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1 Introduction and summary

We discuss various D-brane configurations in generic orbifold compactifications
which are 0-branes from the 4-dimensional space-time point of view, but can
have extension in the compact directions. Two cases turn out to be particularly
interesting: the 0-brane of type IIA and the 3-brane of type IIB.

The dynamics of these D-branes is determined by a one loop amplitude
which can be conveniently evaluated in the boundary state formalism 1,2. In
particular, one can compute the force between two D-branes moving with con-
stant velocity, extending Bachas’ result 3 to compactifications breaking some
supersymmetry 4.

Analyzing the large distance behavior of the interaction and its velocity
dependence, it is possible to read the charges with respect to the massless
fields, and relate the various D-brane configurations to known solutions of the
4-dimensional low energy effective supergravity.

Finally, we discuss the emission of massless NSNS states from two inter-
acting D-branes 5. The correlators that are involved have twisted boundary
conditions because of the non zero velocity of the branes, but they can be
systematically computed in a natural way using again the boundary state for-
malism. We then outline the field theory interpretation of the large distance
behavior of the amplitude.
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2 Interactions on orbifolds

Consider two D-branes moving with velocities V1 = tgh v1, V2 = tgh v2 (say

along 1) and transverse positions ~Y1, ~Y2 (along 2,3). The potential between
these two D-branes is given by the cylinder vacuum amplitude and can be
thought either as the Casimir energy stemming from open string vacuum fluc-
tuations or as the interaction energy related to the exchange closed strings
between the two branes. The amplitude in the closed string channel

A =

∫ ∞

0

dl
∑

s

< B, V1, ~Y1|e−lH |B, V2, ~Y2 >s

is just a tree level propagation between the two boundary states, which are
defined to implement the boundary conditions defining the branes.

There are two sectors, RR and NSNS, corresponding to periodicity and
antiperiodicity of the fermionic fields around the cylinder, and after the GSO
projection there are four spin structures, R± and NS±, corresponding to all
the possible periodicities of the fermions on the covering torus.

In the static case, one has Neumann b.c. in time and Dirichlet b.c. in
space. The velocity twists the 0-1 directions and gives them rotated b.c. The
moving boundary state is most simply obtained by boosting the static one with
a negative rapidity v = v1 − v2

6.

|B, V, ~Y >= e−ivJ01 |B, ~Y > .

In the large distance limit b→ ∞ only world-sheets with l → ∞ will contribute,
and momentum or winding in the compact directions can be safely neglected
since they correspond to massive subleading components.

The moving boundary states

|B, V1, ~Y1 >=

∫

d3~k

(2π)3
ei~k·~Y1 |B, V1 > ⊗|kB > ,

|B, V2, ~Y2 >=

∫

d3~q

(2π)3
ei~q·~Y2 |B, V2 > ⊗|qB > ,

can thus carry only space-time momentum in the boosted combinations

kµ
B = (V1γ1k

1, γ1k
1, ~kT ) = ( sh v1k

1, ch v1k
1, ~kT ) ,

qµ
B = (V2γ2q

1, γ2q
1, ~qT ) = ( sh v2q

1, ch v2q
1, ~qT ) .

Notice that because of their non zero velocity, the branes can also transfer
energy, and not only momentum as in the static case.
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Integrating over the bosonic zero modes and taking into account momen-
tum conservation (kµ

B = qµ
B), the amplitude factorizes into a bosonic and a

fermionic partition functions:

A =
1

sh v

∫ ∞

0

dl

∫

d2~kT

(2π)2
ei~k·~be−

q2
B
2

∑

s

ZBZ
s
F =

1

sh v

∫ ∞

0

dl

2πl
e−

b2

2l

∑

s

ZBZ
s
F

with ZB,F =< B, V1|e−lH |B, V2 >
s
B,F and from now on, Xµ ≡ Xµ

osc.

It will prove convenient to group the fields into pairs

X± = X0 ±X1→αn, βn = a0
n ± a1

n ,

X i, X i∗ = X i ± iX i+1→βi
n, β

i∗
n = ai

n ± iai+1
n , i = 2, 4, 6, 8 ,

χA,B = ψ0 ± ψ1→χA,B
n = ψ0

n ± ψ1
n ,

χi, χi∗ = ψi ± iψi+1→χi
n, χ

i∗
n = ψi

n ± iψi+1
n , i = 2, 4, 6, 8 .

