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Abstract

We study in detail the pattern of anomaly cancellation in D = 6 Type IIB

ZN orientifolds, occurring through a generalized Green-Schwarz mechanism

involving several RR antisymmetric tensors and scalars fields. The starting

point is a direct string theory computation of the inflow of anomaly arising from

magnetic interaction of D-branes, O-planes and fixed-points, which are encoded

in topological one-loop partition functions in the RR odd spin-structure. All

the RR anomalous couplings of these objects are then obtained by factorization.

They are responsible for a spontaneous breaking of U(1) factors through a Higgs

mechanism involving the corresponding hypermultiplets. Some of them are

also related by supersymmetry to gauge couplings involving the NSNS scalars

sitting in the tensor multiplets. We also comment on the possible occurrence

of tensionless strings when these couplings diverge.
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1. Introduction

Anomalies have proven to play a prominent role in the study of non-trivial vacua

of string theory. Their cancellation constitute a very severe constraint on the low-

energy quantum field theory, which can be usually understood in string theory as

consequence of basic consistency requirements, like modular invariance and tadpole

cancellation. A very interesting peculiarity of low-energy effective quantum field the-

ories emerging from string theory is the occurrence of anomalies in certain tree-level

magnetic interaction mediated by p-form gauge fields, beside the well known anoma-

lies arising in one-loop amplitudes involving chiral fermions or self-dual bosons. This

allows for consistent quantum fields theories with a non-vanishing one-loop anomaly

cancelled by an equal and opposite tree-level anomaly. This is of course the celebrated

Green-Schwarz mechanism [1].

Thanks to the important recent developments in string theory, this cancellation

mechanism can be understood as a particular example of the so-called inflow mech-

anism [2]. Given a consistent anomaly free theory, there can exist vacua with topo-

logical defects supporting anomalous zero modes. The latter will be responsible for a

local violation of charge conservation on the defects, which has to be compensated by

an inflow of charge from outside the defects induced by appropriate couplings of the

defects to the fields living in the bulk. In string theory, this kind of non-perturbative

objects do indeed arise in non-trivial vacua, important examples being D-branes and

O-planes [3]. Both of these kind of objects support anomalous fields on their world-

volumes, and have thus to have appropriate anomalous couplings to bulk fields for

consistency. Indeed, they present topological Wess-Zumino couplings to RR p-forms

which are precisely those required to cancel through the inflow mechanism all the

one-loop anomalies on their world-volumes [4, 5, 6]. The effective appearance of all

of these couplings in string theory has been deduced in a unified way in [7] by fac-

torizing RR magnetic interactions between D-branes and O-planes with non trivial

curvatures, encoded in annulus, Möbius strip and Klein bottle amplitudes. They have

also been checked in successive steps through direct computations of the induced RR

charges, encoded in disk and crosscap amplitudes [8, 9, 10, 11]. Some terms have

also been derived through duality [12, 13, 14]. In orientifold models [15, 16, 17, 18],

the situation is particularly clear. The D-branes associated to Chan-Paton degrees

of freedom, as well as the fixed-planes of the orientifold group action like O-planes,

support in general anomalous fields giving rise to a non-vanishing anomaly, but also

appropriate Wess-Zumino couplings to RR fields inducing a net inflow of anomaly.

For consistent models, these one-loop and tree-level anomalies always cancel; this is

usually a direct consequence of the more basic consistency requirement of tadpole

cancellation.

In this paper, we study in detail anomaly cancellation in Type IIB ZN orientifolds

in D = 6 dimensions [16, 19, 20, 21, 22]. These models are particularly interesting
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because of their rich and peculiar spectrum, which differs from what expected [23]

for a smooth Type IIB orientifold on K3, which is equivalent to Type I on K3 as

a consequence of the well known fact that Type I strings can be understood as the

simplest orientifold of Type IIB strings [15]. In particular, a variable number of

extra tensor multiplets arise in addition to the universal one expected in the smooth

case [19]. Anomaly cancellation imposes extremely powerful constraints on these

theories, like on every N = (1, 0) supersymmetric chiral theory in D = 6, due to

the potential presence of both gauge and gravitational anomalies [24]. In general, a

generalization of the Green-Schwarz mechanism involving all the RR fields present

in the model occurs [25]. In [6], a systematic way of studying anomaly cancellation

in orientifold models was sketched, and applied to the simple case of the Z2 model,

investigated in great detail in [26], in which no extra tensor multiplets arise1. This

work is devoted to a detailed analysis of all the ZN models, with particular emphasis

on the inflow interpretation, for the case of maximal unbroken gauge group. We

will proceed with a refinement of the philosophy used in [7, 6], consisting in a direct

string computation of the inflow of anomaly arising from magnetic interaction among

D-branes, O-planes and fixed-points. All the anomalous couplings in each model

can then be easily obtained by factorization. Due to supersymmetry, these give an

important information on other terms of the low-energy effective action, in particular

to the form of the gauge couplings 1/g2 present in the theory [25]. Interestingly,

there are special points in the moduli space of the tensor multiplet scalars where 1/g2

vanishes or becomes negative [25]; tensionless strings appear then in the spectrum

and the theory may undergo a phase transition [28, 29, 30]. The orientifold models

discussed here correspond to particular points in the moduli space parametrized by

these scalars, where all the gauge couplings are positive definite and finite. However,

from some coefficients appearing in the anomaly polynomial and by supersymmetry,

one can find the dependence of the gauge couplings on these moduli. We find points

where these are vanishing and no simple string description is available. One can

also fix the couplings between these scalars and the gauge fields. The results are

in agreement with what found in [31], where such couplings were computed for the

D9-brane gauge group by factorizing one-loop CP-even amplitudes2.

Analogously to what has been shown for the Z2 orientifold in [26], anomaly can-

cellation involves also the exchange of scalar fields and their dual four-forms. This

results in the breaking of some (but in general not all, even in the case of maximal

gauge symmetry discussed here) of the U(1) gauge factors present in the gauge group.

This paper is organized as follows. In section two, we explain the strategy used

to compute the inflow of anomaly through one-loop computations in the RR odd

spin-structure. In section three, we apply the general results obtained in section two

1Anomaly cancellation in D = 4 N = 1 orientifolds has been studied in [27].
2See again [27] for similar couplings in D = 4 N = 1 models.
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to the ZN orientifolds. In section four, we find the anomalous couplings of D-branes,

O-planes and fixed-points by factorization, and in section five we study explicitly

the factorization of the anomaly for each model. In section six, we analyze the

form of some terms in the low-energy effective action of these models, related by

supersymmetry to the anomalous couplings found previously, and the spontaneous

breaking of some U(1) factors of the gauge group. Finally, in last section, we give

some conclusions and in the two appendices we respectively recall useful formulae

about the inflow mechanism and report the explicit form of the anomalous couplings

for each model.

2. Inflow and anomalies in string theory

One-loop anomalies in quantum field theory as well as in string theory can be

computed by evaluating one-loop diagrams with suitable external particles (gravitons

and gauge fields for the case of gravitational and gauge anomalies), one of which

polarized longitudinally. Consistent string theories are known to be anomaly-free. At

the level of their low-energy effective actions, the total one-loop anomaly need not to

vanish, but can cancel against anomalies due to particular couplings between gauge

particles and RR fields. The crucial feature of these actions is that these couplings

do actually appear and precisely in the appropriate form to give an anomaly free

quantum field theory. One could be satisfied by this statement and conclude that

such couplings can be derived by requiring the tree-level anomaly they produce to

be equal and opposite to the one-loop anomaly produced by the chiral fields present

in the model. Such point of view is however unsatisfactory for at least two reasons.

First, it is indirect and always relies on the assumption (generically taken to be

valid) that consistent string theories are anomaly free. Most importantly, it does not

allow for a microscopic analysis of the origin of such couplings in string theory. This

second reason is crucial for our purposes of computing anomalous couplings in IIB

orientifolds. It is expected, for instance, that in such models several tensor and hyper

multiplets, coming from different twisted closed string sectors, play a decisive role in

the inflow mechanism. Whereas a string derivation of these couplings allows a total

understanding of their origin and the role they play in the various inflows, an analysis

at the level of the low-energy effective action only, would be necessarily incomplete.

The question is then how to compute such anomalous couplings (or the correspond-

ing inflows) in string theory, and more precisely in generic Type IIB orientifolds. The

most direct approach would be to perform a disk or crosscap computation with the

insertion of gauge fields, gravitons and the RR field in question. The advantage of

this approach is that it yields directly the couplings. However, the precise form of the

vertex operators of the various tensor fields is needed, including those arising from

the closed string twisted sectors, and it is quite awkward and hard to fix correctly the

normalizations. On the other hand, one can compute appropriate amplitudes from
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which such couplings can be extracted by factorization. The most convenient choice

turns out to be a generic one-loop correlation function in the odd spin-structure with

external gravitons and gauge fields, one of which polarized longitudinally. These am-

plitudes on the annulus, Möbius strip and Klein bottle can indeed be factorized as

a tree-level exchange of closed strings between two disk or crosscap sources. As we

shall argue in the following, this amounts to compute directly the anomalous inflows

induced by these couplings.

