
Dynamic Clock Calibration via Temperature Measurement

David I Shuman and Mingyan Liu

Abstract— We study a clock calibration problem for an
ultra-low power timer on a sensor node platform. When the
sensor is put into sleep mode, this timer is the only thing left
running, so power consumption is extremely low. However, this
power savings comes at the expense of loss in timing accuracy,
which can result in unnecessary energy consumption from two
unsynchronized devices trying to communicate. The speed of
the timer is dependent on the ambient temperature. Because
this dependence can be measured off-line, one way to improve
timing accuracy is to periodically wake the processor up to
take temperature measurements, and use these measurements in
combination with the local clock ticks to obtain a more accurate
estimate of the elapsed real time. The goal of this work is to
dynamically schedule a limited number of temperature mea-
surements in a manner most useful to improving the accuracy
of the timer. We present a stochastic control formulation to
solve this problem.

I. INTRODUCTION

In this paper, we study a clock calibration problem that

arises from an ultra-low power sensor node platform. This

sensor platform, built around the Phoenix Processor [1][2],

was initially designed as an intraocular pressure monitoring

system, but could potentially be used in a host of applications

from environmental monitoring to surveillance.

In this platform, energy consumption is managed through

three modes, referred to as the sleep, processor, and radio

modes. In the sleep mode, designed to conserve energy, it

consumes on the order of 1-10 pW. In the processor and

radio modes, it consumes on the order of 1 µW and 1 mW,

respectively. Thus, when the sensor does not need to perform

communication or sensing tasks, it is put into sleep mode,

with only an ultra-low power clock/timer running. Typical

operation is to stay in the sleep mode for extended periods

of time (10-60 minutes), wake up briefly (less than a second),

and go back to sleep. The ultra-low power clock essentially

functions as an alarm clock to time out the desired sleep

period and wake the node up at the appropriate time.

The power savings of the sleep mode, however, come at

the expense of relatively low timing accuracy. Specifically,

the accuracy of the ultra-low power clock is dependent on the

ambient temperature and supply-voltage. The processor clock

that is activated whenever the processor is turned on (i.e.,

when the node is in the processor mode) is more accurate,

and the radio (quartz) clock that is activated when the radio

transceiver is turned on (i.e., when the node is in the radio

mode) is much more accurate.

Such inaccuracies in the ultra-low power clock can affect

its scheduled wake up time (e.g., to take a measurement or to

The authors are with the Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, MI 48109-2122, USA
{dishuman,mingyan}@umich.edu

communicate with another node). In addition to taking mea-

surements at the wrong time, this may lead to wasted energy

consumption as a result of two unsynchronized devices trying

to communicate. For instance, consider a node that turns on

its radio to send data to a second node, but the sending node

has woken up before its scheduled time. Its radio idles while

waiting for the second node to turn on its radio, resulting

in unnecessary energy consumption. Since the radio mode

consumes a lot more power than the processor and sleep

modes, even small improvements in clock accuracy in the

sleep mode can result in significant energy savings in the

radio mode.

It is therefore crucial to be able to accurately calibrate the

ultra-low power clock while in the sleep mode. In this paper,

we examine a novel approach that exploits the temperature

dependence of the ultra-low power clock by occasionally

turning the processor on to take a temperature reading. Each

temperature reading translates into a speed at which the ultra-

low power clock ticks, a relationship that can be obtained

fairly reliably in a lab setting. Such knowledge about the

clock speed is then used in combination with the local

clock time to obtain a better estimate of the real time that

has elapsed. In essence, this approach trades a little extra

energy consumption in taking temperature measurements for

greater energy savings in communication. To the best of our

knowledge, this is the first study on using sensing not as a

means of data gathering for some higher level application,

but as a way of self-improving the node’s own performance

(in this case its timing performance).

Because turning the processor on to take temperature

measurements does consume energy, we would like to limit

the number of such measurements. The problem arises as to

how to dynamically schedule a limited number of tempera-

ture measurements in a manner most useful to improving

the accuracy of the ultra-low power clock. We formulate

this measurement scheduling problem as a stochastic control

problem. Physically, this scheduling would be implemented

in the processor, which would wake up, take a measurement,

decide the number of clock ticks until the next wake-up time,

and program the timer accordingly.