For the RR zero modes, which satisfy a Clifford algebra and are thus propor-
tional to Γ-matrices, ψµ

o = iΓµ/
√

2, ψ̃µ
o = iΓ̃µ/

√
2, on can construct similarly

the creation-annihilation operators

a, a∗ =
1

2
(Γ0 ± Γ1) , bi, bi∗ =

1

2
(−iΓi ± Γi+1) .

In this way, any rotation or boost will reduce to a simple phase transfor-
mation on the modes. In fact, for an orbifold rotation (ga = e2πiza)

βa
n → gaβ

a
n , χa

n → gaχ
a
n , ba → gab

a ,

βa∗
n → g∗aβ

a∗
n , χa∗

n → g∗aχ
a∗
n , ba∗ → g∗ab

a∗ . (1)

whereas for a boost of rapidity v,

αn → e−vαn , χA
n → e−vχA

n , a→ e−va ,

βn → evβn , χB
n → evχB

n , a∗ → eva∗ . (2)

The boundary state which solves the b.c. can be factorized into a bosonic
and a fermionic parts; the latter can be further splitted into zero mode and
oscillator parts, and finally

|B >= |B >B ⊗|Bo >F ⊗|Bosc >F .
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2.1 Orbifold construction

Let us briefly recall the orbifold construction. An orbifold compactification
can be obtained by identifying points in the compact part of space-time which

are connected by discrete rotations g = e2πi
∑

a
zaJaa+1 on some of the compact

pairs Xa,χa, a=4,6,8. In order to preserve at least one supersymmetry, one
has to impose the condition

∑

a za = 0.

We will consider three case: toroidal compactification on T6 and orbifold
compactification on T2 ⊗T4/Z2 and T6/Z3. The construction is universal, and
these three cases can be obtained by explicit choices for the angles za:

T6/Z3 (N = 2 SUSY): take z4, z6 = 1
3 ,

2
3 , z8 = −z4 − z6 ,

T2 ⊗ T4/Z2 (N = 4 SUSY): take z4 = −z6 = 1
2 , z8 = 0 ,

T6 (N = 8 SUSY): take z4 = z6 = z8 = 0 .

The spectrum of the theory now contains additional twisted sectors, in
which periodicity is achieved only up to an element of the quotient group ZN .
This leads to fractional moding in the compact directions.

These twisted states exist at fixed points of the orbifold. They thus occur
only for the 0-brane of type IIA, which corresponds to Dirichlet b.c. in all the
compact directions and can thus be localized at a fixed point.

Finally, in all sectors, one has to project onto invariant states to get the
physical spectrum of the theory which is invariant under orbifold rotations.

2.2 0-brane: untwisted sector

Consider a static configuration with Neumann b.c. for time and Dirichlet b.c.
for all other directions (i=2,4,6,8 and a=2,4,6).

The boundary state is easily constructed 4 as a Bogolubov transformation
from a spinor vacuum |0 > ⊗|0̃ > defined such that a|0 >= ã|0̃ >= bi|0 >=
b̃i∗|0̃ >= 0. After applying the boost eq. (2), under which the spinor vacuum
picks up an imaginary phase, |0 > ⊗|0̃ >→ e−v|0 > ⊗|0̃ >, the result is

|B, V >B= exp
1

2

∑

n>0

[e−2vα−nα̃−n + e2vβ−nβ̃−n + 2 Re (βi
−nβ̃

i∗
−n)]|0 > ,

|Bosc, V, η >F = exp
iη

2

∑

n>0

[e−2vχA
−nχ̃

A
−n + e2vχB

−nχ̃
B
−n − 2 Re (χi

−nχ̃
i∗
−n)]|0 > ,

|Bo, V, η >RR= e−v exp−iη[e2va∗ã∗ − bi∗b̃i]|0 > ⊗|0̃ > .
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The complete boosted boundary state is already invariant under orbifold ro-
tations eq. (1). This comes from the fact that the ZN action rotates pairs of
fields with the same b.c. and is thus irrelevant.