Before entering into the details of the computation, we would like to do some

remarks and anticipate some results. The correlation functions above will turn out

to be a total derivative in the moduli space of the various relevant surfaces: annulus,

Möbius strip and Klein bottle. As well known, these surfaces have two equivalent

interpretations, either as one-loop amplitudes of open (for the annulus and Möbius

strip) or closed (for the Klein bottle) strings, or as tree-level closed string amplitudes.

Correspondingly, the modular parameter of these surfaces can be taken either as the

proper time t in the loop channel or the proper time l ∼ 1/t in the tree channel. The

inflow due to massless RR fields will arise from the IR region l → ∞ of the tree-

channel, corresponding to the UV region t → 0 of the loop channel, where indeed

usual anomalies can arise.

Due to the topological nature of the amplitudes in question, the computation

always reduces to the simple evaluation of the partition function of a supersymmetric

quantum mechanical model. From now on, we will concentrate for simplicity on the

case of six non-compact dimensions, since this is the case we are interested in. More

general cases can be treated similarly without additional difficulties, the fields along

the compact directions entering always through their odd spin-structure partition

function. We are then interested to compute a given four-point function of gluons

and/or gravitons in the odd spin-structure, with one of them polarized longitudinally.

The unphysical particle represents essentially a gauge transformation, and choosing it

to be a gluon or a graviton corresponds to compute gauge and gravitational anomalous

variations respectively.

In the odd spin-structure, the genus one world-sheets we are considering admit

a gravitino zero mode. Independently of the boundary conditions, the integration

over the latter in the Polyakov path-integral results in the insertion of the sum of the

left and right moving world-sheet supercurrents, TF + T̃F . Moreover, since the total

superghost charge is 1, one has to take one vertex operator in the (−1)-picture and

all the others in the (0)-picture. A non-vanishing result is obtained by taking the

vertex of the unphysical particle to be in the (−1)-picture and all the vertices of the

physical particles in the (0)-picture. We have then to compute

C = 〈 V phy.
1 V phy.

2 V phy.
3 V unphy. (TF + T̃F ) 〉 . (2.1)

In the following, we will use the same strategy as in the introduction of [32]. For

simplicity, we will systematically omit the ghost and superghost dependence of all
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the operators, since their contributions to the correlation functions we will compute

always cancel by supersymmetry.

The vertex operators in the (0)-picture for physical gluons and gravitons, with

transverse polarizations ǫaµ and ξµν , are the usual ones. They are given by

V phy.
γ = ξa

µ λ
a
∮
dτ

(
Ẋµ + ip · ψψµ

)
eip·X , (2.2)

V phy.
g = ξµν

∫
d2z (∂Xµ + ip · ψψµ)

(
∂̄Xν + ip · ψ̃ψ̃ν

)
eip·X . (2.3)

The vertex operators in the (−1)-picture for unphysical gluons and gravitons, with

longitudinal polarizations ǫaµ = pµ η
a and ξµν = p(µην), are not total derivatives as

they would be in the (0)-picture. However, they can be written as the world-sheet

supersymmetry variations

V unphy. = [Q+ Q̃, V̂ unphy.] (2.4)

of the auxiliary vertices

V̂ unphy.
γ = −i ηa λa

∮
dτ eip·X , (2.5)

V̂ unphy.
g = −2i ηµ

∫
d2z

[
(∂ + ∂̄)Xµ + ip · (ψ − ψ̃)(ψ − ψ̃)µ

]
eip·X . (2.6)

In the above expressions, λa are the Chan-Paton matrices, and

Q =
∮

Cτ

dz

2πi
j , Q̃ =

∮

Cτ

dz̄

2πi
j̃ ,

are the left and right-moving world-sheet supercharges.

We can now use standard manipulations as in [33] and reverse the contour in-

tegration for Q and Q̃3. Since all the other vertex operators in the correlation are

supersymmetric, the only non-vanishing term arises when Q + Q̃ hits the picture

changing vertex operator TF + T̃F , giving

[Q+ Q̃, TF + T̃F ] = TB + T̃B , (2.7)

where TB + T̃B is the world-sheet energy-momentum tensor. We are then left with

C = 〈 V phy.
1 V phy.

2 V phy.
3 V̂ unphy. (TB + T̃B) 〉 . (2.8)

The insertion of the energy-momentum tensor in a correlation function corre-

sponds generically to take a Teichmüller deformation of the remaining amplitude; in

our case, this means basically to take a derivative with respect to the modulus t. By

a careful treatment of the path-integral measure, it has been shown that this is in-

deed precisely what happens for the six-gluon correlation function giving the hexagon

gauge anomaly in type I string theory [34]. It is not difficult to convince oneself that

3In the case at hand, these manipulations have to be taken on the covering torus of each surface.
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the same analysis can be carried out in the present case without any major change,

the compact space entering rather trivially in (2.8). The final result for the integrated

amplitude is then

A =
∫ ∞

0
dt
d

dt
〈 V phy.

1 V phy.
2 V phy.

3 V̂ unphy. 〉 . (2.9)

This is indeed in agreement with the expectation that space-time anomalies in string

theory arise as boundary terms in the moduli space of the various involved surfaces

[33]. This limit involves also the position of the graviton vertices. A potential anomaly

can arise only when all gravitons approach the same world-sheet boundary where all

the gauge fields sit or, for pure gravitational anomalies, when the four gravitons are

on the same boundary or crosscap [35]. These are the only kinematical configurations

in which, along the whole one-loop surface, there is no flow of momentum q in the

tree-level channel leading to an exponential suppression of the amplitude like e−q2/t.

This is nothing but a generalization of the argument used to show that non-planar

diagrams, in the hexagon gauge anomaly of type I, are anomaly-free (see e.g. [36]).

The boundary value we are interested in is t→ 0, that is l → ∞, where the amplitude

is dominated by the exchange of massless closed string states. The limit t → ∞
corresponds instead to the IR part of the loop channel.

The full evaluation of (2.9), in particular when more gravitons are present, requires

still a considerable amount of work. However, it is not our aim to perform such a

calculation, that in a consistent string model has to give necessarily a vanishing

result4. Rather, we are interested to extract from (2.9) the various anomalous inflows

coming from the exchange of RR fields. In order to do that, we can restrict the

evaluation of (2.9) to the lowest order in the external momenta pµ. Indeed, in quantum

field theory, any momentum dependence in an anomalous variation of the effective

action can be removed by adding suitable local counter terms5. This is not possible

in string theory, where the full anomalous variation presents indeed a dependence

on the external momenta, dependence that turns out to be crucial to get a total

vanishing result. By neglecting this dependence we will then be able to extract a

finite and non-vanishing result corresponding to the inflow terms. Notice that in this

approximation the amplitude (2.9) is t-independent.

Recall now that the odd spin-structure one-loop correlation function above in-

volves an integration over the six bosonic zero modes xµ
0 , corresponding to the integral

over six-dimensional space-time, as well as an integration over the six fermionic zero

modes ψµ
0 , which is vanishing unless all of them are inserted. Notice that none of

the unphysical vertices (2.5) and (2.6) contains fermionic zero modes, so that all of

them must be provided by the physical vertices V phy.. As discussed in [7], the gluon

4See for example [35], where the mixed and gravitational anomalies are computed in type I string

theory, using the covariant operatorial formalism, and are shown to vanish.
5Corrections involving higher powers of pµ would be in any case sub-leading in the low-energy

limit α′ → 0.
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and graviton vertex operators can soak at most two fermionic zero modes, and their

effective form at leading order in the momentum pµ is

V eff.
γ (F ) =

∮
dτ F a λa , (2.10)

V eff.
g (R) =

∫
d2z Rµν

[
Xµ(∂ + ∂̄)Xµ + (ψ − ψ̃)µ(ψ − ψ̃)ν

]
, (2.11)

in terms of the gauge and gravitational curvature two-forms

F a =
1

2
F a

µν ψ
µ
0ψ

ν
0 , Rµν =

1

2
Rµνρσ ψ

ρ
0ψ

σ
0 . (2.12)

Interestingly enough, the unphysical gluon and graviton vertex operators reduce, at

leading order in the momentum pµ, to effective vertices of exactly the same kind,

but with unphysical longitudinal curvatures F a = ηa and Rµν = p[µην] which do not

depend on the fermionic zero modes.

