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Abstract—Unions of graph multiplier operators are an impor-
tant class of linear operators for processing signals defined on
graphs. We present a novel method to efficiently distribute the
application of these operators. The proposed method features ap-
proximations of the graph multipliers by shifted Chebyshev poly-
nomials, whose recurrence relations make them readily amenable
to distributed computation. We demonstrate how the proposed
method can be applied to distributed processing tasks such
as smoothing, denoising, inverse filtering, and semi-supervised
classification, and show that the communication requirements of
the method scale gracefully with the size of the network.

Index Terms—Chebyshev polynomial approximation, denois-
ing, distributed optimization, learning, regularization, signal
processing on graphs, spectral graph theory

I. INTRODUCTION

In distributed signal processing tasks, the data to be pro-
cessed is physically separated and cannot be transmitted to a
central processing entity. This separation may be due to engi-
neering limitations such as the limited communication range
of wireless sensor network nodes, privacy concerns, or engi-
neering design considerations. Even when high-dimensional
data can be processed centrally, for example, it may be more
efficient to process it with parallel computing. It is therefore
important to develop distributed data processing algorithms
that balance the trade-offs between performance, communica-
tion bandwidth, and computational complexity (speed).

For concreteness, we focus throughout the paper on dis-
tributed processing examples in wireless sensor networks;
however, the problems we consider could arise in a number of
different settings. Due to the limited communication range of
wireless sensor nodes, each sensor node in a large network is
likely to communicate with only a small number of other nodes
in the network. To model the communication patterns, we can
write down a graph with each vertex corresponding to a sensor
node and each edge corresponding to a pair of nodes that
communicate. Moreover, because the communication graph is
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a function of the distances between nodes, it often captures
spatial correlations between sensors’ observations as well.
That is, if two sensors are close enough to communicate, their
observations are likely to be correlated. We can further specify
these spatial correlations by adding weights to the edges of
the graph, with higher weights associated to edges connecting
sensors with closely correlated observations. For example, it
is common to construct the graph with a thresholded Gaussian
kernel weighting function based on the physical distance
between nodes, where the weight of edge e connecting nodes
i and j that are a distance d(i, j) apart is

w(e) =

{
exp

(
− [d(i,j)]2

2σ2

)
if d(i, j) ≤ κ

0 otherwise
, (1)

for some parameters σ and κ.
We consider sensor networks whose nodes can only send

messages to their local neighbors (i.e., they cannot communi-
cate directly with a central entity). Much of the literature on
distributed signal processing in such settings (see, e.g., [1]-[4]
and references therein) focuses on coming to an agreement
on simple features of the observed signal (e.g., consensus
averaging, parameter estimation). We are more interested in
processing the full function in a distributed manner, with each
node having its own objective. Some example tasks under this
umbrella include:
• Distributed denoising – In a sensor network of N sensors,

a noisy N -dimensional signal is observed, with each
component of the signal corresponding to the observation
at one sensor location. Using the prior knowledge that the
denoised signal should be smooth or piecewise smooth
with respect to the underlying weighted graph structure,
the sensors’ task is to denoise each of their components
of the signal by iteratively passing messages to their local
neighbors and performing computations.

• Distributed semi-supervised learning / transductive clas-
sification – A class label is associated with each sensor
node; however, only a small number of nodes in the
network have knowledge of their labels. The cooperative
task is for each node to learn its label by iteratively
passing messages to its local neighbors and performing
computations.

These and similar tasks have been considered in centralized
settings in the relatively young field of signal processing on
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graphs. For example, [5]-[7] consider general regularization
frameworks on weighted graphs; [8]-[15] present graph-based
semi-supervised learning methods; and [16]-[19] consider reg-
ularization and filtering on weighted graphs for image and
mesh processing. Spectral regularization methods for ill-posed
inverse problems (see, e.g., [20] and references therein) are
also closely related.

Less work has been devoted to such tasks in distributed
settings; reference [21] considers denoising via wavelet pro-
cessing and [22] presents a denoising algorithm that projects
the measured signal onto a low-dimensional subspace spanned
by smooth functions. References [23]-[26] consider different
distributed regression problems.

Our main contributions in this paper are i) to show that a key
component of many distributed signal processing tasks is the
application of linear operators that are unions of graph Fourier
multipliers or generalized graph multiplier operators (to be
defined in detail in Sections III and V, respectively); and ii) to
present a novel method to efficiently distribute the application
of the graph multiplier operators to high-dimensional signals.

To elaborate a bit, graph Fourier multiplier operators are
the graph analog of filter banks, one of the most commonly
used tools in digital signal processing. Multiplying a signal on
the graph by one of these matrices is analogous to reshaping
the signal’s frequencies by multiplying it by a filter in the
Fourier domain in classical signal processing. The crux of our
novel distributed computational method is to approximate each
graph Fourier multiplier by a truncated Chebyshev polynomial
expansion.

In a centralized setting, [27] shows that the truncated
Chebyshev polynomial expansion efficiently approximates the
application of a spectral graph wavelet transform, which is
a specific example of a union of graph Fourier multipliers.
Truncated Chebyshev polynomial expansions are also used in
centralized settings in [28] and [29] to approximately compute
the product of a matrix function and a vector (we discuss the
connection between graph Fourier multiplier operators and the
more general matrix functions in Sections III-A and V-A). In
[30], Chen, Anitescu, and Saad introduce a closely related
least squares polynomial approximation technique to compute
the product of a matrix function and a vector in a centralized
setting.

In [31], we extend the Chebyshev polynomial approxima-
tion method to the general class of unions of graph Fourier
multiplier operators, and show how the recurrence properties
of the Chebyshev polynomials also enable distributed appli-
cation of these operators. The communication requirements
for distributed computation using this method scale gracefully
with the number of sensors in the network (and, accordingly,
the size of the signals). In this paper, an extended version
of [31], we also generalize graph Fourier multiplier operators
to generalized graph multiplier operators, provide theoretical
bounds on the approximation error, illustrate the application
of our framework in distributed smoothing, denoising, inverse
filtering, and semi-supervised learning tasks, and compare our
method to some alternative distributed computation methods.

The remainder of the paper is as follows. In the next section,
we provide some background from spectral graph theory. In

Section III, we introduce graph Fourier multiplier operators
and show how they can be efficiently approximated with
shifted Chebyshev polynomials in a centralized setting. We
then discuss the distributed computation of quantities involving
these operators in Section IV. We generalize the framework
in Section V, and provide application examples in Section
VI. In Section VII, we compare our proposed method with
some alternative distributed computation methods. Section
VIII concludes the paper.

II. SPECTRAL GRAPH THEORY

Before proceeding, we introduce some basic notations and
definitions from spectral graph theory [32]. Throughout, we
use bold font to denote matrices and vectors, and we denote
the nth component of a vector f by either f(n), (f)n, or fn.
We model the communication network with an undirected,
weighted graph G = {V, E , w}, which consists of a set of
vertices V , a set of edges E , and a weight function w : E → R+

that assigns a non-negative weight to each edge. We assume
the number of nodes in the network, N = |V|, is finite, and the
graph is connected. The adjacency (or weight) matrix W for
a weighted graph G is the N ×N matrix with entries Wm,n,
where

Wm,n =

{
w(e), if e ∈ E connects vertices m and n
0, otherwise

.

Therefore, the weighted graph G can be equivalently repre-
sented as the triplet {V, E ,W}. The degree of each vertex
is the sum of the weights of all the edges incident to it. We
define the degree matrix D to have diagonal elements equal to
the degrees, and zeros elsewhere. The non-normalized graph
Laplacian is then defined as L := D−W.