The remainder of the paper is organized as follows. In

Section II, we present an abstraction of the problem and

an illustrative example to motivate the decision between

modeling the underlying time scale as continuous or discrete.

In Section III, we formulate an optimization problem based

on a continuous underlying time scale. In Section IV, we

formulate a second problem with a discrete underlying time

scale. In Section V, we compute the optimal control policy

for a simple toy example. Section VI concludes the paper.

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeBIn6.15

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 2082

II. PROBLEM DESCRIPTION

In this section, we present an abstraction of the synchro-

nization problem outlined in the previous section. Our goal is

to have the ultra low-power timer measure a fixed amount of

time, T , as accurately as possible. In doing so, it is allowed

to take up to N̄ ambient temperature measurements. The

control algorithm residing in the processor (also referred to

below as the controller or scheduler) decides when these

measurements are taken. We assume it knows the initial

ambient temperature, as well as a statistical description of

the stochastic temperature process.

Associated with each temperature is the frequency of the

ultra-low power clock in terms of clock cycles (also referred

to below as clock ticks) per unit of time. We assume the

mapping f : W → Ŵ describing the frequency associated

with each temperature is known. Here, W is the space

of possible temperatures, and Ŵ is the space of possible

frequencies. Figure 1 shows a plot of the function 1
f

.1

Temperature (0C)

S
e

c
o

n
d
s
 /
 C

lo
c
k

C
y
c
le

Fig. 1. The functions shown map temperature to clock period at different
supply voltages. The function f mapping temperature to clock frequency is
1 divided by one such function.

At the beginning of the time horizon, the ultra-low power

clock is synchronized with the actual time zero. In addi-

tion to the statistics of the temperature process, the initial

temperature, and the function f mapping temperature to

frequency, the following information is available to the

scheduler throughout the sleep period: (i) all prior scheduling

decisions; (ii) all temperature measurements taken to date;

and (iii) the number of clock cycles that have elapsed since

time zero. The scheduler’s tasks are to use this information to

schedule each successive measurement, and to decide when

to wake up and declare that T units of actual time have

elapsed. The performance criterion is a distortion function

ρ(T, T̂), where T̂ is the (actual) time at which the scheduler

declares T units of time have elapsed. The objective is to

design measurement scheduling and declaration policies that

minimize the expected value of this performance criterion.

The above description results in a decision problem.

Decision problems commonly take time as a given, on which

discrete time and continuous time models are built. The

unusual feature of the problem at hand is that time is the very

thing we are trying to estimate, which makes the formulation

1Data courtesy of Y. Lin, D. Blaauw, and D. Sylvester [1]. The timer
consumes on the order of 1-10 pW (10−12 to 10−11 W) at 300 mV supply
voltage. Also note this is a very slow clock with one cycle per 10+ seconds.

quite tricky. In particular, the environmental random process

describing temperature evolution affects the frequency of the

clock, which in turn affects the local time. The timing of the

decisions is based on the local time, rather than the real time.

This interplay between the temperature process (defined in

real time) and the control process (defined in local time)

results in significant conceptual and technical challenges.

Before proceeding to the mathematical formulation, we

present an overly simple example to show that the most

natural choice of underlying time scale is the continuous

time scale. Consider an environment with only two possible

temperatures, w1 and w2. When the temperature is w1, the

ultra-low power clock ticks once every 2 seconds. When the

temperature is w2, the clock ticks once every 4 seconds.

Consider the following temperature realization: w1 for 2

seconds, then w2 for 5 seconds, and then w1 for 5 seconds, as

shown in the upper left graph in Figure 2. From the sample

path of the temperature and the frequency mapping f , we

determine the sample path of the clock frequency, shown

in the lower left graph in Figure 2. Integrating the clock

frequency (ticks per second) from 0 to t yields the total

number of clock ticks elapsed up to actual time t, shown

in the graph on the right side of Figure 2. For this sample

path of the temperature process, the first clock tick occurs

at 2 seconds, and the second clock tick occurs at 6 seconds.