Since all the effective vertices are now at most quadratic in the fields, it is con-

venient to exponentiate them adding the corresponding interaction to the free world-

sheet action. The net effect of the unphysical vertex is to shift the corresponding

curvature as F a → F a + ηa if it is a gluon, or Rµν → Rµν + D[µην] if it is a gravi-

ton. The integral over the six fermionic zero modes automatically selects the correct

number (three) of physical vertices or, in language of forms, the six-form polynomial

to be integrated over the six-dimensional space-time we are considering. However, in

order to get a single unphysical vertex, one has to take the functional derivative with

respect to the parameter ηa or ηµ, and then set the parameter to zero. A striking

similitude then emerges with Fujikawa’s method of computing anomalies, as in [24].

The unphysical vertex plays the role of the anomalous variation of the path-integral

measure, and implement essentially the descent operation I = dI(0), δI(0) = dI(1),

on an auxiliary eight-form anomaly polynomial I, as required by the Wess-Zumino

consistency condition.

Interestingly, one can at this point forget about the descent parameter η asso-

ciated to the unphysical vertex, keeping in mind that its net effect is to implement

the descent procedure, and compute directly the anomaly polynomial I rather than

the anomaly A itself. To achieve this out of the remaining correlation, one restricts

by hand to the eight-form instead of integrating over the six fermionic zero modes

which would select the six-form, and omits also the integral over the six bosonic zero

modes. We have therefore reduced the computation of the anomaly to the evaluation

of a supersymmetric partition function in the odd spin-structure in presence of an

arbitrary gravitational and gauge background. World-sheet supersymmetry further

implies that this is an index [37] which is independent of the modulus t, receiving

contribution only from zero energy states of the two-dimensional σ-model. The com-

putation, as anticipated, reduces then to the evaluation of the partition function of a

supersymmetric quantum mechanical model. The compact space plays a central role

in determining the precise normalization factors of the polynomial; moreover, in the
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cases we will consider in which it is realized as an orbifold, it will induce additionally

twists in the Chan-Paton degrees of freedom [20].

The most important outcome of the above reasoning is a simple and general pre-

scription for the direct string theory computation of the anomaly inflow in arbitrary

models, and in particular Type IIB orientifolds. By factorizing the annulus, Möbius

strip and Klein bottle inflows, one can then deduce the anomalous couplings of all the

D-branes, O-planes and fixed-points in the model. In general, such couplings involve

several RR fields arising in all the twisted sectors, and a generalized inflow mecha-

nism takes places. Correspondingly, the anomaly polynomial does not factorize, but

rather splits into a sum of factorized contributions corresponding to a plethora of

sub-inflows.

3. Inflow for K3 orientifolds

In this section, we shall apply the tools derived in the previous section to the

D = 6 Type IIB ZN orientifolds of [20, 21, 22]. In these models, tadpole cancellation

requires in general both D9-branes and D5-branes, and fixes their number. In the

following, we shall restrict to the special points in the moduli space in which the

models have maximal gauge symmetry. This implies in particular that all the D5-

branes sit at the fixed-point at the origin of the orbifold. For all the details about

these models, we refer to [21].

In this paper, we will focus on the type A ZN orientifolds, in the terminology of

[21]. The D = 6 spectrum consist of gravitational, tensor, hyper and vector multiplets

of N = (1, 0) supersymmetry. The untwisted closed string sector yields the minimal

combination of 1 gravitational, 1 tensor and 2 hyper multiplets for all N 6= 2. For

N = 2 we get 1 gravitational, 1 tensor and 4 hyper multiplets. The twisted closed

string sector gives a varying number of neutral hyper multiplets and additional tensor

multiplets. These closed string spectra are summarized below.

Model Neutral Hypers Tensors

Z2 20 1

Z3 11 10

Z4 16 5

Z6 14 7

As a consequence of the fact that the total number of neutral hyper and tensor

multiplets is always 21, there are just enough neutral anti-chiral spinors to combine

with the chiral gravitino to give the same gravitational anomaly as 8 self-dual tensors,
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as follows from the six-dimensional anomaly cancellation relation

I3/2 − 21I1/2 − 8IA = 0 . (3.1)

As a result, the total anomaly from neutral closed string states is

In = (9 − nT ) IA , (3.2)

where nT is the number of tensor multiplets in the model. This anomaly is expected to

be canceled by the inflow associated to the fixed-plane-fixed-plane interaction encoded

in the Klein bottle amplitude.

In the open string sectors, one has vector multiplets as well as charged hyper

multiplets in various antisymmetric or bi-fundamental representations, as shown in

the following table.

Model Gauge Group Charged Hypermultiplets

Z2

99 : U(16)

55 : U(16)

99 : 2 × 120

55 : 2 × 120

95 : (16, 16)

Z3 99 : U(8) × SO(16) 99 : (28, 1), (8, 16)

Z4

99 : U(8) × U(8)

55 : U(8) × U(8)

99 : (28, 1), (1, 28), (8, 8)

55 : (28, 1), (1, 28), (8, 8)

95 : (8, 1; 8, 1), (1, 8; 1, 8)

Z6

99 : U(4) × U(4) × U(8)

55 : U(4) × U(4) × U(8)

99 : (6, 1, 1), (1, 6, 1)

(4, 1, 8), (1, 4, 8)

55 : (6, 1, 1), (1, 6, 1)

(4, 1, 8), (1, 4, 8)

95 : (4, 1, 1; 4, 1, 1)

(1, 4, 1; 1, 4, 1)

(1, 1, 8; 1, 1, 8)

In computing the anomalies produced by these fields, it is convenient to decompose all

the representations as tensor products of two fundamental representations (associated

to the end-points of open strings). Correspondingly, the Chern classes appearing in

the anomaly decompose as products of traces in the fundamental representation. We

shall indicate the latter with c(F ) in the following; more precisely, for the groups

U(n) and SO(n) that appear we define

c(F ) = chn(F ) = trn[eiF/2π] .
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For U(n), the adjoint, symmetric and antisymmetric representations give

U(n) :






chn2(F ) = c(F ) c(−F )

chn(n±1)
2

(F ) =
1

2

[
c(F )2 ± c(2F )

] . (3.3)

For SO(n), the adjoint and symmetric representations give similarly

SO(n) : chn(n±1)
2

(F ) =
1

2

[
c(F )2 ± c(2F )

]
. (3.4)

Using these relations, the total gauge and gravitational anomalies produced by the

charged open string states in the various sectors can be easily computed. The anomaly

polynomials for all the models are reported in the table below.

Model Ic

Z2

{[
− c(F9)

2 + c(F9) c(−F9)
]

99
+
[
− c(F5)

2 + c(F5) c(−F5)
]

55

−
[
c(F5) c(F9)

]

95
+
[
c(2F9)

]

9
+
[
c(2F5)

]

5

}

I1/2

Z3

{[
− 1

2
c(F a

9 )2 +
1

2
c(F9)

2 + c(F a
9 ) c(−F a

9 ) − c(F b
9 ) c(−F b

9 )
]

99

+
1

2

[
c(2F a

9 ) − c(2F b
9 )
]

9

}

I1/2

Z4

{[
− 1

2

(
c(F a

9 ) + c(F b
9 )
)2

+ c(F a
9 ) c(−F a

9 ) + c(F b
9 ) c(−F b

9 )
]

99

+
[
− 1

2

(
c(F a

5 ) + c(F b
5 )
)2

+ c(F a
5 ) c(−F a

5 ) + c(F b
5 ) c(−F b

5 )
]

55

−
[
c(F a

9 ) c(F a
5 ) + c(F b

9 ) c(F b
5 )
]

95

+
1

2

[
c(2F a

9 ) + c(2F b
9 )
]

9
+

1

2

[
c(2F a

5 ) + c(2F b
5 )
]

5

}

I1/2

Z6

{[
− 1

2
c(F a

9 )2 − 1

2
c(F b

9 )2 −
(
c(F a

9 ) + c(F b
9 )
)
c(F c

9 )

+ c(F a
9 ) c(−F a

9 ) + c(F b
9 ) c(−F b

9 ) + c(F c
9 ) c(−F c

9 )
]

99

+
[
− 1

2
c(F a

5 )2 − 1

2
c(F b

5 )2 −
(
c(F a

5 ) + c(F b
5 )
)
c(F c

5 )

+ c(F a
5 ) c(−F a

5 ) + c(F b
5 ) c(−F b

5 ) + c(F c
5 ) c(−F c

5 )
]

55

−
[
c(F a

9 ) c(F a
5 ) + c(F b

9 ) c(F b
5 ) + c(F c

9 ) c(F c
5 )
]

95

+
1

2

[
c(2F a

9 ) + c(2F b
9 )
]

9
+

1

2

[
c(2F a

5 ) + c(2F b
5 )
]

5

}

I1/2
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We have used the fact that in six dimensions only terms with an even number of

curvatures can appear. For later convenience, we do not expand explicitly the anomaly

polynomials, but it is understood that only the 8-form component of the quoted

expressions is relevant. The Latin letters a,b,c,... label the gauge group factors in the

same order as they appear in the previous table. The terms in the square brackets

with index 99, 55 and 95 are expected to be canceled by inflows associated to the

D-brane-D-brane interaction encoded in the annulus amplitude in the 99, 55 and 95

sectors. Similarly, the terms in the square brackets with index 9 and 5 are expected to

be canceled by the inflows associated to the D-brane-fixed-planes interaction encoded

in the Möbius strip amplitude in the 9 and 5 sectors.