A signal or function f : V → RN defined on the vertices of
the graph may be represented as a vector f ∈ RN , where the
nth component of the vector f represents the function value
at the nth vertex in V . For any f ∈ RN , L satisfies

(Lf)(m) =
∑
m∼n

Wm,n ·
(
f(m)− f(n)

)
,

where m ∼ n indicates vertices m and n are connected.
As the graph Laplacian L is a real symmetric matrix, it

has a complete set of orthonormal eigenvectors. We denote
these by {χ`}`=0,1,...,N−1. These eigenvectors have associ-
ated real, non-negative eigenvalues {λ`}`=0,1,...,N−1 satisfying
Lχ` = λ`χ` for ` = 0, 1, . . . , N − 1. Zero appears as an
eigenvalue with multiplicity equal to the number of connected
components of the graph [32]. Therefore, without loss of
generality, we assume the eigenvalues of the Laplacian of the
connected graph G to be ordered as

0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax.

Just as the classical Fourier transform is the expansion of
a function f in terms of the eigenfunctions of the Laplace
operator

f̂(ω) = 〈eiωx, f〉 =

∫
R

f(x)e−iωx dx,
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the graph Fourier transform f̂ of any function f ∈ RN
on the vertices of G is the expansion of f in terms of the
eigenfunctions of the graph Laplacian. It is defined by

f̂(`) := 〈χ`, f〉 =

N∑
n=1

χ∗` (n)f(n), (2)

where we adopt the convention that the inner product be
conjugate-linear in the first argument. The inverse graph
Fourier transform is given by

f(n) =

N−1∑
`=0

f̂(`)χ`(n). (3)

III. CHEBYSHEV POLYNOMIAL APPROXIMATION OF
GRAPH FOURIER MULTIPLIERS

In this section, we introduce graph Fourier multiplier opera-
tors, unions of graph Fourier multiplier operators, and a com-
putationally efficient approximation to unions of graph Fourier
multiplier operators based on shifted Chebyshev polynomials.
All methods discussed here are for a centralized setting, and
we extend them to a distributed setting in Section IV.

A. Graph Fourier Multiplier Operators

For a function f defined on the real line, a Fourier multi-
plier operator or filter Ψ reshapes the function’s frequencies
through multiplication in the Fourier domain:

Ψ̂f(ω) = g(ω)f̂(ω), for every frequency ω.

Equivalently, denoting the Fourier and inverse Fourier trans-
forms by F and F−1, we have

Ψf(x) = F−1
(
g(ω)F(f)(ω)

)
(x) (4)

=
1

2π

∫
R

g(ω)f̂(ω)eiωx dω.

We can extend this straightforwardly to functions defined
on the vertices of a graph by replacing the Fourier transform
and its inverse in (4) with the graph Fourier transform and
its inverse, defined in (2) and (3). Namely, a graph Fourier
multiplier operator is a linear operator Ψ : RN → RN that
can be written as

Ψf(n) = F−1
(
g(λ`)F(f)(`)

)
(n)

=

N−1∑
`=0

g(λ`)f̂(`)χ`(n). (5)

We refer to g(·) as the multiplier. Equivalently, borrowing
notation from the theory of matrix functions [33], we can write

Ψ = g(L) :=

N−1∑
`=0

g(λ`)χ`χ
∗
` = χg(Λ)χ,

where g(Λ) is a diagonal matrix with diagonal elements
{g(λ`)}`=0,1,...,N−1. A high-level intuition behind (5) is as
follows. The eigenvectors corresponding to the lowest eigen-
values of the graph Laplacian are the “smoothest” in the
sense that |χ`(m)− χ`(n)| is small for neighboring vertices

1N 1

f N

=

Ψ2

Ψη

ηN .
.
.

Ψ1

(Ψηf) 1

(Ψ1f) 1

ηN


(Ψ1f) N



(Ψηf) N

.

.

.

(Ψ2f) 1

(Ψ2f) N



Φf =

Fig. 1. Application of a union of graph Fourier multiplier operators.

m and n. At the extreme is χ0, which is a constant vector
(χ0(m) = χ0(n) for all m and n). The inverse graph Fourier
transform (3) provides a representation of a signal f as a
superposition of the orthonormal set of eigenvectors of the
graph Laplacian. The effect of the graph Fourier multiplier
operator Ψ is to modify the contribution of each eigenvector.
For example, applying a multiplier g(·) that is 1 for all λ`
below some threshold, and 0 for all λ` above the threshold is
equivalent to projecting the signal onto the eigenvectors of the
graph Laplacian associated with the lowest eigenvalues. This
is analogous to low-pass filtering in the continuous domain.
Section VI contains further intuition about and examples of
graph Fourier multiplier operators. For more properties of the
graph Laplacian eigenvectors, see [34] and references therein.

B. Unions of Graph Fourier Multiplier Operators

In order for our distributed computation method of the next
section to be applicable to a wider range of applications,
we can generalize slightly from graph Fourier multipliers
to unions of graph Fourier multiplier operators. A union
of graph Fourier multiplier operators is a linear operator
Φ : RN → RηN (η ∈ {1, 2, . . .}) whose application to a
function f ∈ RN can be written as (see also Figure 1)

Φf = [Ψ1; Ψ2; . . . ; Ψη] f

= [(Ψ1f)1; . . . ; (Ψ1f)N ; . . . ; (Ψηf)1; . . . ; (Ψηf)N ]

= [(Φf)1; (Φf)2; . . . ; (Φf)ηN ] ,

where for every j, Ψj : RN → RN is a graph Fourier
multiplier operator with multiplier gj(·), and

(Φf)(j−1)N+n =

N−1∑
`=0

gj(λ`)f̂(`)χ`(n), (6)

for j ∈ {1, 2, . . . , η}, n ∈ {1, 2, . . . , N}.

C. The Chebyshev Polynomial Approximation

Exactly computing Φf requires explicit computation of the
entire set of eigenvectors and eigenvalues of L, which becomes
computationally challenging as the size of the network, N , in-
creases, even in a centralized setting. As discussed in detail in
[27, Section 6], a computationally efficient approximation Φ̃f
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of Φf can be computed by approximating each multiplier gj(·)
by a truncated series of shifted Chebyshev polynomials. Doing
so circumvents the need to compute the full set of eigenvectors
and eigenvalues of L. We summarize this approach below.

For y ∈ [−1, 1], the Chebyshev polynomials
{Tk(y)}k=0,1,2,... are generated by

Tk(y) :=


1, if k = 0

y, if k = 1

2yTk−1(y)− Tk−2(y), if k ≥ 2

.

These Chebyshev polynomials form an orthogonal basis for

L2

(
[−1, 1], dy√

1−y2

)
. So every function h on [−1, 1] that is

square integrable with respect to the measure dy/
√

1− y2
can be represented as h(y) = 1

2b0 +
∑∞
k=1 bkTk(y), where

{bk}k=0,1,... is a sequence of Chebyshev coefficients that
depends on h(·). For a detailed overview of Chebyshev
polynomials, including the above definitions and properties,
see [35]-[37].

By shifting the domain of the Chebyshev polynomials to
[0, λmax] via the transformation x = λmax

2 (y + 1), we can
represent each multiplier as

gj(x) =
1

2
cj,0 +

∞∑
k=1

cj,kT k(x), for all x ∈ [0, λmax], (7)

where

T k(x) := Tk

(
x− α
α

)
,

α :=
λmax

2
, and

cj,k :=
2

π

∫ π

0

cos(kθ) gj

(
α
(
cos(θ) + 1

))
dθ. (8)

For k ≥ 2, the shifted Chebyshev polynomials satisfy

T k(x) =
2

α
(x− α)T k−1(x)− T k−2(x).

Thus, for any f ∈ RN , we have

Tk(L)f =
2

α
(L − αI)

(
Tk−1(L)f

)
−Tk−2(L)f , (9)

where Tk(L) ∈ RN×N and the nth element of Tk(L)f is
given by

(
Tk(L)f

)
n

:=

N−1∑
`=0

T k(λ`)f̂(`)χ`(n). (10)

Now, to approximate the operator Φ, we can approximate
each multiplier gj(·) by the first K+1 terms in its Chebyshev
polynomial expansion (7). Then, for every j ∈ {1, 2, . . . , η}

and n ∈ {1, 2, . . . , N}, we have(
Φ̃f
)
(j−1)N+n

:=

(
1

2
cj,0f +

K∑
k=1

cj,kTk(L)f

)
n

(11)

(3),(10)
=

N−1∑
`=0

[
1

2
cj,0 +

K∑
k=1

cj,kT k(λ`)

]
f̂(`)χ`(n)

≈
N−1∑
`=0

[
1

2
cj,0 +

∞∑
k=1

cj,kT k(λ`)

]
f̂(`)χ`(n)

(7)
=

N−1∑
`=0

gj(λ`)f̂(`)χ`(n)

(6)
= (Φf)(j−1)N+n .