When, after 7 total seconds, the temperature switches back

to w1, one fourth of the third clock tick has elapsed. Thus,

the next clock tick occurs at 8.5 seconds, after another three

fourths of a clock tick. The problem with using discrete

time units of one second is that there is no such time as

8.5 seconds. We therefore start by considering time to be

continuous, although we revisit the validity of a discrete time

model with some extra assumptions in Section IV.

Actual Time (sec)

0 4 8 12

2w

1w

2 6 10

Temperature

Actual Time (sec)

0 4 8 12

Frequency (ticks/sec)

4
1

2
1

2 6 10

)(tWf

ò
t

s dsWf
0

)(

Actual Time (sec)

0 4 8 12

Total Clock Ticks

1

2

2 6 10

3

0

X X X

1 32

X

Clock Ticks

4

X

4

Fig. 2. Illustrative example of how the clock ticks may not coincide with
discrete time steps. The actual times of the clock ticks are determined from
a sample path of the temperature process and the frequency mapping f , by
converting temperature into frequency and integrating frequency over time.

III. PROBLEM FORMULATION - CONTINUOUS TIME

In this section, we take the underlying time scale

to be continuous. We model the ambient temperature

process, {W (t)}t≥0, as a continuous-time homogeneous

Markov process with finite state space W , known ini-

tial temperature w0, and known transition semigroup

WeBIn6.15

2083

{P(t)}t≥0, where P(t) := {pij(t)}i,j∈W and pij(t) :=
Pr (W (t0 + t) = j |W (t0) = i). We formulate the problem

as a partially observed semi-Markov decision process (POS-

MDP). We then provide a high-level overview of how to

reduce this POSMDP first to an equivalent partially ob-

served Markov decision process (POMDP), and then to two

equivalent discrete-time Markov decision processes (MDP’s).

Finally, we present the dynamic programming equations that

solve the latter of these two MDP’s, and highlight the most

computationally intense steps in the dynamic program.

A. Formulation as a POSMDP

Recall that a semi-Markov decision process (SMDP) is

a generalization of a discrete-time MDP that models the

system evolution in continuous time, and allows the decision

epochs to occur at random times. In our problem, the

decision epochs of the SMDP occur at the times of the

local clock ticks. We define a random process {Ct}t≥0 by

Ct :=
∫ t

0
f(Ws) ds, which represents the (fractional) number

of clock cycles that occur between the beginning of the time

horizon and the actual time t. The decision epochs of the

SMDP occur when Ct ∈ Z+ := {0, 1, 2, . . .}. We represent

the times of these clock ticks by the random variables

0 = σ0 ≤ σ1 ≤ σ2 . . ., and let σ̄k := σk−σk−1, k = 1, 2, . . .
be random variables representing the inter-tick times. The

conditional cumulative distribution function (cdf) of the real

time of the lth clock tick, given the initial temperature, is:

Fσl|W0
(t | w) := Pr (σl ≤ t |W0 = w)

= Pr (Ct ≥ l |W0 = w)

= 1− Pr

(∫ t

0

f(Ws) ds < l |W0 = w

)

.

For each l ∈ {1, 2, . . .}, we denote the probability density

function (pdf) induced by Fσl|W0
(t | w) as fσl|W0

(t | w).
At σk, the random time of the kth clock tick, we define

the state of the SMDP to be the triplet Sk := (Xk, Wk, Nk),
where Xk is the actual time elapsed; Wk is the ambient

temperature; and Nk is the number of temperature measure-

ments taken between the beginning of the horizon and the

kth clock tick (inclusive of a measurement scheduled for

the kth clock tick). The sample space of the triplet Sk is

S := IR+×W×N , where W is the finite space of possible

temperatures, and N :=
{

0, 1, . . . , N̄
}

. At each tick k, the

state corresponds to the state of the underlying continuous

time process, which Puterman [3] calls the “natural process;”

i.e., (Xk, Wk, Nk) = (Xσk
, Wσk

, Nσk
) ,∀k.2

Of course, this state is not perfectly observed by the

controller, as the controller never observes the actual time

Xk, and only observes the ambient temperature Wk when it

decides to take a measurement. The number of measurements

taken and scheduled to date, Nk, is known perfectly by

the controller, as we assume the controller remembers all

past decisions. We represent the controller’s observation at

the kth clock tick by the random vector Yk, with sample

2We use boldface for vectors, uppercase letters for random variables, and
lowercase letters for realizations of random variables.

space Y = Z+ × {W ∪−1}. Here, the first element of

the observation is the index of the clock tick, and the

second element is the temperature measurement. We assume

temperature measurements are correct with probability 1;

i.e., Yk = (k,Wk) if a measurement is taken at tick k.