Both D-branes (B) and fixed-points (F) are involved in the inflow mechanism. The

annulus, Möbius strip and Klein bottle amplitudes in the odd spin-structure encode

the anomaly inflow arising from the RR magnetic interaction between two D-branes

(BB), a D-brane and a fixed-point (BF), and two fixed-points (FF) respectively. Since

there are three types of interaction among only two kinds of objects, the factorization

of these interactions is non-trivial. The total inflow induced by each surface is ob-

tained by summing over all the sectors of the orientifold group the partition function

of a quantum mechanical model in the (six-dimensional) odd spin-structure.

In the operatorial formalism, the relevant odd spin-structure amplitudes that we

have to compute on the annulus, Möbius strip and Klein bottle, are given by the

following partition functions:

ZA =
1

4N

N−1∑

k=0

TrR [gk (−1)F e−tH(R,F )] ,

ZM =
1

4N

N−1∑

k=0

TrR [Ω gk (−1)F e−tH(R,F )] , (3.5)

ZK =
1

8N

N−1∑

k=0

N−1∑

m=0

Tr
(m)
RR [Ω gk (−1)F+F̃ e−tH(R,F )] ,

where a sum over Chan-Paton indices is understood for the case of the annulus and

Möbius strip surfaces. In the Klein bottle amplitude, the extra sum includes all

the closed string twisted sectors. The overall factors come form the Ω and GSO

projections. In the following we will not present the details of the evaluation of the

partition functions of the quantum mechanical models that are reported in [6, 7].

Annulus

Consider first the various annulus amplitudes. The 99 contribution reads:

Z99
A (R,F9) =

1

4N

N−1∑

k=1

Nk Z
B
k Z

F
k ch2(γk F9) Â(R) , (3.6)

where the Chern class

ch(γk F9) ≡ tr [γk,9 e
iF9/2π] (3.7)
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is defined in the Chan-Paton representation (which is built out of fundamental rep-

resentations of the various factors of the gauge group) and includes the matrix repre-

sentation γk,9 of the twist gk induced by the orientifold group action in the 9 sector.

Â(R) is the roof genus, and is unaffected by the orientifold projection. Finally, Nk and

ZB,F
k take into account the internal partition functions of the four compact bosons

and fermions, which in the 99 sector have an integer mode expansion and admit zero-

energy states. The bosons have zero modes xi
0 ∼ gk xi

0 in each k-twisted sector, and

one has therefore to sum over all the k-fixed-points Fk, whose number is given by

Nk =

(

2 sin
πk

N

)4

, k = 1, . . . , N − 1 . (3.8)

The fermions have instead zero modes only in the untwisted sector k = 0, leaving

a vanishing partition function in this sector. Finally, ZB,F
k represent the partition

functions in the k-twisted sector of the remaining fluctuations of the four internal

bosons and fermions respectively, and are given by

ZB
k =

(

2 sin
πk

N

)−4

, ZF
k =

(

2 sin
πk

N

)2

, k = 1, ..., N − 1 . (3.9)

In the 55 sector the Dirichlet boundary conditions still allow zero-energy states for

fermions but not for bosons. The corresponding contribution is then:

Z55
A (R,F5) =

1

4N

N−1∑

k=1

ZF
k ch2(γk F5) Â(R) , (3.10)

where now

ch(γk F5) ≡ tr [γk,5 e
iF5/2π] . (3.11)

Finally, in the 95 sector the internal fields satisfy mixed Neumann-Dirichlet boundary

conditions and have a half-integer mode expansion. This implies that no zero-energy

states are present in these sectors and correspondingly

Z95
A (R,F9, F5) = − 1

2N

N−1∑

k=0

ch(γk F9) ch(γk F5) Â(R) . (3.12)

The minus sign in (3.12) is due to the fact that the 95 Ramond vacuum differs

by one unit of fermionic charge with respect to the 99 and 55 Ramond vacua, and

the factor two takes into account the two orientations 95 and 59. From the closed

string channel point of view, these expressions encode the D9-D9, D5-D5 and D5-D9

magnetic interactions. The k-th term in each sum corresponds to the exchange of RR

forms of the k-th twisted sector.

Möbius strip

The Möbius strip contribution in the 9 sector reads

I9
M(R,F9) = − 1

4N

N−1∑

k=1

Nk Z
B
k ZF

k ch(γ−1
Ωkγ

T
Ωk 2F9) Â(R) , (3.13)
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where again we have taken into account the twist induced by the orientifold group

action on the Chern class. The factor two entering in the Chern character is due to

the fact that the boundary of the Möbius strip is twice longer than one of the two

boundaries of the annulus. The analysis for the four internal directions is identical to

that presented for the 99 sector of the annulus and the corresponding contribution is

identical and given by (3.9). In the 5 sector we get instead

I5
M(R,F5) = − 1

4N

N−1∑

k=0

ZF
k+N/2 ch(γ−1

Ωkγ
T
Ωk 2F5) Â(R) , (3.14)

where again the four fermions present zero-energy states, absent for the bosons. The

extra N/2-twist is needed to implement Dirichlet boundary conditions in the Möbius

strip.

In the closed string channel, these expressions correspond to the D9-Fk and D5-

Fk magnetic interactions. The k-th term in each sum involves k-fixed-points and

corresponds to the exchange of RR forms in the 2k-th twisted sector. Correspondingly,

the following relations hold (see [21])

ch(γ−1
Ωkγ

T
Ωk 2F ) = ±ch(γ2k 2F ) , (3.15)

the + and − signs holding in the 9 and 5 sectors respectively.

Klein bottle

In the closed string sector, Ω exchanges the m-th twisted sector with the (N −m)-

th6. This implies that the only sectors which contributes to the Klein bottle partition

function in (3.5) are the untwisted sector m = 0 and, for N even, the middle sector

m = N/2. We then get two distinct contributions. The one coming from the untwisted

m = 0 sector is given by:

IK(R) =
1

16N

N−1∑

k=1

Nk+N/2 Z
B
k+N/2 Z

F
k Z

F
k+N/2 L̂(R) , (3.16)

where we have taken into account that in this sector, both the internal bosons and

and fermions have zero-energy states and that, analogously to the Möbius strip case

in the 5 sector, an extra N/2-twist is needed to implement the correct crosscap condi-

tions. Moreover, in this surface left-moving and right-moving fermions are not simply

identified but split into two combinations with periodic and anti-periodic zero-energy

states respectively [6]. This explains the various factors entering in (3.16).

In the N/2-twisted sector, the only zero-energy states are the bosonic zero modes

xi
0 ∼ −xi

0. Since in (3.5) we have also a sum over all the gk-twists we get:

I ′K(R) = − 1

16N
L̂(R)

N−1∑

k=0

N ′
k , (3.17)

6Notice that Ω reported here does not precisely coincide with the IIB world-sheet parity operator.

See [23] for a discussion about this point.

14



where N ′
k represents the number of N/2-fixed-points that are also k-fixed. These

numbers are given by N ′
0 = N ′

N/2 = 16, and N ′
k = N ′

N−k with

N ′
k = min {Nk, Nk+N/2} , k = 1, ..., N/2 − 1 . (3.18)

The minus sign in (3.17) arises from the action of Ω on the N/2-twisted vacua.

From the closed string channel point of view, these two contributions correspond

respectively to the Fk-Fk and Fk-Fk+N/2 magnetic interactions, and the k-th term

in each sum involves the exchange of RR forms in the 2k-th twisted sector. L̂(R)

indicates the Hirzebruch polynomial, and is crucial for the cancellation of anomalies

due to (anti)self-dual tensors [6].