In both sectors, the fermion number operator reverses the sign of the pa-
rameter η and the GSO-projected boundary state is

|B, V >=
1

2
(|B, V,+ > −|B, V,− >) .

The partition function can then be computed carrying out some simple
oscillator algebra; the ghosts cancel one untwisted pair, say 2-3, and the result
is the product of the contributions of the 0-1 pair and the 3 compact pairs.

After the GSO projection, only the three even spin structures R+ and NS±
contribute. Defining q = e−2πl, the total bosonic (zero-point energy q−

2
3 ) and

fermionic (zero-point energy q−
1
3 for NSNS and q

2
3 for RR) partition functions

can be written as

ZB = 16π3i sh vq
1
3 f(q2)4

1

ϑ1(i
v
π
|2il)ϑ′1(0|2il)3

,

ZF = q−
1
3 f(q2)−4

{

ϑ2(i
v

π
|2il)ϑ2(0|2il)3

−ϑ3(i
v

π
|2il)ϑ3(0|2il)3 + ϑ4(i

v

π
|2il)ϑ4(0|2il)3

}

∼ V 4 , (3)

corresponding to the cancellation of the force between two BPS states7,3. Thus,
the untwisted sector for the 0-brane gives the same result as the uncompactified
theory for every compactification scheme.

2.3 0-brane: twisted sector

Consider now the twisted sector, which has to be included when the 0-brane
is at an orbifold fixed point. In this case, the boundary state is similar to the
one of the untwisted sector, with fractional moding in the compact directions.

In the Z3 case the total partition functions after the GSO projection are

ZB = 2i sh vf(q2)4
1

ϑ1(i
v
π
|2il)ϑ1(− 2

3 il|2il)3
, (4)

ZF = f(q2)−4

{

ϑ2(i
v

π
|2il)ϑ2(−

2

3
il|2il)3

−ϑ3(i
v

π
|2il)ϑ3(−

2

3
il|2il)3 − ϑ4(i

v

π
|2il)ϑ4(−

2

3
il|2il)3

}

∼ V 2 . (5)
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In the Z2 case, the analysis is similar and the results behave qualitatively as
before, with one twist set to zero. In particular, one has again ZF ∼ V 2.

2.4 3-brane

Consider now a particular 3-brane configuration with Neumann b.c. for time,
Dirichlet b.c. for space and mixed b.c. for each pair of compact directions, say
Neumann for the a directions and Dirichlet for the a+1 directions.

Defining a new spinor vacuum |0 > ⊗|0̃ > such that ba|0 >= b̃a|0̃ >= 0
the compact part of the boundary state is similar to that for the 0-brane, but
is not invariant under orbifold rotations, under which the modes of the fields
transform as in eq. (1) and the spinor vacuum as |0 > ⊗|0̃ >→ ga|0 > ⊗|0̃ >.
This was expected since a ZN rotation now mixes two directions with different
b.c., and thus the corresponding closed string state is not ZN -invariant.

The compact part of the twisted boundary state is found to be

|B, V, ga >B= exp−1

2

∑

n>0

[g2
aβ

a
−nβ̃

a
−n + g∗2a βa∗

−nβ̃
a∗
−n]|0 > ,

|Bosc, V, ga, η >F = exp
iη

2

∑

n>0

[g2
aχ

a
−nχ̃

a
−n + g∗2a χa∗

−nχ̃
a∗
−n]|0 > ,

|Bo, V, ga, η >RR= ga exp−iηg∗2a ba∗b̃a∗|0 > ⊗|0̃ > .

After the GSO projection, the partition functions for a relative twist wa are

ZB = 16i shvq
1
3 f(q2)4

1

ϑ1(i
v
π
|2il)

∏

a

sinπwa

ϑ1(wa|2il)
,

ZF = q−
1
3 f(q2)−4

{

ϑ2(i
v

π
|2il)

∏

a

ϑ2(wa|2il)

−ϑ3(i
v

π
|2il)

∏

a

ϑ3(wa|2il) + ϑ4(i
v

π
|2il)

∏

a

ϑ4(wa|2il)
}

∼
{

V 4 , wa = 0
V 2 , wa 6= 0

. (6)

Recall that to obtain the invariant amplitude, one has to average over all
possible twists wa. Finally, for this 3-brane configuration there is no twisted
sector, as already explained.
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2.5 Large distance limit and field theory interpretation