If no measurement is taken, then Yk = (k,−1). Including

the index of the clock tick in the observation space is a

bit redundant; however, we do this to emphasize that i) the

controller knows the number of clock ticks to date (indexed

by k), but ii) the controller does not know the actual time at

which each clock tick occurs (indexed by t).

The timing at each decision epoch, shown in Figure 3, is as

follows. Immediately after the kth clock tick, the controller

receives observation Yk. It then makes two decisions. First,

it decides whether or not to declare that T time units have

elapsed (after k clock ticks). If it decides to declare, the

controlled sleep process is stopped, and the node wakes up.

Otherwise, the controller also decides whether or not to take

a temperature measurement at tick k+1. Thus, the decision

space is U := {1; (0, 0) ; (0, 1)}. Here, 1 means “declare that

T time units have elapsed;” (0, 0) means “do not declare that

T time units have elapsed and do not take a measurement

at clock tick k + 1;” and (0, 1) means “do not declare that

T time units have elapsed and take a measurement at clock

tick k + 1.” If Nk is equal to N̄ , the maximum number of

measurements allowed, the available decisions for Uk are

Ū := {1; (0, 0)}; otherwise, all decisions are available. We

denote by U(s) the decisions that are available at state s, and

U2
k refers to the second component of the control decision

(the measurement decision at the following tick).

0 1s

0

X X XX

1 2 3

Actual Time

(sec)

Clock Ticks

2s 3s

1s 2s 3s

()111 ,, NWX

1Y 1U0Y 0U

()
()0,,0

,,

0

000

w

NWX

=

()222 ,, NWX

2Y 2U

Fig. 3. The timing of observations and decisions at each epoch. The
decision Uk is made after observing Yk . Uk determines whether to declare
that T time units have elapsed at clock tick k, and (if the process is not
stopped) whether to take a temperature measurement at the (k + 1)st tick.

Next, we describe the probabilistic state transition law. If

Uk = 1, the process is stopped. Otherwise, the time, σ̄k+1,

until the next clock tick, and the state, Sk+1, at the next

clock tick have the following joint distribution, conditioned

on the current state and scheduling decision:

Q (B1, B2, B3, B4 | xk, wk, nk, uk)

= Pr





Xk+1 ∈ B1, Wk+1 ∈ B2,

Nk+1 ∈ B3, σ̄k+1 ∈ B4 |
Xk = xk, Wk = wk, Nk = nk, Uk = uk



 (1)

=
∑

wk+1

∈B2

∑

nk+1

∈B3

∫

σ̄k+1

∈B4





11{nk+1=nk+u2
k}
· 11{xk+σ̄k+1∈B1}

· pwk,wk+1
(σ̄k+1)

·fσ1|W0
(σ̄k+1 | wk) dσ̄k+1





WeBIn6.15

2084

for Borel sets B1 ∈ B(IR+), B2 ∈ B(W), B3 ∈ B(N), B4 ∈
B(IR+), and for all (sk, uk) such that uk ∈ U(sk). The

second equality in (1) follows from the facts that i) Nk+1

is a function of Nk and Uk; ii) Xk+1 and Wk+1 are

independent of Nk and Uk; and (iii) fσ1|W0
= fσ̄k+1|Wk

,

by the homogeneity of the temperature process. Recall that

pwk,wk+1
(σ̄k+1) is the probability the temperature process

jumps from wk to wk+1 in σ̄k+1 real time units, and

fσ1|W0
(· | wk) is the distribution of the time between two

consecutive ticks, given the initial temperature wk.

At the beginning of the time horizon, the controller knows

that the actual time is zero (X0 = 0); no measurements have

been taken (N0 = 0); and the initial temperature is w0.

We define an observable history up to the kth tick as:

hk :=
(

y0, u0, y1, u1, y2, . . . , yk−1, uk−1, yk

)

∈ Hk, where

Hk = (Y × U)k ×Y is the space of possible histories up to

the kth tick. We let H0 = Y.