Inflows

Collecting these results, one finds the following expressions for the various inflows:

I99,55
BB (R,F9,5) =

1

4N

N−1∑

k=1

(

2 sin
πk

N

)2

ch2(γk F9,5) I1/2(R) , (3.19)

I95
BB(R,F9, F5) = − 1

2N

N−1∑

k=0

ch(γk F9) ch(γk F5) I1/2(R) , (3.20)

I9
BF (R,F9) = − 1

4N

N−1∑

k=1

(

2 sin
πk

N

)2

ch(γ2k 2F9) I1/2(R) , (3.21)

I5
BF (R,F5) =

1

4N

N−1∑

k=0

(

2 cos
πk

N

)2

ch(γ2k 2F5) I1/2(R) , (3.22)

IFF (R) = − 1

2N

N−1∑

k=0




(

2 sin
2πk

N

)2

−N ′
k



 IA(R) . (3.23)

In order to compute explicitly these inflows and compare them to the anomalies in

the spectrum, one needs the explicit representation of the γk matrices. In a suitable

basis, one can choose γk,9 = (γ)k, γk,5 = (γ∗)k, γ∗ = γ−1, with γ given in the following

table7

Model γ

Z2 diag
(
e

π
2
i I16, e

−π
2
i I

16

)

Z3 diag
(
e

2π
3

i I8
a, e−

2π
3

i I8̄
a, I16

b
)

Z4 diag
(
e

π
4
i I8

a, e−
π
4
i I8̄

a, e−
3π
4

i I8
b, e

3π
4

i I8̄
b
)

Z6 diag
(
e

π
6
i I4

a, e−
π
6
i I4̄

a, e
5π
6

i I4
b, e−

5π
6

i I4̄
b, e−

π
2
i I8

c, e
π
2
i I8̄

c
)

7The matrices used here differ from those in [21] in the fact that there is no relative phase between

the matrices in the 9 and the 5 sectors. The necessity of such a phase is avoided here by taking

explicitly into account the fixed-point degeneracy, achieving a complete symmetry between the 9

and the 5 sectors.
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Latin letters again refer to the various factors of the gauge group, and Iρ indicates

the identity in the representation ρ.

It is straightforward but tedious to check that the total inflow, obtained by sum-

ming all the contributions above, is indeed equal to the total one-loop anomaly In+Ic,

for each model. Pictorially, the BB, BF and FF parts of the inflow receive the fol-

lowing non-vanishing contributions

k2 k2 k2 k2

k2 k2

+99 k k9 5+

+9 + 9 5 + 5

+

Fk Fk Fk Fk

Fk Fk Fk Fk+N/2

95 k k5 5+IBB =
N−1∑

k=0







 ,

IBF =
N−1∑

k=0







 ,

IFF =
N−1∑

k=0







 . (3.24)

4. Factorization of the couplings

As discussed in previous section, the various tree-level BB, BF and FF inflows can-

cel separately corresponding pieces of the total one-loop anomaly, and are interpreted

as magnetic interactions. Having computed all the inflows, the anomalous couplings

to RR fields can be obtained by factorization. Starting from (3.19)-(3.23) and know-

ing which (and how) massless fields arise in these orientifold models [21] in all closed

string sectors, untwisted and twisted, it is possible to identify those responsible for

the inflows above. Using the crucial property [7]

√
Â(R)

√
L̂(R/4) = Â(R/2) , (4.1)

and making use of the fact that only the 8-form components of all the polynomials

are relevant to perform some rescalings, it is straightforward to show that the inflows

(3.19)-(3.23) can be indeed consistently factorized.

Recall now that these inflows of anomaly are associated with RR magnetic inter-

actions. The latter arise in string theory in the odd spin-structure, the insertion of

(−1)F acting as Hodge duality on the propagating field [38]. It is easy to deduce from

the analysis of [20, 21] that the only fields mediating RR magnetic interactions are 2-

forms in the RR untwisted sector, and 0-forms (scalars) magnetically dual to 4-forms,

as well as anti-self-dual 2-forms, in the twisted RR sectors. The content of this kind

of fields of the various models is the following. In the untwisted RR sector, there
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are always an anti-self-dual and a self-dual 2-form. They lie in the universal tensor

multiplet and in the gravitational multiplet respectively, and together they form an

unconstrained 2-form bµν . In the twisted RR sectors, a variable number of scalars

and anti-self-dual 2-forms occurs, depending on the model. More precisely, one has

to distinguish between k-twisted closed string sectors with k = N/2 and k 6= N/2.

At each of the NN/2 = 16 N/2-fixed points, one gets a scalar ϕ belonging to an ex-

tra hypermultiplet. Some among these are further identified by the ZN projection,

and the number of independent scalars is 16 for Z2, 0 for Z3, 10 for Z4 and 6 for

Z6. Similarly, at each of the Nk k-fixed-points with k 6= N/2, one gets a scalar φ(k),

belonging to an extra hypermultiplet, and one anti-self-dual 2-form b(k)
µν , belonging

to one extra tensor multiplet. Actually, these arise by combining the sectors with

twists k and N − k, which are related by the Ω-projection. Again, the ZN projection

further identifies some of these among each other; the net number of them is 0 for

Z2, 9 (from k = 1, 2) for Z3, 4 (from k = 1, 3) for Z4 and 1+5=6 (from k = 1, 5 and

k = 2, 4 respectively) for Z6. There is an evident and important distinction arising

between the inflows due to the exchange of tensor and scalar fields. Tensor fields

can have anomalous couplings only to 4-forms, and the corresponding contribution to

the 8-form anomaly polynomial will factorize into the product of two 4-forms. Scalar

fields can instead have anomalous couplings to 2 and 6-forms, and the corresponding

contribution to the 8-form anomaly polynomial will factorize into the product of a

2-form and a 6-form. This implies that all the inflows induced by exchange of scalars

and their dual 4-forms involve always the Abelian part of the gauge group.

Throughout this section, for simplicity, we will always write at the same time

anomalous couplings for forms and their duals, despite the well known fact that

there is no local and covariant Lagrangian in which a potential and its dual can

appear at the same time. More precisely, one should write the couplings to the dual

potential as corrections to the kinetic terms for the field strength of the original

potential, modifying then its Bianchi identity. In presence of anti-self-dual forms our

formulae for the couplings should be considered as formal expressions that reproduce

the right inflow of anomaly. More precisely, they should be written either in a non-

covariant way, by using the electro-magnetically symmetric action introduced in [39],

or covariantly using the formalism introduced in [40].

We now present a general analysis, valid for all the K3 orientifolds considered here,

allowing to extract in a systematic way the couplings and to emphasize some general

features which are common to all models. In order to keep the analysis as general

as possible, we find it convenient to keep all the 16 Z2-twisted scalars and the Nk

tensors and scalars arising from the k and N−k twisted sectors, as independent states.

Although the physical propagating states are less than that, as mentioned, this will

facilitate the general analysis and yet remain correct. In next section, the anomalous

couplings associated to the physical scalar fields will be explicitly displayed.

In order to figure out which states are responsible for the various inflows, recall
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that in (3.19)-(3.20) the insertion of gk acts as a k-twist in σ for the closed string

state exchanged and as a 2k-twist in σ in (3.21)-(3.23). It is natural to consider

separately the k = 0, k = N/2 closed string sectors which are special in many

respects, and to group the remaining closed string sectors into conjugate pairs, adding

the contributions of the k and N − k twisted sectors which correspond to the same

intermediate closed string states.

Untwisted closed string exchange

The non-vanishing contributions to the inflows (3.19)-(3.23) involving untwisted closed

string states of the k = 0 sector, come form the terms k = 0 in (3.20) and (3.22),

k = N/2 in (3.21) and k = 0, N/2 in (3.23). They can be written as

I
(0)95
BB (R,F5, F9) = −Y 9

(0)(F9, R) Y 5
(0)(F5, R) ,

I
(0)9,5
BF (R,F9,5) = −Y 9,5

(0) (F9,5, R) Y(0)(R) ,

I
(0)
FF (R) = −Y(0)(R) Y(0)(R) , (4.2)

where

Y 5
(0)(F5, R) =

1√
2N

ch(F5)
√
Â(R) ,

Y 9
(0)(F9, R) =

1√
2N

ch(F9)
√
Â(R) ,

Y(0)(R) = − 32√
2N

√
L̂(R/4) . (4.3)

The RR fields involved in the inflow are the untwisted 2-form bµν and its magnetic

dual b̃µν . Form a ten-dimensional point of view, bµν is the trivial dimensional reduction

of the RR 2-form, whereas b̃µν arises from integrating the RR 6-form on T 4. The

magnetic duality of bµν and b̃µν in six dimensions follows from the fact that the RR

2 and 6-forms in ten-dimensions have field-strengths which are Hodge dual to each

other. Form the known form of the anomalous couplings of D-branes and O-planes in

ten-dimensions, we then expect that the combinations of fields coupling to D5-branes

and O5-planes, and D9-branes and O9-planes, are simply:

C(0) = b , C̃(0) = b̃ . (4.4)

The reason for this is the following. D5-branes and O5-planes couple to both the

RR 2-form and 6-form in ten-dimension. However, the total charge with respect to

the latter cancels by the requirement of tadpole cancellation, and only the 2-form is

relevant, producing b in six dimensions. Conversely, since all the internal curvatures

vanish, the integral over T 4 in the anomalous couplings of D9-branes and O9-planes

can act only on the RR 6-form, producing b̃ in six dimensions.
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Using the results of appendix A, it is then straightforward to show that the anoma-

lous couplings

S
(0)
D5 =

√
2π
∫
C(0) ∧ Y 5

(0)(F5, R) , (4.5)

S
(0)
D9 =

√
2π
∫
C̃(0) ∧ Y 9

(0)(F9, R) , (4.6)

S
(0)
O5 =

√
2π
∫
C(0) ∧ Y(0)(R) , (4.7)

S
(0)
O9 =

√
2π
∫
C̃(0) ∧ Y(0)(R) , (4.8)

reproduce the above inflows.