To recap, we propose to compute Φ̃f by first computing the
Chebyshev coefficients {cj,k}j=1,2,...,η; k=1,2,...,K according
to (8), and then computing the sum in (11). The computational
benefit of the Chebyshev polynomial approximation arises
in (11) from the fact the vector Tk(L)f can be computed
recursively from Tk−1(L)f and Tk−2(L)f according to (9).
The computational cost of doing so is dominated by the
matrix-vector multiplication of the graph Laplacian L, which
is proportional to the number of edges, |E| [27]. Therefore,
if the underlying communication graph is sparse (i.e., |E|
scales linearly with the network size N ), it is far more
computationally efficient to compute Φ̃f than Φf . Finally,
we note that in practice, setting the Chebyshev approximation
order K to around 20 results in Φ̃ approximating Φ very
closely in all of the applications we have examined.

IV. DISTRIBUTED CHEBYSHEV POLYNOMIAL
APPROXIMATION

In the previous section, we showed that the Chebyshev
polynomial approximation to a union of graph Fourier mul-
tipliers provides computational efficiency gains, even in a
centralized computation setting. In this section, we discuss the
second benefit of the Chebyshev polynomial approximation: it
is easily distributable.

A. Distributed Computation of Φ̃f

We consider the following scenario. There is a network of N
nodes, and each node n begins with the following knowledge:
• f(n), the nth component of the signal f
• The identity of its neighbors, and the weights of the graph

edges connecting itself to each of its neighbors
• The Chebyshev coefficients, cj,k, for j ∈ {1, 2, . . . , η}

and k ∈ {0, 1, 2, . . . ,K}. These can either be computed
centrally according to (8) and then transmitted throughout
the network, or each node can begin with knowledge
of the multipliers, {gj(·)}j=1,2,...,η, and precompute the
Chebyshev coefficients according to (8)

• An upper bound on λmax, the largest eigenvalue of the
graph Laplacian. This bound need not be tight, so we
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,K ,
and λmax

Outputs at node n:
{(

Φ̃f
)
(j−1)N+n

}
j=1,2,...,η

1: Set
(
T0(L)f

)
n

= fn
2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn
4: Compute and store(

T1(L)f
)
n

=
∑

m∈Nn∪n

1

α
Ln,mfm − fn

5: for k = 2, . . . ,K do
6: Transmit

(
Tk−1(L)f

)
n

to all neighbors Nn
7: Receive

(
Tk−1(L)f

)
m

from all neighbors Nn
8: Compute and store(

Tk(L)f
)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
Tk−1(L)f

)
m

− 2
(
Tk−1(L)f

)
n
−
(
Tk−2(L)f

)
n

9: end for
10: for j ∈ {1, 2, . . . , η} do
11: Output(

Φ̃f
)
(j−1)N+n

=
1

2
cj,0fn +

K∑
k=1

cj,k
(
Tk(L)f

)
n

12: end for

can precompute a bound such as λmax ≤ max{d(m) +
d(n);m ∼ n}, where d(n) is the degree of node n [38]

The task is for each network node n to compute{(
Φ̃f
)
(j−1)N+n

}
j=1,2,...,η

(12)

by iteratively exchanging messages with its local neighbors in
the network and performing some computations.

As a result of (11), for node n to compute the desired
sequence in (12), it suffices to learn

{(
Tk(L)f

)
n

}
k=1,2,...,K

.
Note that

(
T1(L)f

)
n

=
(
1
α (L − αI)f

)
n

and Ln,m = 0
for all nodes m that are not neighbors of node n. Thus, to
compute

(
T1(L)f

)
n

, node n just needs to receive f(m) from
all neighbors m. So once all nodes send their component of
the signal to their neighbors, they are able to compute their
respective components of T1(L)f . In the next step, each node
n sends the newly computed quantity

(
T1(L)f

)
n

to all of
its neighbors, enabling the distributed computation of T2(L)f
according to (9). The iterative process of local communication
and computation continues for K rounds until each node n has
computed the required sequence

{(
Tk(L)f

)
n

}
k=1,2,...,K

. In
all, 2K|E| messages of length 1 are required for every node n
to compute its sequence of coefficients in (12) in a distributed
fashion. This distributed computation process is summarized
in Algorithm 1.

An important point to emphasize again is that although the
operator Φ and its approximation Φ̃ are defined through the
eigenvectors of the graph Laplacian, the Chebyshev polyno-
mial approximation helps the nodes apply the operator to the
signal without explicitly computing (individually or collec-
tively) the eigenvalues or eigenvectors of the Laplacian, other
than the upper bound on its spectrum. Rather, they initially
communicate their component of the signal to their neigh-
bors, and then communicate simple weighted combinations
of the messages received in the previous stage in subsequent
iterations. In this way, information about each component
of the signal f diffuses through the network without direct
communication between non-neighboring nodes.

B. Distributed Computation of Φ̃∗a

The application of the adjoint Φ̃∗ of the Chebyshev poly-
nomial approximate operator Φ̃ can also be computed in a
distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that(
Φ̃∗a

)
n

=

η∑
j=1

(
1

2
cj,0aj +

K∑
k=1

cj,kTk(L)aj

)
n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2K|E| messages, each a vector of length η, are
required for every node n to compute

(
Φ̃∗a

)
n

. The distributed

computation of Φ̃∗a is summarized in Algorithm 2.

C. Distributed Computation of Φ̃∗Φ̃f

Using the property of the Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write(
Φ̃∗Φ̃f

)
n

=

(
1

2
d0f +

2K∑
k=1

dkTk(L)f

)
n

(see [27, Section 6.1] for a similar calculation and an explicit
formula for the coefficients {dk}k=0,1,...,2K). Therefore, with
each node n starting with f(n) as in Section IV-A, the
nodes can compute Φ̃∗Φ̃f in a distributed manner using
4K|E| messages of length 1, with each node n finishing with
knowledge of

(
Φ̃∗Φ̃f

)
n

.

D. Example: Distributed Smoothing

Perhaps the simplest example application of the distributed
Chebyshev approximation method is distributed smoothing
with the heat kernel as the graph Fourier multiplier. One way
to smooth a signal y ∈ RN is to compute Hty, where, for
a fixed t, (Hty)(n) :=

∑N−1
`=0 e−tλ` ŷ(`)χ`(n). Ht clearly
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Algorithm 2 Distributed Computation of Φ̃∗a

Inputs at node n: {aj(n)}j=1,2,...,η , Ln,m ∀m, λmax,
and {ck,j}j=1,2,...,η; k=0,1,...,K ,

Output at node n:
(
Φ̃∗a

)
n

1: for j = 1, 2, . . . , η do
2: Set

(
T0(L)aj

)
n

= aj(n)
3: end for
4: Transmit {aj(n)}j=1,2,...,η to all neighbors Nn := {m :
Ln,m < 0}

5: Receive {aj(m)}j=1,2,...,η from all neighbors Nn
6: for j = 1, 2, . . . , η do
7: Compute and store(

T1(L)aj
)
n

=
∑

m∈Nn∪n

2

α
Ln,maj(m)− 2aj(n)

8: end for
9: for k = 2, . . . ,K do

10: Transmit
{(

Tk−1(L)aj
)
n

}
j=1,2,...,η

to all neighbors
Nn

11: Receive
{(

Tk−1(L)aj
)
m

}
j=1,2,...,η

from all neighbors
Nn

12: for j = 1, 2, . . . , η do
13: Compute and store(

Tk(L)aj
)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
Tk−1(L)aj

)
m

− 2
(
Tk−1(L)aj

)
n
−
(
Tk−2(L)aj

)
n

14: end for
15: end for
16: Output(

Φ̃∗a
)
n

=

η∑
j=1

{
1

2
cj,0aj(n) +

K∑
k=1

cj,k
(
Tk(L)aj

)
n

}
.

satisfies our definition of a graph Fourier multiplier operator.
In the context of a centralized image smoothing application,
[18] discusses in detail the heat kernel, Ht, and its relationship
to classical Gaussian filtering. Similar to the example at the
end of Section III-A, the main idea is that the multiplier
g(λ`) = e−tλ` acts as a low-pass filter that attenuates the
higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht. Each node
starts with an observation yn and finishes with (H̃ty)n. We
discuss more complicated application examples in Section VI.

