTx̄≤ cTx̃ and x̄i ≤ x̃i .

The meet and join of two points with respect to the usual Euclidean, dv(c,1), and dv(c,2) partial orders are
shown in Figure 10.

xx ˆ~
∨x̂

xx cvd
ˆ~

)2,.(.∨x̂

x̂

xx ˆ~
∧ x

~
xx cvd
ˆ~

)2,.(.∧

x
~

xx cvd
ˆ~

)1,.(.∧

xx cvd
ˆ~

)1,.(.∨

x
~

(b)(a) (c)

Figure 10 The direct value order. (a) shows the standard Euclidean order; (b) shows the dv(c,1) order; and (c)
shows the dv(c,2) order.

The following proposition relates the direct (c, i) value orders to the conditions Evans (1967) refers to as
“dominance of the second partials over the mixed partials.”

Proposition 1. If f : IR2→ IR is twice continuously differentiable on IR2, then f is supermodular (sub-
modular) with respect to the direct (c,1) value order if and only if:

∂2f

∂x2∂x2
≤ (≥)

c2

c1
· ∂2f

∂x1∂x2
, (59)

and is supermodular (submodular) with respect to the direct (c,2) value order if and only if:

∂2f

∂x1∂x1
≤ (≥)

c1

c2
· ∂2f

∂x1∂x2
. (60)

Definition 2 (Chen, 2004). A convex function f : IR2→ IR is µ-difference monotone if for any t > 0,

(i) f(x1 + t, x2)− f(x1, x2) is nondecreasing in x1 and nondecreasing in x2;
(ii) f(x1, x2 + t)− f(x1, x2) is nondecreasing in x1 and nondecreasing in x2;
(iii) f(x1 +µ1 · t, x2)− f(x1, x2 +µ2 · t) is nondecreasing in x1 and nonincreasing in x2.

Proposition 2. A function f : IR2→ IR satisfies statement (iii) of Definition 2 if and only if it is sub-
modular with respect to both the dv(c,1) and dv(c,2) partial orders, where ci = 1

µi
for i= 1,2.
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