N/2-twisted closed string exchange

The non-vanishing contributions to the inflows (3.19)-(3.23) involving Z2-twisted

closed string states of the k = N/2 sector, come from the k = N/2 terms in (3.19)

and (3.20)8. They can be written as

I
(N/2)99
BB (R,F9) =

1

2
NN/2 Y

9
(N/2)(F9, R) Y 9

(N/2)(F9, R) ,

I
(N/2)55
BB (R,F5) =

1

2
Y 5

(N/2)(F5, R) Y 5
(N/2)(F5, R) ,

I
(N/2)95
BB (R,F5, F9) = Y 9

(N/2)(F9, R) Y 5
(N/2)(F5, R) , (4.9)

where NN/2 = 16 and

Y 5
(N/2)(F5, R) = − 1√

2N
2 ch(γN/2 F5)

√
Â(R) ,

Y 9
(N/2)(F9, R) =

1√
2N

2−1 ch(γN/2 F9)
√
Â(R) . (4.10)

The RR states responsible for the inflow are the scalars ϕi and their magnetically

dual 4-forms ϕ̃i, with i = 1, ..., NN/2. To produce the correct kind of inflows, the

anomalous couplings have to involve the combinations

Ci
(N/2) = ϕi + ϕ̃i . (4.11)

The required anomalous couplings are then found to be

S
(N/2)
D5 =

√
2π
∫
C1

(N/2) ∧ Y 5
(N/2)(F5, R) , (4.12)

S
(N/2)
D9 =

√
2π

NN/2∑

i=1

∫
Ci

(N/2) ∧ Y 9
(N/2)(F9, R) , (4.13)

where i = 1 refers to the fixed-point at the origin, where all the D5-branes sit. Further

details are reported in appendix A.

8There is also a potential contribution from the k = N/4 term in the BF and FF inflows (3.21)-

(3.23). This exists only for the Z4 model and happens to cancel out.
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Twisted closed string exchange (k 6= 0, N/2)

In order to extract the inflow associated to k and N −k-twisted states, we first group

the k-th and N − k-th term of each sum in the inflows (3.19)-(3.23). The result can

be rewritten as a sum over k = 1, ..., N/2− 1 only, with the value 2k = N/2 excluded

for the BF and FF inflows, of the following expressions9

I
(k)99
BB (R,F9) =

1

2
Nk Y

9
(k)(F9, R) Y 9

(k)(F9, R) ,

I
(k)55
BB (R,F5) =

1

2
Y 5

(k)(F5, R) Y 5
(k)(F5, R) ,

I
(k)95
BB (R,F5, F9) = Y 9

(k)(F9, R) Y 5
(k)(F5, R) ,

I
(2k)9
BF (R,F9) = NkY

9
(2k)(F9, R) Y(2k)(R) ,

I
(2k)5
BF (R,F5) = Y 5

(2k)(F5, R) Y(2k)(R) ,

I
(2k)
FF (R) =

1

2

[
Nk Y(2k)(R) Y(2k)(R) +N ′

k Y(2k)(R) Y(2k+N)(R)
]
, (4.14)

where

Y 5
(k)(F5, R) = − 1√

N

(

2 sin
πk

N

)

ch(γk F5)
√
Â(R) ,

Y 9
(k)(F9, R) =

1√
N

(

2 sin
πk

N

)−1

ch(γk F9)
√
Â(R) ,

Y(2k)(R) = − 8√
N

cot
πk

N

√
L̂(R/4) . (4.15)

For each k = 1, ..., N/2−1, the BB inflows in (4.14) are due the exchange of k-twisted

closed string states, whereas the BF and FF inflows are due to the exchange of 2k-

twisted closed string states (2k 6= N/2). More precisely, recall that the RR states

responsible for the inflow in a generic k 6= 0, N/2 sector are the scalars φik
(k) and their

magnetic dual 4-forms φ̃ik
(k), as well as the 2-forms bik(k) and their dual 2-forms b̃ik(k),

with ik = 1, ..., Nk. As shown in appendix A, in order to produce the correct kind of

inflows, the anomalous couplings have to involve the combinations

Cik
(k) = φik

(k) + φ̃ik
(k) +

1√
2
(bik(k) − b̃ik(k)) . (4.16)

The required anomalous couplings are then given by

S
(k)
D5 =

√
2π
∫
C1

(k) ∧ Y 5
(k)(F5, R) , (4.17)

S
(k)
D9 =

√
2π

Nk∑

ik=1

∫
Cik

(k) ∧ Y 9
(k)(F9, R) , (4.18)

S
(2k)
Fk =

√
2π

Nk∑

ik=1

∫
Cik

(2k) ∧ Y(2k)(R) , (4.19)

9It is understood that one has to take the integer part of N/2 − 1.
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for k = 1, ..., N/2 − 1, with k 6= N/4 in (4.19). Again ik = 1 refers to the fixed-

point at the origin, where all the D5-branes sit. Notice that the fields C(2k) with

2k > N/2 in (4.19) (actually arising only for the F2 fixed-point in the Z6 model)

are not independent fields, but rather are defined as C(2k) = C̃(N−2k) in terms of

those with 2k < N/2. This is at the origin of the second term in the Klein bottle

contribution of (4.14). Again, some details needed to check that these anomalous

couplings reproduce the above inflows are reported in appendix A.

Summarizing, the anomalous couplings for D5-branes, D9-branes and Fk-fixed-

points, in a generic D = 6 ZN orientifold model, are given by equations (4.5)-(4.8)

in the untwisted sector, (4.12) and (4.13) in the Z2-twisted sector, and (4.17)-(4.19)

in the other twisted sectors. As usual, it is understood that only the appropriate

component of the polynomials has to be considered, in this case the 6-form component.

Notice that the inflow completely fixes the coefficients in the combinations (4.11) and

(4.16) of the RR tensors, since they are anti-self dual, but strictly speaking it does

not fix completely those between the RR scalars and dual four-forms. Our choice is

just the simplest and most natural one in which they are taken to be equal. This

should be always taken into account in the next sections when we write explicitly

these couplings. Not surprisingly, D5 and D9-branes have RR anomalous couplings

in each closed string sector. O5-planes, corresponding in our language to the Z2-

fixed-points FN/2, as well as O9-planes, have instead RR anomalous couplings only

in the untwisted sector. Finally, the other fixed-points Fk have non-vanishing RR

anomalous couplings only in the 2k-twisted sector. The explicit results for each of the

models we are considering are reported in appendix B. Notice finally that for k = 0

and k = N/2, the charges contain only 4p-forms and 4p+2-forms respectively, whereas

for k 6= 0, N/2, they contain generically 2p-forms. In the anomalous couplings above,

this is compatible with the fact that the formal sums C
(k)
ik

contain only 2-forms for

k = 0, only 0 and 4-forms for k = N/2, and both 0, 2 and 4-forms for k 6= 0, N/2.

5. Anomaly cancellation

In this section, we present a more detailed model by model analysis of the inflow

mechanism. We first identify more precisely which RR fields give rise to the various

sub-inflows. Applying the general factorization described in last section, we then write

explicitly all the anomalous couplings for each model, and verify that these couplings

lead to the correct inflow. This allow to find the factorized form of the anomaly

and the inflow, exhibiting explicitly the details of the Green-Schwarz mechanism at

work. As expected, we will see that similarly to what happens in the Z2 model

[26], various U(1) factors of the gauge group are spontaneously broken by a Higgs

mechanism involving the various RR twisted scalars, belonging to hypermultiplets.

We will discuss this phenomenon in more detail in the next section. For completeness,

we report below the analysis of the Z2 model, although a full and detailed discussion
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of anomaly cancellation in this model has been already given in [26].

5.1. Z2-model

The RR massless states arising in the model are the following:

Untwisted : bµν , φi , i = 1, ..., 6 ,

Z2-twisted : ϕj , j = 1, ..., 16 .

Each of the twisted scalars ϕj belongs to a six-dimensional N = 1 hypermultiplet.