V. GENERALIZED GRAPH MULTIPLIER OPERATORS

While defining the graph Fourier transform in terms of
the eigenvectors of the graph Laplacian preserves a close
analogy with the classical Fourier transform and leads to
natural notions of smoothness for signals defined on graphs,

the distributed computational methods of the previous section
do not rely on specific properties of the graph Laplacian
other than its real symmetric positive semi-definite nature. In
this section, we generalize the definition of a graph Fourier
multiplier operator by replacing L with any real symmetric
positive semi-definite matrix.

A. Definition and Equivalent Characterization of a General-
ized Graph Multiplier Operator

Definition 1: Ψ is a generalized graph multiplier operator
with respect to the real symmetric positive semi-definite matrix
P if there exists a function g : [0, λmax(P)] → R and a
complete set {χ`}`=0,1,...,N−1 of orthonormal eigenvectors of
P such that

Ψ =

N−1∑
`=0

g(λ`)χ`χ
∗
` , (14)

where {λ`}`=0,1,...,N−1 are the eigenvalues of P.
We remark again that, for a given real symmetric positive

semi-definite matrix P, our definition of the class of gener-
alized graph multiplier operators with respect to P matches
the definition of the class of matrix functions of P of the
form Ψ = g(P) (e.g., [33, p. 5]). We now provide equivalent
characterizations of the class of generalized graph multiplier
operators with respect to a fixed matrix.

Proposition 1: The following are equivalent:
(a) Ψ is a graph multiplier operator with respect to P.
(b) Ψ and P are simultaneously diagonalizable by a unitary

matrix; i.e., there exists a unitary matrix U such that
U∗ΨU and U∗PU are both diagonal matrices.

(c) Ψ and P commute; i.e., ΨP = PΨ.
Proof of Proposition 1: (a) implies (b) if we set the ith

column of U to χi−1, and (b) implies (a) if we set χ` to the
(` + 1)st column of U and g(λ`) to the (` + 1)st diagonal
element of U∗ΨU. The equivalence between (b) and (c) is
shown in [39, Corollary 4.5.18].

B. Bound on the Approximation Error

Another interesting question is how closely a graph Fourier
multiplier (or union of such operators) is approximated by its
Chebyshev polynomial approximation. The following result,
which bounds the spectral norm of their difference, is used in
Section VI-B.

Proposition 2: Let Φ be a union of η generalized graph
multiplier operators; i.e., it has the form given in (6), where
{χ`}`=0,1,...,N−1 are the eigenvectors of a real positive semi-
definite matrix P. Let Φ̃ be the order K Chebyshev polyno-
mial approximation of Φ. Define

B(K) := max
j=1,2,...,η

{
sup

λ∈[0,λmax]

{∣∣gj(λ)− pKj (λ)
∣∣}} , (15)

where λmax is the largest eigenvalue of P, and pKj (·) is the
order K Chebyshev polynomial approximation of gj(·). Then

|||Φ− Φ̃|||2 := max
f 6=0

‖(Φ− Φ̃)f‖2
‖f‖2

≤ B(K)
√
η. (16)
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The proof of Proposition 2 is included in the Appendix.
Finally, note that when the multipliers gj(·) are smooth, the

Chebyshev approximations pKj (·) converge to the multipliers
rapidly as K increases. In particular, the following proposition
applies.

Proposition 3 (Theorem 5.14, [35]): If gj(·) has M + 1
continuous derivatives for all j, then B(K) = O

(
K−M

)
.

The Chebyshev polynomial approximation and distributed
computation methods presented in Section III and IV also
apply to these generalized graph multiplier operators. This
generalization significantly extends the applicability of our
distributed computation method, and is especially useful in
distributed applications where we can first choose the eigenba-
sis to use in the transform, and then design the communication
graph accordingly.

VI. ILLUSTRATIVE APPLICATIONS

In this section, we provide more detailed explanations of
how our novel distributed approximation framework can be
used in the context of a diverse set of distributed signal
processing tasks in sensor networks. To be clear, our contribu-
tion here is not to suggest new signal processing techniques,
but simply to show how a subset of the existing centralized
techniques can be efficiently implemented in a distributed
manner.

A. Denoising with Distributed Tikhonov Regularization
In this section, we consider the distributed denoising task

discussed in Section I. To recall, we start with a noisy signal
y ∈ RN that is defined on a graph of N sensors and has been
corrupted by uncorrelated additive Gaussian noise. Through
an iterative process of local communication and computation,
we would like each sensor to end up with a denoised estimate
of its component, f0n, of the true underlying signal, f0.

To solve this problem, we enforce a priori information that
the target signal is smooth with respect to the underlying graph
topology. To enforce the global smoothness prior, we consider
the class of regularization terms fTLrf for r ≥ 1. The resulting
distributed regularization problem has the form

argmin
f

τ

2
‖f − y‖22 + fTLrf . (17)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally,

fTLf =
1

2

∑
n∈V

∑
m∼n

Wm,n

(
f(m)− f(n)

)2
,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 4: The solution to (17) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ`) = τ

τ+2λr`
.1

1This filter g(λ`) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.
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Fig. 2. A network of 500 sensors placed randomly in the [0, 1] × [0, 1]
square. The background colors represent the values of the smooth signal f0.

The proof of Proposition 4 is included in the Appendix.
So, one way to do distributed denoising is to compute

R̃y, the Chebyshev polynomial approximation of Ry, in a
distributed manner via Algorithm 1. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0n = n2x + n2y − 1, where nx and ny are
node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 4, with τ = r = 1 and K = 15. The
multiplier and its Chebyshev polynomial approximations are
shown in Figure 4, and the denoised signal R̃y is shown in
Figure 5. We repeated this entire experiment 1000 times, with
a new random graph and random noise each time, and the
average mean square error for the denoised signals was 0.013,
as compared with 0.250 average mean square error for the
noisy signals.

B. Denoising with Distributed lasso

We now consider an alternative method of distributed de-
noising that is better suited to situations where we start with
a prior belief that the signal is not globally smooth, but
rather piecewise smooth, which corresponds to the signal being
sparse in the spectral graph wavelet domain [27].

The spectral graph wavelet transform, Ξ, defined in [27],
is precisely of the form of Φ in (6). Namely, it is composed
of one multiplier, h(·), that acts as a low-pass filter to stably
represent the signal’s low frequency content, and J wavelet
operators, defined by gj(λ`) = g(tjλ`), where {tj}j=1,2,...,J

is a set of scales and g(·) is the wavelet multiplier that acts
as a band-pass filter.

The most common way to incorporate a sparse prior in a
centralized setting is to regularize via a weighted version of the
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χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50
is far less smooth with some large differences across neighboring nodes.
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Exact Multiplier
Chebyshev Polynomial Approximation, K=5
Chebyshev Polynomial Approximation, K=15

Fig. 4. The regularizing multiplier τ
τ+2λr

`
associated with the graph

Fourier multiplier operator R from Proposition 4. Here, r = τ = 1.
Shifted Chebyshev polynomial approximations to the multiplier are shown
for different values of the approximation order K.

least absolute shrinkage and selection operator (lasso) [40],
also called basis pursuit denoising [41]:

argmin
a

1

2
‖y −Ξ∗a‖22 + ‖a‖1,µ , (18)

where ‖a‖1,µ :=
∑N(J+1)
i=1 µi |ai| and µi > 0 for all i. The

optimization problem in (18) can be solved for example by
iterative soft thresholding [42]. The initial estimate of the
wavelet coefficients a(0) is arbitrary, and at each iteration of
the soft thresholding algorithm, the update of the estimated
wavelet coefficients is given by

a
(β)
i = Sµiγ

((
a(β−1) + γΞ

[
y −Ξ∗a(β−1)

])
i

)
,

i = 1, 2, . . . , N(J + 1); β = 1, 2, . . . (19)

where γ is the step size and Sµiγ is the shrinkage or soft
thresholding operator

Sµiγ(z) :=

{
0 , if | z |≤ µiγ
z − sgn(z)µiγ , o.w. .