A policy is defined as a sequence γ := {γk}
∞
k=0, where for

each k, γk : Hk → P (U) maps the observable history up to

the kth clock tick into the space of probability distributions

on the decision space U . A policy γ is admissible if for all k,

γk maps all histories hk with
∑k−1

i=0 u2k = N̄ into probability

distributions on Ū ; i.e., if no measurements remain, the

policy chooses control decisions 1 or (0, 0) with probability

1. We denote the space of all such admissible policies by Γ.

The quality of a temperature measurement scheduling and

declaration policy is measured by a distortion function ρ :
IR2
+ → IR+ that determines the cost of declaring that z

time units have elapsed after ẑ time units. For example, we

could use the L1 distortion function ρ (z, ẑ) = |z − ẑ|, or

the square error distortion ρ (z, ẑ) = (z − ẑ)
2
. From this

distortion, we define the cost of an admissable policy γ as:

Jγ (w0) := IEγ [ρ (T, Xτ) | X0 = 0, N0 = 0, W0 = w0] ,

where τ is the random stopping time at which the controller

declares that T time units have elapsed. By assumption,

the sample space W is finite. Accordingly, there exists a

maximum frequency (clock cycles per unit time), which

we denote by ωmax := maxw∈W {f(w)}. The maximum

number of clock cycles the controller needs to consider wait-

ing before declaring T time units have elapsed is therefore

K̄ := dT · ωmaxe. So we define the stopping time τ as:

τ := min
{

K̄,min {k : Uk = 1}
}

.

This definition ensures there is a finite optimal stopping time.

We wish to find an optimal control policy γ
∗ such that:

Jγ
∗

(w0) = J∗(w0) := inf
γ∈Γ

Jγ(w0) , ∀w0 ∈ W . (2)

We refer to the above problem as Problem (POSMDP).

B. Transformation to Equivalent Problems

We now provide a high-level overview of how to reduce

Problem (POSMDP) to a series of equivalent problems. We

start by defining a POMDP that describes the evolution of

the system at the clock ticks. The only component of this

POMDP, referred to as Problem (POMDP-1), that is different

from Problem (POSMDP) is the probabilistic state transition

law, which is given by Q (B1, B2, B3, IR+ | xk, wk, nk, uk),
where Q is defined in (1). The equivalence of Problems

(POMDP-1) and (POSMDP) follows from the fact that all

control decisions and cost assessments in Problem (POS-

MDP) occur at the clock ticks.

Next, we transform Problem (POMDP-1) into a com-

pletely observable MDP, which we call Problem (MDP-1),

with state equal to the conditional probability distribution of

the POMDP state Sk, given all decisions and observations to

date. We omit the detailed description of Problem (MDP-1),

as the transformation is a standard procedure (see, e.g., [4,

pp. 86-90], [5, pp. 214-217]).

The next transformation is to a second equivalent discrete-

time MDP, which we refer to as Problem (MDP-2). The main

idea underlying the transformation from the previous MDP to

this one is as follows. If at clock tick k in Problem (MDP-

1), the controller decides not to declare that T time units

have elapsed and not to take a measurement at clock tick

k + 1, then it gains no useful information before having to

choose its next control decision at clock tick k+1. Thus, it

can choose the control decision for clock tick k+ 1 equally

well at the current clock tick k. By extending the same logic,

without loss of optimality, it can actually decide at the current

clock tick k how many clock ticks to wait before taking the

next measurement or declaring T time units have elapsed.

Accordingly, we define a new time scale, indexed by m,

to be the number of measurements taken so far (note the

difference from the above problems, where time k is the

number of clock ticks). Here, m = 0 denotes the start of the

horizon, m = 1 denotes the process just after the first tem-

perature measurement, and so forth. For m = 0, 1, . . . , N̄ ,

the state consists of the conditional distribution, πX̃m
, of the

actual time elapsed given the history, and the most recent

temperature measurement, w̃m. The state space is S̃ :=
P (IR+)×W . The decision space is Ũ :=

{

0, 1, 2, . . . , K̄
}

.