By using the general results of last section, it is straightforward to find the explicit

anomalous couplings for this model, reported in (B.1). Expliciting all the polynomials,

the total anomalous term is found to be

LWZ√
2π

= bX
(5)
4 + b̃ X

(9)
4 + ϕ1X

(5)
6 + ϕ̃1X

(5)
2 +

(1

4

16∑

j=1

ϕj
)
X

(9)
6 +

(1

4

16∑

j=1

ϕ̃j
)
X

(9)
2 ,

where as usual j = 1 refers to the fixed-point at the origin where the D5-branes sit

and (α = 9, 5)

X
(α)
4 =

1

2(2π)2

(
1

2
trR2 − trF 2

α

)
,

X
(α)
2 =

−2

(2π)
trFα ,

X
(α)
6 =

−1

3(2π)3

(
1

16
trR2 trFα − trF 3

α

)
.

The corresponding inflow is10

I = X
(5)
4 X

(9)
4 −X

(5)
6

(
X

(5)
2 +

1

4
X

(9)
2

)
−X

(9)
6

(
X

(9)
2 +

1

4
X

(5)
2

)
. (5.1)

This leads to an anomalous variation of the effective action that is exactly equal and

opposite to the total anomaly A = 2πi
∫
(In + Ic)

(1), as can be easily verified.

5.2. Z3-model

The massless RR states are:

Untwisted : bµν , φi , i = 1, ..., 4 ,

Z3-twisted : b′mµν , φ′m , m = 1, ..., 9 .

Each of the 9 twisted scalars belong to a hypermultiplet, whereas each of the 9

antisymmetric tensors belong to a tensor multiplet. In this case only twisted closed

string states participate to the inflow. The anomalous couplings are again easily

10The minus sign between the X4X4 inflows and the X6X2 inflows is due to the conjugation of

the gauge curvature in the formula for the inflow, see appendix A.
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found, and are reported in (B.2). Expliciting the polynomials, one then finds

LWZ√
2π

= b̃X
(9)
4 +

(1

3

9∑

m=1

b′m
)
X

′(9)
4 −

(1

3

9∑

m=1

b̃′m
)
X

′(9)
4

+
(1

3

9∑

m=1

φ′m
)
X

′(9)
6 +

(1

3

9∑

m=1

φ̃′m
)
X

′(9)
2 , (5.2)

where

X
(9)
4 =

1√
6(2π)2

[
1

2
trR2 −

(
trF a

9
2 +

1

2
trF b

9

2
)]

,

X
′(9)
4 =

1

2
√

2(2π)2

(
1

4
trR2 + trF a

9
2 − trF b

9

2
)
,

X
′(9)
2 =

−
√

3

(2π)
trF a

9 ,

X
′(9)
6 =

−1

2
√

3(2π)3

(
1

16
trR2 trF a

9 − trF a
9

3
)
.

The corresponding inflow is

I = −X
′(9)
4 X

′(9)
4 −X

′(9)
6 X

′(9)
2 , (5.3)

and cancels the total anomaly polynomial In + Ic. Notice that the untwisted sec-

tor anomalous coupling does not contribute to the inflow, but gives nevertheless a

non-trivial contribution to the Bianchi identity of the antisymmetric tensor of the

untwisted sector.

5.3. Z4-model

The RR massless states are:

Untwisted : bµν , φi , i = 1, ..., 4 ,

Z4-twisted : b′mµν , φ′m , m = 1, ..., 4 ,

Z2-twisted : ϕj , j = 1, ..., 10 . (5.4)

The RR Z4-twisted scalars and tensors belong respectively to 4 hyper multiplets and 4

tensor multiplets, whereas the Z2-twisted scalars belong to 10 hypermultiplets. Using

the generic results found before, one arrives to the anomalous couplings (B.3), which

lead to the following anomalous Lagrangian

LWZ√
2π

= bX
(5)
4 + b̃ X

(9)
4 − b′1 X

′(5)
4 + b̃′1X

′(5)
4 +

(1

2

4∑

m=1

b′m
)
X

′(9)
4 −

(1

2

4∑

m=1

b̃′m
)
X

′(9)
4

+φ′1X
′(5)
6 + φ̃′1X

′(5)
2 +

(1

2

4∑

m=1

φ′m
)
X

′(9)
6 +

(1

2

4∑

m=1

φ̃′m
)
X

′(9)
2 (5.5)

+ϕ1X
(5)
6 + ϕ̃1X

(5)
2 +

1

4

( 4∑

j=1

ϕj+
√

2
10∑

j=5

ϕj
)
X

(9)
6 +

1

4

( 4∑

j=1

ϕ̃j+
√

2
10∑

j=5

ϕ̃j
)
X

(9)
2 .
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As usual, j,m = 1 indicates the fixed-point at the origin and

X
(α)
4 =

1

2
√

2(2π)2

[
1

2
trR2 −

(
trF a

α
2 + trF b

α

2
)]

,

X
′(α)
4 =

−1

2
√

2(2π)2

(
trF a

α
2 − trF b

α

2
)
,

X
(α)
6 =

−1

3
√

2(2π)3

[
1

16
trR2

(
trF a

α + trF b
α

)
−
(
trF a

α
3 + trF b

α

3
)]

,

X
′(α)
6 =

−1

6(2π)3

[
1

16
trR2

(
trF a

α − trF b
α

)
−
(
trF a

α
3 − trF b

α

3
)]

,

X
(α)
2 =

−
√

2

(2π)

(
trF a

α + trF b
α

)
,

X
′(α)
2 =

−1

(2π)

(
trF a

α − trF b
α

)
. (5.6)

The corresponding inflow is

I = X
(5)
4 X

(9)
4 −X

′(5)
4

(
X

′(5)
4 − 1

2
X

′(9)
4

)
−X

′(9)
4

(
X

′(9)
4 − 1

2
X

′(5)
4

)

−X
′(5)
6

(
X

′(5)
2 +

1

2
X

′(9)
2

)
−X

′(9)
6

(
X

′(9)
2 +

1

2
X

′(5)
2

)

−X
(5)
6

(
X

(5)
2 +

1

4
X

(9)
2

)
−X

(9)
6

(
X

(9)
2 +

1

4
X

(5)
2

)
, (5.7)

that is equal and opposite to the total anomaly polynomial.

The form of the U(1) combinations coupling to the various scalars can be checked

as follows. Whenever a k-twisted scalar field couples to a U(1) gauge field, the

corresponding two-point function on the disk, with the gauge field vertex operator on

the boundary and the closed string scalar vertex operator in its interior, has to be

non-vanishing. Denoting with λ the Chan-Paton wave function associated to the two

U(1) gauge fields, due to the k-twist, the amplitude in question will be proportional

to tr (λγk). It is easy to see that with our choice of basis, the Chan-Paton wave

functions for the U(1) combinations F a
α ∓ F b

α are λ1,2 = diag (I8,−I8,∓I8,±I8), in

both the α = 9, 5 sectors. It is then clear that tr (λiγk) ∼ δi
k, in agreement with the

fact that the inflows due to the k = 1 and k = 2 twisted scalars do not mix.

5.4. Z6-model

The RR massless states are:

Untwisted : bµν , φi , i = 1, ..., 4 ,

Z6-twisted : b′µν , φ′ ,

Z3-twisted : b′′mµν , φ′′m , m = 1, ..., 5 ,

Z2-twisted : ϕj , j = 1, ..., 6 . (5.8)

The RR Z6-twisted scalars and tensors belong to 1 hyper and 1 tensor multiplet, the

Z3-twisted ones to 5 hyper and 5 tensor multiplets, and the Z2-twisted scalars to
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6 hypermultiplets. The various anomalous couplings for this model are reported in

(B.4), and lead to

LWZ√
2π

= bX
(5)
4 + b̃ X

(9)
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(
X

′(9)
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√
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)
X

(9)
2 , (5.9)

where
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,
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3
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,
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)
,
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)
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The corresponding inflow is
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, (5.11)

and is equal and opposite to the total anomaly polynomial.
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Again, the form of the U(1) combinations coupled to the various scalars can be

checked through a disk computation, which in the k-twisted sector is again propor-

tional to tr (λγk). The Chan-Paton wave functions for the three U(1) combinations

F a
α + F b

α − 2F c
α, F a

α − F b
α and F a

α + F b
α + F c

α are λ1 = diag (I4,−I4, I4,−I4,−I8, I8),

λ2 = diag (I4,−I4,−I4, I4, 0 I8, 0 I8) and λ3 = diag (I4,−I4, I4,−I4, 1/2 I8,−1/2 I8).

Then, one finds as before tr (λiγk) ∼ δi
k, again in agreement with the fact that the

inflows due to the k = 1, k = 2 and k = 3 twisted scalars do not mix.

6. Field theory analysis

In this section, we analyze some aspects of the low-energy effective action of

the orientifold models discussed here. In particular, we focus on some interesting

implications of the anomaly cancelling couplings found in section five and other terms

related to them by N = 1 D = 6 supersymmetry.