Original Signal

(a)

Noise

(b)

Noisy Signal

(c)

Denoised Signal

(d)

Fig. 5. A denoising example on the graph shown in Figure 2, using the
regularizing multiplier shown in Figure 4. (a) The original signal n2

x+n
2
y−1,

where nx and ny are the x and y coordinates of sensor node n. (b) The
additive Gaussian noise. (c) The noisy signal y. (d) The denoised signal R̃y.

The iterative soft thresholding algorithm converges to a∗, the
minimizer of (18), if γ < 2

‖Ξ∗‖2 [43]. The final denoised
estimate of the signal is then given by Ξ∗a∗.

We now turn to the issue of how to implement the above
algorithm in a distributed fashion by sending messages be-
tween neighbors in the network. One option would be to
use the distributed lasso algorithm of [25], [26], which is a
special case of the alternating direction method of multipliers
[44, p. 253]. In every iteration of that algorithm, each node
transmits its current estimate of all the wavelet coefficients to
its local neighbors. With the spectral graph wavelet transform,
that method requires 2|E| total messages at every iteration,
with each message being a vector of length N(J + 1). A
method where the amount of communicated information does
not grow with N (beyond the number of edges, |E|) would be
highly preferable.

The Chebyshev polynomial approximation of the spectral
graph wavelet transform allows us to accomplish this goal.
Our approach, which is summarized in Algorithm 3, is to ap-
proximate Ξ by Ξ̃, and use the distributed implementation of
the approximate wavelet transform and its adjoint to perform
iterative soft thresholding in order to solve

argmin
ã

1

2
‖y − Ξ̃∗ã‖22 + ‖ã‖1,µ. (20)

In the first soft thresholding iteration, each node n must
learn (Ξ̃y)(j−1)N+n at all scales j, via Algorithm 1. These
coefficients are then stored for future iterations. In the βth

iteration, each node n must learn the J + 1 coefficients
of Ξ̃Ξ̃∗ã(β−1) centered at n, by sequentially applying the
operators Ξ̃∗ and Ξ̃ in a distributed manner via Algorithms
2 and 1, respectively. When a stopping criterion for the soft
thresholding is satisfied, the adjoint operator Ξ̃∗ is applied
again in a distributed manner to the resulting coefficients ã∗,
and node n’s denoised estimate of its signal is

(
Ξ̃∗ã∗

)
n

. The
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stopping criterion may simply be a fixed number of iterations,
or it may be when

∣∣∣(Ξ̃∗ã(β))
n
−
(
Ξ̃∗ã(β−1)

)
n

∣∣∣ < ε for all
n and some small ε. Finally, note that we could also optimize
the weights µ by performing distributed cross-validation, as
discussed in [25], [26].

We now examine the communication requirements of this
approach. Recall from Section IV that 2K|E| messages of
length 1 are required to compute Ξ̃y in a distributed fashion.
Distributed computation of Ξ̃Ξ̃∗ã(β−1), the other term needed
in the iterative thresholding update (19), requires 2K|E| mes-
sages of length J+1 and 2K|E|messages of length 1. The final
application of the adjoint operator Ξ̃∗ to recover the denoised
signal estimates requires another 2K|E| messages, each a
vector of length J + 1. Therefore, the Chebyshev polynomial
approximation to the spectral graph wavelet transform enables
us to iteratively solve the weighted lasso in a distributed man-
ner where the communication workload only scales with the
size of the network through |E|, and is otherwise independent
of the network dimension N .

The reconstructed signal in Algorithm 3 is Ξ̃∗ã∗, where ã∗
is the solution to the lasso problem (20). A natural question is
how good of an approximation Ξ̃∗ã∗ is to Ξ∗a∗, where a∗ is
the solution to the original lasso problem (18). The following
proposition bounds the squared distance between these two
quantities by a term proportional to the spectral norm of the
difference between the exact and approximate spectral graph
wavelet operators.

Proposition 5: ‖Ξ̃∗ã∗−Ξ∗a∗‖22 ≤ C|||Ξ̃−Ξ|||2, where |||·|||2
is the spectral norm, and the constant C =

‖y‖32
mini µi

.
Combining Proposition 5, whose proof is included in the

Appendix, with (16), we have

‖Ξ̃∗ã∗ −Ξ∗a∗‖22 ≤
‖y‖32

mini µi
B(K)

√
(J + 1). (21)

Thus, as we increase the approximation order K, B(K) and
the right-hand side of (21) tend toward zero (at a speed
dependent on the smoothness of the graph wavelet multipliers
g(·) and h(·)).

Finally, to illustrate the distributed lasso, we again consider
a numerical example where we place 500 sensors randomly in
the [0, 1]× [0, 1] square, with the same graph construction as
the numerical example in Section VI-A. This time, however,
the underlying signal is only piecewise-smooth, with the nth

component given by

f0n =

{
−2nx + 0.5, if ny ≥ 1− nx
n2x + n2y + 0.5, if ny < 1− nx

.

We again corrupt each component of the signal f0 with uncor-
related additive Gaussian noise with mean zero and standard
deviation 0.5. We then solve problem (20) in a distributed
manner using Algorithm 3. We use a spectral graph wavelet
transform with 6 wavelet scales, with the kernels automatically
designed by the spectral graph wavelets toolbox [45]. In
Algorithm 3, we run 300 soft thresholding iterations and take
γ = 0.2, µi = 0.75 for all the wavelet coefficients, and

Algorithm 3 Distributed lasso
Inputs at node n: yn, Ln,m ∀m, {ck,j}j=1,2,...,J+1; k=0,1,...,K ,
λmax, γ, and

{
µ(j−1)N+n

}
j=1,2,...,J+1

Outputs at node n: yn∗, the denoised estimate of f0n

1: Arbitrarily initialize
{(

ã(0)
)
(j−1)N+n

}
j=1,2,...,J+1

2: Set β = 1

3: Compute and store
{(

Ξ̃y
)
(j−1)N+n

}
j=1,2,...,J+1

via Algorithm 1
4: while stopping criterion not satisfied do

5: Compute and store
{(

Ξ̃Ξ̃∗ã(β−1)
)
(j−1)N+n

}
j=1,2,...,J+1

via Algorithm 2, followed by Algorithm 1
6: for j = 1, 2, . . . , J + 1 do
7: Compute and store(

ã(β)
)
(j−1)N+n

= S(µ(j−1)N+n)γ

 ã
(β−1)
(j−1)N+n + γ

(
Ξ̃y
)
(j−1)N+n

−γ
(
Ξ̃Ξ̃∗ã(β−1)

)
(j−1)N+n


8: end for
9: Set β = β + 1

10: end while
11: for j = 1, 2, . . . , J + 1 do
12: Set (ã∗)(j−1)N+n =

(
ã(β)

)
(j−1)N+n

13: end for
14: Compute and store yn∗ =

(
W̃∗ã∗

)
n

via Algorithm 2
15: Output yn∗

µi = 0.01 for all the scaling coefficients.2 We do not perform
any distributed cross-validation to optimize the weights µ.
We repeated this entire experiment 1000 times, with a new
random graph and random noise each time.3 The average
mean square errors were 0.250 for the noisy signals, 0.098
for the estimates produced by the Tikhonov regularization
method (17), 0.088 for the denoised estimates produced by the
distributed lasso with the exact wavelet operator, and 0.079 for
the denoised estimates produced by the distributed lasso with
the approximate wavelet operator with K = 15. Note that the
approximate solution does not necessarily result in a higher
mean square error than the exact solution.