At all m, decision Ũ = 0 means “declare that T units of time

have elapsed.” For m = 0, 1, . . . , N̄ − 1, decision Ũ = l for

some l ∈
{

1, 2, . . . , K̄
}

means “wait l clock ticks before

taking the next temperature measurement.” When m = N̄ ,

no temperature measurements remain, and decision Ũ = l̄

for some l̄ ∈
{

1, 2, . . . , K̄
}

means “wait l clock ticks before

declaring that T time units have elapsed.” Figure 4 compares

the time scales for Problems (MDP-1) and (MDP-2).

Clock Ticks

(k)
0

X X XX

1 2 3

)0,0(0 =U

()
()00

00
~
,

~
,

WX

WX

=

)1,0(1 =U

()
()11

22
~
,

~
,

WX

WX

=

)0,0(2 =U)1,0(3 =U

X

4

()
()22

44
~
,

~
,

WX

WX

=

0
Num. Measurements

(m)
XX X
1 2

2
~
0 =U 2

~
1 =U

Fig. 4. Example sample-path to compare the time scales for Problems
(MDP-1) and (MDP-2). The top timeline is based on k, the number of
clock cycles elapsed, and the bottom timeline is based on m, the number
of measurements taken. For both timelines, the first measurement is taken
at clock tick 2, and the second measurement is taken at clock tick 4.

WeBIn6.15

2085

Note that while the states of Problem (MDP-2) fall in the

continuous space P (IR+)×W , only a finite number of states

in this space are reachable. This is due to the fact that the

equivalent Problem (POMDP-1) has a finite horizon, finite

decision space, and finite observation space. Thus, we can

focus on this finite set of reachable states. By a standard

result (see, e.g., [4], [5]), an optimal policy exists, and it can

be found through the following dynamic program:

Vm

(

πX̃m
, w̃m

)

=

min























IE
[

ρ
(

T, X̃m

)

| πX̃m

]

,

min
l∈{1,2...,K̄}











IE







Ṽm+1

(

ΠX̃m+1
, W̃m+1

)

|

ΠX̃m
= πX̃m

,

W̃m = w̃m, Ũm = l







































for m = 0, 1, . . . , N̄ − 1

VN̄

(

πX̃N̄

, w̃N̄

)

=

min











IE
[

ρ
(

T, X̃N̄

)

| πX̃N̄

]

,

min
l̄∈{1,2...,K̄}

{

IE

[

ρ (T, Zl̄) | ΠX̃N̄

= πX̃N̄

,

W̃N̄ = w̃N̄ , ŨN̄ = l̄

]}











.

Ṽm represents the expected cost-to-go just after the mth

measurement is taken; πX̃m
represents the conditional pdf

of the actual time just after the mth measurement is taken;

and w̃m represents the mth temperature reading. The first

term in each outer minimization, IE
[

ρ
(

T, X̃m

)

| πX̃m

]

,

represents the conditional expected cost of stopping after

the mth measurement. For m = 0, 1, . . . , N̄ − 1, the second

term in the outer minimization represents the expected cost

if the scheduler waits l clock ticks before taking the next

measurement. For m = N̄ , the second term in the outer

minimization represents the expected cost if the scheduler

waits an additional l̄ clock ticks before declaring that T

time units have elapsed. Zl̄ is a random variable describing

the actual time l̄ clock ticks after the N̄ th temperature

measurement is taken; i.e., Zl̄ = X̃N̄ +
∑kN̄+l̄

i=kN̄+1
σ̄i, where

kN̄ is the clock tick at which the N̄ th measurement is taken.

While the above dynamic program is conceptually

straightforward, it is difficult from a computational stand-

point. The heart of the matter is in updating the conditional

distribution of elapsed time after the mth temperature mea-

surement, πX̃m
, to the corresponding distribution after the

(m + 1)st temperature measurement, based on (i) w̃m, the

mth temperature reading; (ii) w̃m+1, the (m+ 1)st temper-

ature reading; and (iii) ũm, the number of clock ticks in

between measurements, as chosen by the controller. At time

N̄ , a similar difficulty arises in computing fσ
l̄
|W0

(t | w̃N̄),
which is needed to compute a distribution on Zl̄.

IV. PROBLEM FORMULATION - DISCRETE TIME

In Section II, we argued that this problem is not immedi-

ately amenable to a discrete underlying time scale, because

the clock ticks may not coincide with discrete time steps.