In the large distance limit l → ∞, explicit results with their exact dependence
on the rapidity can be obtained and compared to a field theory computation.
The behaviors that one finds are the following:
0-brane

a) Untwisted sector

A ∼ 4 ch v − ch 2v − 3 ∼ V 4 . (7)

b) Twisted sector

A ∼ ch v − 1 ∼ V 2 . (8)

3-brane

A(wa) ∼ 4
∏

a

cosπwa ch v − ch 2v −
∑

a

cos 2πwa ,

A ∼
{

ch v − ch 2v ∼ V 2 , T6/Z3

4 ch v − ch 2v − 3 ∼ V 4 , T2 ⊗ T4/Z2 , T6
. (9)

In the low energy effective supergravity field theories, the possible contri-
butions to the scattering amplitude in the eikonal approximation come from
vector exchange in the RR sector and scalar and graviton exchange in the
NSNS sector. The respective contributions have a peculiar dependence on the
rapidity reflecting the tensorial nature and are:

ANS
φ ∼ −a2 , AR

Vµ
∼ e2 ch v , ANS

gµν
∼ −M2 ch 2v . (10)

Thus, the interpretation of the behaviors found in the various sectors and
for the various brane configurations we have considered, is the following:

4 ch v − ch 2v − 3 ⇔ N = 8 Grav. multiplet ,

ch v − ch 2v ⇔ N = 2 Grav. multiplet ,

ch v − 1 ⇔ Vec. multiplet .

The patterns of cancellation suggest that all the D-brane configurations
that we have considered correspond to extremal p-brane solutions of the low
energy supergravity, possibly coupling to the additional twisted vector mul-
tiplets; the 3-brane configuration on the Z3 orbifold seems to be an excep-
tion since it does not couple to the scalars, and should thus correspond to a
Reissner-Nordström extremal black hole.

Finally, notice that V 2 terms in the effective action are forbidden forN = 8
SUSY but appear in general for N < 8 SUSY.
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3 Emission of massless NSNS bosons

Consider two moving D-branes in interaction emitting a massless NSNS boson.
The amplitude is computed inserting the usual vertex operator between the
two boundary states

A =

∫ ∞

0

dl

∫ l

0

dτ
∑

s

< B, V1, ~Y1|e−lHV (z, z̄)|B, V2, ~Y2 >s

As usual, the zero mode part ensures momentum conservation pµ = kµ
B −

qµ
B; the energies and longitudinal momenta

k0
B = V1k

1
B , k1

B =
p

V1 − V2
(1 − V2 cos θ) ,

q0B = V2q
1
B , q1B =

p

V1 − V2
(1 − V1 cos θ) .

are complitely fixed (cos θ = p1/p, p = p0).
The amplitude can be rewritten (qµ ≡ qµ

B, kµ ≡ kµ
B and v = v1 − v2) as

an integral over the proper times τ and l′ of the states emitted by the branes:

A =
1

sh v

∫ ∞

0

dτ

∫ ∞

0

dl′
∫

d2~kT

(2π)2
ei~k·~be−

q2

2 τe−
k2

2 l′ < eip·X >
∑

s

ZBZ
s
FMs ,

3.1 Correlators

The boundary state formalism provides a systematic way of computing corre-
lators with non trivial b.c., such as those needed here, through the definitions

< XµXν >=
< B1, V1|e−lHXµXν |B2, V2 >B

< B1, V1|e−lH |B2, V2 >B

, (11)

< ψµψν >s=
< B1, V1, η|e−lHψµψν |B2, V2, η

′ >s
F

< B1, V1, η|e−lH |B2, V2, η′ >s
F

. (12)

For the bosons, one obtains an infinite series of logarithms corresponding
to the propagation of all the string states with growing mass (z = σ + iτ):

< X0(z)X̄0(z̄) >=< X1(z)X̄1(z̄) >=

=
1

4π

∞
∑

n=0

{ ch 2[(v1 − v2)n− v2]fn(τ) − ch 2[(v2 − v1)n− v1]fn(l′)} ,

< X0(z)X̄1(z̄) >=< X1(z)X̄0(z̄) >=

= − 1

4π

∞
∑

n=0

{ sh 2[(v1 − v2)n− v2]fn(τ) + sh 2[(v2 − v1)n− v1]fn(l′)} .
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with
fn(x) = ln(1 − q2ne−4πx)