C. Distributed Inverse Filtering

We now consider the situation where node n observes the
nth component of y = Ψf + ν, where Ψ is a graph Fourier
multiplier operator with multiplier gΨ(·), and ν is uncorrelated
Gaussian noise. The task of the network is to recover f by
inverting the effect of the graph multiplier operator Ψ. This
is the distributed graph analog to the deblurring problem in

2The scaling coefficients in the spectral graph wavelet transform are not
expected to be sparse.

3The reported errors are averaged over the 441 random graph realizations
that were connected.
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imaging, which is discussed in [46, Chapter 7]. As discussed
in [46, Chapter 7], trying to recover f by simply applying the
inverse filter in the graph Fourier domain, i.e., setting

f∗(n) =

N−1∑
`=0

(
1

gΨ(λ`)

)
ŷ(`)χ`(n)

=

N−1∑
`=0

(
f̂(`) +

ν̂(`)

gΨ(λ`)

)
χ`(n)

= f(n) +

N−1∑
`=0

(
ν̂(`)

gΨ(λ`)

)
χ`(n), (22)

does not work well when gΨ(·) is zero (or close to zero) for
high frequencies, because the summation in (22) blows up,
dominating f(n). Therefore, we again use the prior that the
signal is smooth with respect to the underlying graph structure,
and approximately solve the regularization problem

argmin
f

τ

2
‖y −Ψf‖22 + fTLrf (23)

in a distributed manner.
Proposition 6: The solution to (23) is given by Ry, where

R is a graph Fourier multiplier operator with multiplier

h(λ`) =
τgΨ(λ`)

τg2Ψ(λ`) + 2λr`
.

The proof of Proposition 6 is included in the Appendix.
From Proposition 6, we conclude that one method to perform
distributed inverse filtering is to compute R̃y, the Chebyshev
polynomial approximation to Ry, in a distributed manner
according to Algorithm 1.

D. Distributed Semi-Supervised Classification

The goal of semi-supervised classification is to learn a
mapping from the data points X = {x1, x2, . . . , xN} to
their corresponding labels Y = {y1, y2, . . . , yN}. The pairs
(xi, yi) are independently and identically sampled from a joint
distribution p(x, y) over the sample space X × Y, where
Y := {1, 2, . . . , κ} is the space of κ classes. The transductive
classification problem is to use the full set of data points
X = {x1, x2, . . . , xN} and the labels Yl = {y1, y2, . . . , yl}
associated with a small portion of the data (l << N ) to
predict the labels Yu = {yl+1, yl+2, . . . , yN} associated with
the unlabeled data Xu = {xl+1, xl+2, . . . , xN}.

Many semi-supervised learning methods represent the data
X by an undirected, weighted graph, and then force the
labels to be smooth with respect to the intrinsic structure
of this graph. We show how a number of these centralized
graph-based semi-supervised classification methods can be
distributed using Chebyshev polynomial approximation of
generalized graph multiplier operators. Throughout the sec-
tion, we assume there is one data point at each node in the
graph, and the nodes know the weights of the edges connecting
them to their neighbors in the graph. For example, each data
point could be at a different node in a sensor network, and the
weights could be a function of the physical distance between
the nodes, as in (1).

1) Centralized Graph-Based Methods: For different
choices of reproducing kernel Hilbert spaces (RKHS) H, a
number of centralized semi-supervised classification methods
estimate the label of the nth data point (n ∈ {l + 1, . . . , N})
by

arg max
j∈{1,2,...,κ}

F optnj , (24)

where Fopt is the solution to

Fopt = argmin
F∈RN×κ

κ∑
j=1

{
τ‖F:,j −Y:,j‖22 + ‖F:,j‖2H

}
. (25)

In (25), A:,j denotes the jth column of a matrix A; Y is a
N × κ matrix with entries

Yij =

{
1, if i ∈ {1, 2, . . . , l} and the label for point i is j
0, otherwise

;

and for some symmetric positive semi-definite matrix P ∈
RN×N ,

‖f‖2H = 〈f , f〉H := 〈f ,Pf〉 = fTPf . (26)

Note that for any symmetric positive semi-definite matrix
P, H endowed with the inner product defined in (26) is in
fact a RKHS on PRN , and its kernel is k(i, j) =

(
P−1

)
ij

,
where P−1 denotes the pseudoinverse if P is not invertible
[5, Theorem 4].

We now give some examples of graph-based centralized
semi-supervised classification methods that fall into this cate-
gory.

• In Tikhonov regularization, P = Lr (e.g., [10])
• Zhou et al. [11] take P = Lrnorm, where Lnorm :=

D−
1
2LD−

1
2 , and also consider a variant with P = LD−1

• Smola and Kondor [5] consider a variety of kernel
methods, including a diffusion process with P =[
exp

(
−σ2

2Lnorm

)]−1
, an inverse cosine with P =[

cos
(
πLnorm

4

)]−1
, and an r-step random walk with P =

(σIN − Lnorm)
−r, where σ ≥ 2 and IN is the N × N

identity matrix4

• Zhu et al. [13, Chapter 15] take the kernel approach a
step further by solving a convex optimization problem to
find a good P

• Ando and Zhang’s K-scaling method [14], [15] takes

P = (γIN + D)−
1
2 (γIN + L)(γIN + D)−

1
2 ,

which reduces to Lnorm when γ = 0

Before moving on to the distributed semi-supervised clas-
sification problem, we note two important properties of the
matrices P used in each of these above methods: 1) They
have the same sparsity pattern as L, and 2) they are easily
computable from L.

4All three of these P matrices can be written as P =
∑N−1
`=0 g(λ`)χlχ

T
l

for some g(·), where {χl}`=0,1,...,N−1 are the eigenvectors of Lnorm.
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2) Distributing the Centralized Graph-Based Methods:
Now, Fopt in (25) can be equivalently rewritten as the solution
to κ separate minimization problems, with

Fopt:,j = argmin
f∈RN

{
τ‖f −Y:,j‖22 + fTPf

}
. (27)

If P =
∑N−1
`=0 g(λ`)χlχ

T

l for some g(·), then to solve (27),
we can simply compute RY:,j , where R is a graph Fourier
multiplier operator with multiplier τ

τ+g(λ`)
. Otherwise, (27)

is essentially of the form of (17), with a different choice of
multiplier basis. That is, we can write the solution to (27) as
RY:,j , where R is a generalized graph multiplier operator of
the form (14), with respect to P. The multiplier is τ

τ+λ`
.

Therefore, the following is a method to distribute any of the
centralized semi-supervised classification methods that can be
written as (24) and (25):

1) Node n starts with or computes the entries of nth row
of P (which are easily computable from L in the cases
mentioned above)

2) Each node n forms the nth row of Y
3) For every j ∈ {1, 2, . . . , κ}, the nodes compute F̃opt:,j :=

R̃Y:,j in a distributed manner via Algorithm 1 (with P
replacing L)

4) Each node n with an unlabeled data point computes its
label estimate according to arg maxj∈{1,2,...,κ} F̃

opt
nj

By Propositions 2 and 3, as we increase the Chebyshev approx-
imation order K, the classification results of this distributed
method converge to results of the corresponding centralized
semi-supervised learning method.

VII. COMPARISON WITH OTHER DISTRIBUTED
PROCESSING METHODS

In this section, we compare our proposed method with two
variations of Jacobi’s iterative method. These variations are
not distributed computation methods per se, but rather central-
ized computation methods that can be easily parallelized and
that we deem most appropriate for the types of applications
mentioned above. We have not included the Gauss-Seidel
or conjugate gradient methods, for example, because of the
extra synchronicity considerations they would require in a
distributed implementation.