However, by imposing constraints on the temperature process

and possible durations of each clock cycle, it is possible to

model the underlying time scale as discrete.

A. Toy Example

We start with another simple toy example where the

temperature process is always in one of two states, ŵ1 or

ŵ2. We assume the temperature can only change at integer

multiples of two seconds; i.e., 2, 4, 6, . . . seconds, and take

the temperature process at these times to be a discrete-time

homogeneous Markov process with transition matrix:

P =

[

0.9 0.1
0.3 0.7

]

.

When the temperature is ŵ1, the clock ticks once every

second, and when the temperature is ŵ2, the clock ticks

once every two seconds. One possible sample path of the

temperature process is shown in Figure 5. By repeating the

calculations from Figure 2, we can determine the actual

times of the clock ticks for this sample path. We make two

observations about the timing of the clock ticks resulting

from this temperature sample path that are actually true for

all temperature sample paths: (i) there is a clock tick at every

integer multiple of two seconds; and (ii) all clock ticks fall

on discrete time steps of one second.

Actual Time (sec)

0 4 8 12

2ŵ

1ŵ

2 6 10

Temperature

0

X X X

1 74

X

Clock Ticks

8

XX

3

X

2

X

5 6

X

Fig. 5. Example of a temperature process and frequency mapping satisfying
assumptions guaranteeing the clock ticks coincide with discrete time steps.

B. Discrete Time Problem Formulation

By imposing additional assumptions on the temperature

process and possible frequencies, we can generalize this

example to ensure that the clock ticks occur at desired

discrete time units. Assume that the underlying discrete

time unit is ∆, and that the transitions of the temperature

process occur on a slower scale, say at q∆, 2q∆, 3q∆, and

so forth, for some positive integer q. We model the ambient

temperature process at these times, {Ŵt}t=0,q∆,2q∆,..., as a

discrete-time homogeneous Markov process with the same

finite state space W as described for the continuous-time

Markov process in Section III, known initial temperature

ŵ0, and known matrix of transition probabilities P̂, where

P̂ := {p̂ij}i,j∈W and p̂ij := Pr (Wt+q·∆ = j |Wt = i),

for all t. The mapping f : W → Ŵ describing the

frequency associated with each temperature is the same as

the continuous time problem. Assume also that for every

ŵ ∈ W , q · f(ŵ) ∈ Z+ and 1
f(ŵ) ∈ Z+. Then, there is

WeBIn6.15

2086

a clock tick every time the temperature changes, and every

clock tick falls exactly on some integer multiple of ∆.

With these assumptions in place, we formulate a new

partially observed Markov decision process, which we refer

to as Problem (POMDP-2). All components of Problem

(POMDP-2) are the same as Problem (POMDP-1), except

the state space is now Ŝ := X × W × N , where X :=
{0, 1, . . . , x̂max}. Here, x̂max is the maximum amount of

actual time that could elapse in K̄ clock ticks (i.e., if the

temperature for the entire horizon was that temperature with

the lowest associated frequency).

Problem (POMDP-2) can be reduced in the same manner

as Problem (POMDP-1), resulting in a completely observed

MDP whose time index is the number of measurements that

have been taken. This MDP can again be solved through

standard dynamic programming; however, the resulting state,
(

πX̃m
, w̃m

)

, now comprises the most recent temperature

and a probability mass function (pmf) on the finite space

X , rather than a pdf on IR+. This makes the task of

updating the conditional distribution of elapsed time after

the mth temperature measurement considerably easier from

a computational standpoint. The tradeoff is that the designer

may need to make approximations at the modeling level in

order to satisfy the additional assumptions on the temperature

process and frequency range.

V. COMPUTATION OF OPTIMAL CONTROL POLICIES FOR

A TOY EXAMPLE

In this section, we continue the toy example from Sec-

tion IV-A to show the benefit from scheduling temperature

measurements. Let the temperature process and frequency

mapping be as described in Section IV-A. The scheduler’s

objective is to time 12 seconds before waking up. The

scheduler knows the initial temperature is ŵ2. We use the

L1 distortion function, so the cost is the absolute value of

the difference between 12 seconds and X̂τ , the actual time

at which the controller declares 12 seconds have elapsed.