For the fermions one finds a similar structure

< ψ0(z)ψ̄0(z̄) >s=< ψ1(z)ψ̄1(z̄) >s=

= F s
o − i

∞
∑

n=0

(∓)n { ch 2[(v1 − v2)n− v2]g
s
n(τ) ± ch 2[(v2 − v1)n− v1]g

s
n(l′)} ,

< ψ0(z)ψ̄1(z̄) >s=< ψ1(z)ψ̄0(z̄) >s=

= Gs
o + i

∞
∑

n=0

(∓)n { sh 2[(v1 − v2)n− v2]g
s
n(τ) ± sh 2[(v2 − v1)n− v1]g

s
n(l′)} ,

with

gNS±

n (x) =
qne−2πx

1 − q2ne−4πx
, gR±

n (x) =
q2ne−4πx

1 − q2ne−4πx

and the zero mode contributions

FNS±

o = GNS±

o = 0 ,

FR+
o = − i

2

ch (v1 + v2)

ch (v1 − v2)
, FR−

o = − i

2

sh (v1 + v2)

sh (v1 − v2)
,

GR+
o = − i

2

sh (v1 + v2)

ch (v1 − v2)
, GR−

o = − i

2

ch (v1 + v2)

sh (v1 − v2)
.

As usual, world-sheet supersymmetry means (here for osc.) a relation
between the odd fermions and the derivative of the bosons

< ∂Xµ(z)X̄ν(z̄) >=
1

2
< ψµ(z)ψ̄ν(z̄) >R− . (13)

There are also non vanishing equal-point correlators, and all the correlators
can be actually expressed in terms of twisted ϑ-functions 5.

3.2 Axion

For the axion,Gij = 1/2ǫijkp
k/p, and only the odd spin structure in the twisted

sector of the Z3 orbifold can contribute (only two fermionic zero modes in the
2-3 pair). However, after integrating by parts the two-derivative bosonic term
appearing in the contraction Ms, and using world-sheet supersymmetry (13),
the final amplitude reduces to a total derivative and vanishes

Aax = 0 . (14)
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3.3 Dilaton

For the dilaton, Gij = δij − pipj/p2 and only the even spin structures can
contribute. Again, the two-derivative bosonic term in Ms is conveniently
integrated by parts, and proceeding as in the next subsection for the graviton,
one finds a total derivative in the large distance limit l → ∞, yielding

Adil = 0 . (15)

3.4 Graviton

For the graviton, Gij = hij = hji, p
ihij = hi

i = 0, with two independent
components. In the large distance limit l → ∞, the contraction are

MR+
grav = −1

4

[

hijk
ikj − p tgh vhi1k

i
]

−V2γ2

[

p(2)
(

hi1k
i − p

2
tgh vh11

)

+
1

4
(k2 − q2)V2γ2h11

]

e−4πτ

1 − e−4πτ

+V1γ1

[

p(1)
(

hi1k
i − p

2
tgh vh11

)

+
1

4
(k2 − q2)V1γ1h11

]

e−4πl′

1 − e−4πl′
,

MNS±

grav = −1

4

[

hijk
ikj ∓ 4e−2πl

(

p sh 2vhi1k
i − p2 sh 2vh11

)]

−V2γ2

[

p(2)
(

hi1k
i ∓ 2e−2πlp sh vh11

)

+
1

4
(k2 − q2)V2γ2h11

]

e−4πτ

1 − e−4πτ

+V1γ1

[

p(1)
(

hi1k
i ∓ 2e−2πlp sh vh11

)

+
1

4
(k2 − q2)V1γ1h11

]

e−4πl′

1 − e−4πl′
.