A. Jacobi’s Iterative Method

For P = Lnorm, Zhou et al. [11] propose to solve (25)
through the iteration

F(t+1) =
1

1 + τ

[
(IN −P) F(t) + τY

]
, (28)

where F(0) is arbitrary (they set it to Y).5 The iteration (28)
is in fact just a particular instance of Jacobi’s iterative method
(see, e.g., [47, Chapter 4]) to solve the set of linear equations

(τIN + P) Fopt = τY. (29)

We can generalize the application of the Jacobi method to
solve (27) for the other matrices P mentioned above, as

5In [13, Chapter 11], similar iterative label propagation methods from [8]
and [12] are also compared with the method of [11].

follows. We write P = PD − PO, where PD is a diagonal
matrix with diagonal entries equal to the diagonal entries of
P, and PO has zeros on the diagonal, and off-diagonal entries
equal to the negative of the off-diagonal entries of P. Then
the Jacobi iterative method to solve (29) is given by

F(t+1) = (τIN + PD)
−1
[
POF(t) + τY

]
. (30)

Note that for P = Lnorm, PD = IN and PO = IN −Lnorm,
so (30) reduces to (28).

So one alternative distributed semi-supervised classification
method is to compute the iterations (30) in a distributed
manner, with each node starting with knowledge of its row
of P and Y. In fact, the communication cost of one iteration
of (30) is the same as the communication cost of one iteration
of the distributed computation of R̃Y (lines 6 and 7 of
Algorithm 1). We present a numerical example comparing the
convergence rates of these methods in Section VII-C.

For graph multiplier operators whose multipliers have the
property g(λ`) 6= 0 for all `, we can generalize the Jacobi
method as follows. Suppose we wish to compute Ry, where
R is a graph multiplier operator with respect to P and with
multiplier g(·). This is equivalent to solving the linear system
of equations (

N−1∑
`=0

1

g(λ`)
χlχ

∗
l

)
f = y.

Define the matrix Q :=
∑N−1
`=0

1
g(λ`)

χlχ
∗
l and let Q = QD−

QO, where QD is the diagonal matrix with diagonal entries
equal to those of Q. Then the Jacobi iteration is

x(t+1) = Q−1D QOx(t) + Q−1D y. (31)

However, one immediate drawback of Jacobi’s method, as
compared with our proposed method, is that it does not always
converge. The iterations in (31) converge for any x(0) if and
only if the spectral radius of Q−1D QO is less than one [47,
Theorem 4.1]. One sufficient condition for the latter to be
true is that Q is strictly diagonally dominant, as is the case
for example when P = L and g(λ`) = τ

τ+λ`
.

B. Jacobi’s Iterative Method with Chebyshev Acceleration

When Jacobi’s method does converge, we can accelerate
(31) using the following algorithm [48, Algorithm 6.7]. Let
ρ be an upper bound on the spectral radius of Q−1D QO, and
define ξ(0) := 1, ξ(1) := ρ, and x(1) := Q−1D QOx(0) +Q−1D y.
Then for t ≥ 1, let

ξ(t+1) =
1

2
ρξ(t)

− 1
ξ(t−1)

, and

x(t+1) =
2ξ(t+1)

ρξ(t)
Q−1D QOx(t) − ξ(t+1)

ξ(t−1)
x(t−1)

+
2ξ(t+1)

ρξ(t)
Q−1D y. (32)

To distribute (32), each node n must first learn Qnn and
the nth row of QO. For example, when P = Lnorm and
g(λ`) = τ

τ+λ`
, as in (28), Qnn = τ+1

τ for all n, and the nth



12

row of QO is just − 1
τ times the nth row of Lnorm, which

the nodes can easily compute in a distributed manner. An
additional challenge in a distributed setting may be to calculate
the bound ρ.

Finally, note that while this method and our method share
the same namesake, the use of the Chebyshev polynomials
in the two is different. We use Chebyshev polynomials to
approximate the multiplier, whereas this method improves the
convergence speed of the Jacobi method by using Chebyshev
polynomials to choose the weights it uses to form the iterates
in (32) as weighted linear combinations of the iterates in (31).
See Section 6.5.6 of [48] for more details.

C. Numerical Comparison
An in-depth comparison of the convergence conditions and

rates of these methods with our proposed method is beyond
the scope of this paper, but we compare their convergence
rates here on a few simple numerical examples. We con-
sider the same random graph shown in Figure 2, and we
generate a signal f on the vertices of the graph with the
components of f independently and identically sampled from
a uniform distribution on [−10, 10]. For different choices of
positive semi-definite matrices P ∈ R500×500, we define
y :=

(
I500 + 1

τP
)
f , with τ = 0.5. Then, starting with

y, we iteratively compute an approximation to f in three
different distributable ways: 1) R̃y, where R̃ is the Chebyshev
approximation to R, a generalized graph multiplier operator
with respect to P, and with multiplier τ

τ+λ`
; 2) with the Jacobi

iteration (30); and 3) with the Jacobi iteration with Chebyshev
acceleration (32). Since the communication requirements of
our method with Chebyshev approximation order K are equal
to the communication requirements of K iterations of the latter
two methods, we plot the errors ‖f (K) − f‖2 (where f (K)

corresponds to R̃y with an order K approximation in the
first case or the result of the Kth iteration in the latter two
cases) on the same axes in Figure 6. We repeat the experiment
with P = Lnorm,L2,LD−1, and the three-step random walk
process (2I500 − Lnorm)

−3, for which the Jacobi method does
not converge. In these experiments, not only does our proposed
method always converge, but it converges faster than the
alternative methods.

VIII. CONCLUDING REMARKS

We presented a novel method to distribute a class of linear
operators called unions of graph multiplier operators. The main
idea is to approximate the graph multipliers by Chebyshev
polynomials, whose recurrence relations make them readily
amenable to distributed computation. Key takeaways from the
discussion and application examples include:
• A number of distributed signal processing tasks can be

represented as distributed applications of unions of graph
multiplier operators (and their adjoints) to signals on
weighted graphs. Examples include distributed smooth-
ing, denoising, inverse filtering, and semi-supervised
learning

• Graph Fourier multiplier operators are the graph analog
of filter banks, as they reshape functions’ frequencies
through multiplication in the Fourier domain

P = Lnorm
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Fig. 6. Three different distributed methods to approximately compute Ry,
where R is a graph multiplier operator with respect to P for different choices
of P. In all cases, the multiplier is g(λ`) = τ

τ+λ`
. The error shown is

‖f (K) − f‖2, where f (K) is either R̃y with an order K approximation for
our distributed Chebyshev approximation method, or the result of the Kth

iteration for the two Jacobi methods.

• The amount of communication required to perform the
distributed computations only scales with the size of the
network through the number of edges of the communica-
tion graph, which is usually sparse. Therefore, the method
is well suited to large-scale networks

• The approximate graph multiplier operators closely ap-
proximate the exact operators in practice, and for graph
multiplier operators with smooth multipliers, an upper
bound on the spectral norm of the difference of the
approximate and exact operators decreases rapidly as we
increase the Chebyshev approximation order

In addition to considering more applications, our ongoing
work includes analyzing robustness issues that arise in real
networks. For instance, we would like to incorporate quan-
tization and communication noise into the sensor network
model, in order to see how these propagate when using the
Chebyshev polynomial approximation approach to distributed
signal processing tasks. It is also important to analyze the
effects of a sensor node dropping out of the network or
communicating nodes losing synchronicity to ensure that the
proposed method is stable to these disturbances.