If the temperature were ŵ1 for the entire time horizon,

then 12 local clock ticks would correspond to 12 seconds

of real time; if the temperature were ŵ2 for the entire

time horizon, then 6 local clock ticks would correspond to

12 seconds of real time; and, if the temperature were to

move between ŵ1 and ŵ2, then 12 seconds of real time

would occur somewhere between the 6th and 12th clock tick.

Moreover, the initial temperature is ŵ2, so the first clock

tick does not happen until 2 seconds of real time. Thus,

a priori, the scheduler knows to declare 12 seconds have

elapsed somewhere between the 6th and 11th clock tick.

For three different instances of the problem, with a limit

of 0, 1, and 2 temperature measurements, respectively, we

computed the optimal policy numerically. The three optimal

policies and resulting expected distortions are shown in Fig-

ure 6. We observe from this toy example how the temperature

measurements are used in combination with the local clock

ticks to more accurately estimate elapsed real time. Each

additional measurement improves the controller’s calibration

of the local clock, thereby reducing the expected distortion.

• Optimal to take the 1st measurement at the 2nd clock tick

• If 1st measurement is w1, wait 4 more ticks before 2nd measurement

– If 2nd measurement is w1, wait 4 more ticks before declaring (at 10th tick)

– If 2nd measurement is w2, wait 2 more ticks before declaring (at 8th tick)

• If 1st measurement is w2, wait 2 more ticks before 2nd measurement

– If 2nd measurement is w1, wait 4 more ticks before declaring (at 8th tick)

– If 2nd measurement is w2, wait 2 more ticks before declaring (at 6th tick)

• Resulting expected distortion is 0.57

Two measurements allowed

Open-loop (no measurements)

• Optimal to declare 12 seconds have elapsed after 9 clock ticks

• Resulting expected distortion is 1.85

One measurement allowed

• Optimal to take the measurement at the 4th clock tick

• If measurement is w1, wait 6 more ticks before declaring (at 10th tick)

• If measurement is w2, wait 2 more ticks before declaring (at 6th tick)

• Resulting expected distortion is 1.00

Fig. 6. Optimal policies and resulting expected distortions of three different
instances of the toy example.

VI. CONCLUSION

We considered the problem of dynamically scheduling a

limited number of temperature measurements in a manner

most useful to improving the accuracy of an ultra-low power

clock. We formulated two different optimization problems,

with continuous and discrete underlying time scales, re-

spectively. We reduced both problems to finite state, finite

horizon, finite action Markov decision processes that can be

solved numerically through standard dynamic programming.

Modeling the underlying time as discrete is advantageous

in terms of computational complexity, but requires extra

conditions on the temperature process and frequency range.

Future work includes exploring the structure of optimal

and near-optimal policies for higher dimensional instances

of the problem. We would also like to study the tradeoff

between the number of temperature measurements allowed

and expected energy savings. Specifically, by varying the

limit on the number of temperature measurements allowed

and solving one instance of the current problem for each

limit, we could compare the marginal benefit of each addi-

tional measurement to the marginal energy cost of waking

the processor up to take that measurement.

REFERENCES

[1] Y. Lin, D. Sylvester, and D. Blaauw, “A sub-pW timer using gate leak-
age for ultra low-power sub-Hz monitoring systems,” in Proceedings of

the Custom Integrated Circuits Conference, San Jose, CA, September
2007, pp. 397–400.

[2] S. Hanson, M. Seok, Y. Lin, Z. Foo, D. Kim, Y. Lee, N. Liu,
D. Sylvester, and D. Blaauw, “A low voltage processor for sensing
applications with picowatt standby mode,” IEEE Journal of Solid-State

Circuits, vol. 44, no. 4, pp. 1145–1155, April 2009.
[3] M. L. Puterman, Markov Decision Processes: Discrete Stochastic

Dynamic Programming, John Wiley and Sons, 1994.
[4] O. Hernández-Lerma, Adaptive Markov Control Processes, Springer-

Verlag, 1989.
[5] E. B. Dynkin and A. A. Yushkevich, Controlled Markov Processes,

Springer-Verlag, 1979.

WeBIn6.15

2087