Also, the bosonic exponential reduces to

< eip·X >=
(

1 − e−4πτ
)−

p(2)2

2π

(

1 − e−4πl′
)−

p(1)2

2π

, (16)

where p(1,2) = pγ1,2(1 − V1,2 cos θ) = p( ch v1,2 − sh v1,2 cos θ).
Integrating by parts in the final amplitude, one finds the following rules

for the τ and l′ poles in the contraction:

e−4πτ

1 − e−4πτ

.
= −1

4

q2

p(2)2
,

e−4πl′

1 − e−4πl′
.
= −1

4

k2

p(1)2
. (17)

One can then use these equivalence relations to write Ms
grav in a τ, l′-independent

form, parametrizing it with three independent functions of the momenta

Ms
grav = Bs(p, k, q) + q2Cs

1(p, k, q) + k2Cs
2(p, k, q) .
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The kinematical integrals over the two proper times τ, l′ can then be easily
evaluated, finding the usual dual structure with a double serie of poles

I1 =

∫ ∞

0

dτe−
q2

2 τ
(

1 − e−4πτ
)−

p(2)2

2π = − 1

4π

Γ[ q2

8π
]Γ[− p(2)2

2π
+ 1]

Γ[ q2

8π
− p(2)2

2π
+ 1]

−→
p→0

− 2

q2
,

I2 =

∫ ∞

0

dl′e−
k2

2 l′
(

1 − e−4πl′
)−

p(1)2

2π

= − 1

4π

Γ[ k2

8π
]Γ[− p(1)2

2π
+ 1]

Γ[ k2

8π
− p(1)2

2π
+ 1]

−→
p→0

− 2

k2
.

The last limit is required by the eikonal approximation (p ≪ M = 1) and
selects the massless part of the states emitted by the branes.

Finally, the amplitude assumes a simple field theory form

Agrav =
4

sh v

∫

d2~kT

(2π)2
ei~k·~b

{

Bs 1

q2k2
+ Cs

1

1

k2
+ Cs

2

1

q2

}

. (18)

The Bs factor corresponds to an annihilation process occurring far away from
both branes, with a double pole, whereas the Cs

1 and Cs
2 factors correspond to

absorption-emission bremsstrahlung-like processes occurring on the first and
the second brane respectively, with a simple pole.

3.5 Field theory interpretation

It is interesting to compare the string theory results to a field theory compu-
tation in the limit of large impact parameters ~b.

For the axion and the dilaton, there is no coupling in supergravity allow-
ing the emission process, and therefore the vanishing of the string amplitude
is understood. For the annihilation term of the graviton, there are three pos-
sible diagrams in supergravity, involving the exchange of vectors, scalarss and
gravitons. Their contributions in the eikonal approximation are

BNS
φ ∼ −a2hijk

ikj ,

BR
Vµ

∼ e2
[

ch vhijk
ikj − p sh vhi1k

i
]

, (19)

BNS
gµν

∼ −M2
[

ch 2vhijk
ikj − 2p sh 2vhi1k

i + 2p2 sh 2vh11

]

.

The annihilation part of the string amplitude in the various compactifica-
tion schemes is instead the following:
0-brane: untwisted sector & 3-brane on T2 ⊗ T4/Z2, T6

One finds an e2πl enhancement from ZNS+ + ZNS− (with the “wrong sign”),
and in the final result we recognize a leading order cancellation between the

11



RR vector and both the NSNS scalar and graviton exchange:

Bgrav = BR
Vµ

+BNS
φ +BNS

gµν
∼ V 4hijk

ikj + V 3phi1k
i + V 2p2h11 . (20)

0-brane: twisted sector

In this case, there is no enhancement, and the leading order cancellation occurs
between the RR vector and NSNS scalar exchange:

Bgrav = BR
Vµ

+BNS
φ ∼ V 2hijk

ikj + V phi1k
i + V 2p2h11 . (21)

3-brane on T6/Z3

In this case there is again an e2πl enhancement from ZNS+ + ZNS−, and the
cancellation occurs between the RR vector and the NSNS graviton exchange:

Bgrav = BR
Vµ

+BNS
gµν

∼ V 4hijk
ikj + V 3phi1k

i + V 2p2h11 . (22)

The patterns of cancellation in the various cases confirm the interpretation
in terms of supermultiplets coming from the computation of the potential.

3.6 Radiated energy

The average energy radiated when two D-branes pass each other at impact
parameter ~b is, in the colinear case θ = 0 (n = 2, 4 depending on SUSY),

< p >∼ g2
s l

2
s

V 1+2n

b3
. (23)
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