IX. APPENDIX

Proof of Proposition 2: Recall that Φ :=

[Ψ1; Ψ2; . . . ; Ψη] and Φ̃ :=
[
Ψ̃1; Ψ̃2; . . . ; Ψ̃η

]
are

ηN × N matrices composed of the N × N submatrices
Ψj := gj(L) = χgj(Λ)χ∗ and Ψ̃j := pKj (L) = χpKj (Λ)χ∗,
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respectively. For all j ∈ {1, 2, . . . , η}, we have

|||Ψj − Ψ̃j |||2 = |||χ
(
gj(Λ)− pKj (Λ)

)
χ∗|||2

= max
`∈{0,1,...,N−1}

√[
gj(λ`)− pKj (λ`)

]2
= max
`∈{0,1,...,N−1}

∣∣gj(λ`)− pKj (λ`)
∣∣

≤ B(K), (33)

where the second equality is from [39, Section 5.6.6, p. 295],
and the final inequality is from the definition (15) of B(K).
Then we have

|||Φ− Φ̃|||22 := max
f 6=0

‖(Φ− Φ̃)f‖22
‖f‖22

= max
f 6=0

∑η
j=1‖(Ψj − Ψ̃j)f‖22

‖f‖22

≤
η∑
j=1

max
f 6=0

‖(Ψj − Ψ̃j)f‖22
‖f‖22

=

η∑
j=1

|||Ψj − Ψ̃j |||22 ≤ η[B(K)]2,

where the final inequality follows from (33).
Proof of Proposition 4: The objective function in (17) is

convex in f . Differentiating it with respect to f , any solution
f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (34)

is a solution to (17).6 Taking the graph Fourier transform of
(34) yields

L̂rf∗(`) + τ
2

(
f̂∗(`)− ŷ(`)

)
= 0, (35)

∀` ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ` = λ`χ`), we have:

L̂rf∗(`) = χ∗`Lrf∗ = (Lrχ`)
∗
f∗ = λr`χ

∗
` f∗ = λr` f̂∗(`). (36)

Substituting (36) into (35) and rearranging, we have

f̂∗(`) =
τ

τ + 2λr`
ŷ(`), ∀` ∈ {0, 1, . . . , N − 1}. (37)

Finally, taking the inverse graph Fourier transform of (37), we
have

f∗(n) =

N−1∑
`=0

f̂∗(`)χ`(n) =

N−1∑
`=0

[
τ

τ + 2λr`

]
ŷ(`)χ`(n),

∀n ∈ {1, 2, . . . , N}.

Proof of Proposition 5: The solutions a∗ to (18) and ã∗
to (20) are not unique; however, their images Ξ∗a∗ and Ξ̃∗ã∗

6In the case r = 1, the optimality equation (34) corresponds to the
optimality equation in [17, Section III-A] with p = 2 in that paper.

are unique. To see this, for example for Ξ∗a∗, we can write
(18) equivalently as

argmin
a,b

1

2
‖y − b‖22 + ‖a‖1,µ

s.t. b = Ξ∗a.

Then by the strict convexity of ‖·‖22, the convexity of ‖·‖1,µ,
and Lemma 1 below, Ξ∗a∗ is unique.

Lemma 1: Let f1 : Rn → R be strictly convex, f2 : Rm →
R be convex, and A ∈ Rn×m. Then the solution (x∗,y∗) to

argmin
x∈Rn, y∈Rm

f1(x) + f2(y) (38)

s.t. x = Ay

is unique with respect to x∗ (but not necessarily y∗).
Proof of Lemma 1: Let (x1,y1) and (x2,y2) be in the

set (38), and assume x1 6= x2. Then by linearity, (x3,y3) :=
1
2 (x1,y1) + 1

2 (x2,y2) satisfies x3 = Ay3, and by the strict
convexity of f1(·) and convexity of f2(·),

f1(x3) + f2(y3) <
1

2
f1(x1) +

1

2
f1(x2) +

1

2
f2(y1) +

1

2
f2(y2)

= min
{x∈Rn, y∈Rm: x=Ay}

f1(x) + f2(y),

which is a contradiction. Thus, x1 = x2.
It follows from the first-order necessary and sufficient

optimality equations of the lasso problem (see, e.g., [43,
Proposition 5.3(iv)]) that for all a ∈ RN(J+1), we have

〈y −Ξ∗a∗,Ξ
∗a−Ξ∗a∗〉+ ‖a∗‖1,µ ≤ ‖a‖1,µ, (39)

and similarly

〈y − Ξ̃∗ã∗, Ξ̃
∗a− Ξ̃∗ã∗〉+ ‖ã∗‖1,µ ≤ ‖a‖1,µ. (40)

Taking a = ã∗ in (39) and a = a∗ in (40), summing (39) and
(40), and rearranging, we have

〈y −Ξ∗a∗,Ξ
∗ã∗ −Ξ∗a∗〉+ 〈y − Ξ̃∗ã∗, Ξ̃

∗a∗ − Ξ̃∗ã∗〉
= ‖y −Ξ∗a∗‖22 + 〈y −Ξ∗a∗,Ξ

∗ã∗ − y〉
+ ‖y − Ξ̃∗ã∗‖22 + 〈y − Ξ̃∗ã∗, Ξ̃

∗a∗ − y〉 ≤ 0. (41)

Then

‖Ξ̃∗ã∗ −Ξ∗a∗‖22
= ‖y −Ξ∗a∗‖22 + ‖y − Ξ̃∗ã∗‖22 − 2〈y −Ξ∗a∗,y − Ξ̃∗ã∗〉
(41)
≤ 〈y −Ξ∗a∗, (Ξ̃

∗ −Ξ∗)ã∗〉+ 〈y − Ξ̃∗ã∗, (Ξ
∗ − Ξ̃∗)a∗〉

≤ ‖y −Ξ∗a∗‖2 |||Ξ̃∗ −Ξ∗|||2 ‖ã∗‖2
+ ‖y − Ξ̃∗ã∗‖2 |||Ξ∗ − Ξ̃∗|||2 ‖a∗‖2 (42)

≤ ‖y‖2 |||Ξ̃−Ξ|||2 (‖ã∗‖2 + ‖a∗‖2) , (43)

where (42) follows from the Cauchy-Schwarz inequality, and
(43) follows from the facts that |||A∗|||2 = |||A|||2 [39, p. 309],
and ‖y − Ξ∗a∗‖2 ≤ ‖y‖2 and ‖y − Ξ̃∗ã∗‖2 ≤ ‖y‖2 by
the optimality of a∗ and ã∗, and the feasibility of a = 0.
Finally, by the uniqueness of Ξ∗a∗, ‖a∗‖1,µ is the same for
all solutions a∗, and{

min
i
µi

}
‖a∗‖2

≤ ‖a∗‖1,µ ≤
1

2
‖y −Ξ∗a∗‖22 + ‖a∗‖1,µ ≤

1

2
‖y‖22, (44)
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where the last inequality again follows from feasibility of a =
0. The bound in (44) also holds for {mini µi} ‖ã∗‖2, and
substituting these into (43) yields the desired result.

Proof of Proposition 6: As in Proposition 4, the objective
function in (23) is convex in f . Differentiating it with respect
to f , any solution f∗ to

Lrf∗ +
τ

2
Ψ∗(Ψf∗ − y) = 0 (45)

is a solution to (23). Note that

Ψ̂∗Ψf∗(`) = g2Ψ(λ`)f̂∗(`), (46)

and

Ψ̂∗y(`) = gΨ(λ`)ŷ(`). (47)

Therefore, taking the graph Fourier transform of (45) and
substituting in (36), (46), and (47) yields

f̂∗(`) =
τgΨ(λ`)

τg2Ψ(λ`) + 2λr`
ŷ(`), ∀` ∈ {0, 1, . . . , N − 1}.
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[34] T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of
Graphs. Lecture Notes in Mathematics, vol. 1915, Springer, 2007.

[35] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Chapman
and Hall, 2003.

[36] G. M. Phillips, Interpolation and Approximation by Polynomials. CMS
Books in Mathematics, Springer-Verlag, 2003.

[37] T. J. Rivlin, Chebyshev Polynomials. Wiley-Interscience, 1990.
[38] W. N. Anderson and T. D. Morley, “Eigenvalues of the Laplacian of a

graph,” Linear Multilinear Algebra, vol. 18, no. 2, pp. 141–145, 1985.
[39] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University

Press, 1990.
[40] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J.

Royal. Statist. Soc. B, vol. 58, no. 1, pp. 267–288, 1996.
[41] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis

pursuit,” SIAM J. Sci. Comp., vol. 20, no. 1, pp. 33–61, Aug. 1998.
[42] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding al-

gorithm for linear inverse problems with a sparsity constraint,” Commun.
Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, Nov. 2004.

[43] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Model. Sim., vol. 4, no. 4, pp. 1168–
1200, Nov. 2005.



15

[44] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Prentice-Hall, 1989.

[45] D. K. Hammond, “Spectral graph wavelets toolbox.” [Online].
Available: http://wiki.epfl.ch/sgwt
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