6.1. Anomalous U(1)’s

As already shown in detail for the Z2 case in [26], a generalized Green-Schwarz

mechanism involving scalars induces an Higgs mechanism breaking various U(1) fac-

tors of the gauge group. As expected, this feature is common to all IIB orientifold

models discussed here. Differently from the Z2 case, however, one has in general to

carefully establish whether the RR twisted scalars belong to hyper or tensor mul-

tiplets. Luckily, the answer can be derived from [31], where it was shown that the

scalars belonging to the extra tensor multiplets are actually twisted NSNS scalars11.

This implies that all the RR twisted scalars involved in the inflow mechanism analyzed

in section five belong to neutral hypermultiplets, like in the Z2 case. The analysis is

then identical to that of [26]. After an integration by parts and a duality transforma-

tion, the anomalous couplings to the various four-forms reported in last section enter

as corrections to the kinetic terms of the corresponding dual scalars. For these fields

strength to be gauge invariant, the scalars have then to transform anomalously under

the corresponding U(1) gauge transformation. In order to write explicit expression,

it is convenient to use the linear combinations of scalar fields entering the inflows as

new independent fields λI . By doing so, the combinations AI of U(1) gauge fields

entering as shifts in the field-strengths

HI = dλI − AI

2π
(6.1)

are directly related to the combinations XI
2 of 2-forms in the corresponding factor of

the inflows derived in section five, that is (5.1), (5.3), (5.7) and (5.11). The precise

relation is XI
2 = −1/πdAI , so that the gauge field AI is essentially the first descent

of X2: A
I = −πXI(0)

2 . Also the anomalous transformations are easily deduced: under

the gauge transformation δAI = dǫI , the scalars transform as δλI = ǫI/2π.

11We thank A. Sagnotti for very useful discussions about this point.
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Using the general results and the notation of section four, the anomalous interac-

tion leading to the shift in the field strengths of the twisted scalars φ(k) can be written

in a very compact form. One finds

S
(k)
SC =

√
2

πN
sin

πk

N

∫
d6x




∂µφ
(k)1tr [γk A

µ
5 ] +

( 1√
Nk

Nk∑

ik=1

∂µφ
(k)ik

)
tr [γk A

µ
9 ]




 .

In the following, we report explicit expressions for each model in terms of the physical

scalars12.

Z2-model

In the Z2 case, the combinations of scalars participating to the inflow and the corre-

sponding U(1) gauge fields are given by

λ1 = ϕ1 : A1 = A9 +
1

4
A5 ,

λ2 =
1

4

16∑

j=1

ϕj : A2 = A5 +
1

4
A9 .

The two scalars λ1,2 are eaten by the two U(1) gauge fields A1,2 through a Higgs

mechanism, and the latter become massive. Since supersymmetry remains unbroken,

the whole hypermultiplets containing λ1,2 must become massive. This is indeed what

happens since the inhomogeneous U(1) gauge transformations of the scalars λ1,2 turn

some D-terms into mass terms for the remaining scalars in the hypermultiplet [41, 26]

and, most likely, the two Weyl fermions of opposite chiralities, belonging to the vector

and hyper multiplet, combine into a single massive Dirac fermion. Since in this

Higgsing the only states that disappear from the massless spectrum and contribute

to gauge and gravitational anomalies are the two massless chiral fermions, of opposite

chiralities, the model remains anomaly-free, with unbroken (SU(16))2 gauge group.

Z3-model

In the Z3 case, there is only one combination of scalars and one U(1) gauge field,

given by

λ =
1

3

9∑

m=1

φ′m : A =

√
3

2
Aa

9 .

By the same mechanism as before, the unbroken gauge group is found to be SO(16)×
SU(8).

Z4-model

The Z4 model presents four different combinations of scalars and U(1) gauge fields,

12Recall that some of the φ(k)’s are identified. See Appendix B.
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given by
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4
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1

4

(
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.

All the four U(1) factors are then spontaneously broken, leaving as unbroken gauge

group (SU(8) × SU(8))2.

Z6-model

The Z6 model presents the new feature that a U(1) factor is left unbroken. Indeed,

there are only five independent combinations of scalars involved in the Higgs mecha-

nism, corresponding to five combinations of the six U(1) fields:

λ1 = φ′ : A1 =
1

2
√

6

[(
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5 − 2Ac

5

)
+
(
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,

λ2 = φ′′1 : A2 =
3

2
√

6

[(
Aa

5 −Ab
5

)
+

1

3

(
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,
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3
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√

6

[(
Aa
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9
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1
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,
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)
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1

4

(
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,
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j=1

ϕj+
√

3
6∑

j=2

ϕj
)

: A5 =
1√
3

[(
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.

The resulting unbroken gauge group is (SU(4) × SU(4) × SU(8))2 × U(1). It is

straightforward to determine how the surviving U(1) factor is embedded in the original

gauge group. Indeed, the corresponding gauge field is the linear combination which

is orthogonal to A1−5, and is found to be similar to A1, but with a relative minus sign

between 5 and 9 factors.

A similar analysis can be performed in the more general case where we have

arbitrary configurations for the D5 branes and non-vanishing Wilson lines in the nine

branes gauge groups. Although we do not report this more general analysis, it is clear

that in any configuration the maximum number of U(1)’s that can be Higgsed cannot

exceed the number of RR twisted closed string scalars present in each model.

6.2. Gauge couplings

Let us now turn our attention to the Chern-Simons couplings of the tensor fields.

The most remarkable property of these terms is that their structure is related by

supersymmetry to the gauge couplings constants 1/g2 of the theory [25]. Whenever

some of them vanish or become negative, tensionless strings appear and the model
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undergoes a phase transition [28, 29, 30]. It is then extremely useful to analyze in

detail anomaly cancellation, being a useful tool to address such questions.

In order to be more concrete, we briefly review here some general properties of

N = 1 D = 6 supergravity coupled to nT tensor multiplets and vector multiplets of

some gauge group. For details we refer the reader to [42] and references therein. The

coupling to the hypermultiplet sector does not play any role in the discussion that

will follow and it will be omitted13. The kinetic terms for the bosonic fields of the

theory, including the Chern-Simons couplings for the two-forms, are [42]

e−1Lkin.
bos. = −1

4
R+

1

12
GrsH

r
µνρH

s,µνρ − 1

4
(∂µv

r)(∂µvr)

−1

2
vr c

r
z trz FµνF

µν − 6 e−1 crz b
r ∧ trz F

2 . (6.2)

The physical scalars vr, r = 0, ..., nT , parametrize the coset space SO(1, nT )/SO(nT ),

whereas the non-propagating scalars xM
r , M = 1, ..., nT , can be gauged away by fix-

ing the local SO(nT ) symmetry; together, vr and xM
r form an SO(1, nT ) matrix.

Moreover, e is the determinant of the sechsbein, and Grs = vrvs + xM
r x

M
s . Finally,

Hr = dbr − crzw
z
3 are the modified field-strengths of the tensors, shifted by the Chern-

Simons three-forms wz
3 defined as descents of trz F

2: dwz
3 = trz F

2; the crz are con-

stants, and z labels different factors of the gauge group. The crucial observation of

[25] is that the same coefficients crz appear in the Bianchi identities and couplings for

br and in the gauge couplings. Among the nT + 1 field strengths Hr, H(+) = vr H
r

is self-dual, while KM(−) = xM
r Hr are anti-self-dual. The Lagrangian (6.2) presents

a manifest global SO(1, nT ) symmetry rotating the tensor fields, the scalars and the

constants crz. In writing a local covariant Lagrangian as in (6.2), it is understood that

the (anti)self-duality constraints for the field strengths must be imposed only after

varying the Lagrangian, at the level of equations of motion. Alternatively, following

the work of [40], one could add an auxiliary scalar field and additional terms to the

model that take into account the (anti)self-duality conditions. We will not do that,

since this will be irrelevant for our considerations, but notice that such Lagrangian,

including all four-fermion terms, already appeared in [44].

In order to better understand how to apply these general considerations to the

IIB orientifold models analyzed here, it is useful to consider first a model with nT = 1

and arbitrary gauge group. In this case, the SO(1, 1) matrix is simply parametrized

by v0 = cosh φ = x1
1, v1 = sinhφ = x1

0. We can also combine the self-dual and

anti-self-dual tensors to form an unconstrained two-form field. Choosing the simple

combination b = 1/2(b0 − b1), the Lagrangian (6.2) becomes

e−1 Lkin.
bos. = −1

4
R +

1

6
e−2φHµνρ H

µνρ − 1

4
(∂µv

r)(∂µvr)

−1

4
(eφ cz + e−φ c̃z) trzFµνF

µν − 6 e−1 cz b ∧ trz F
2 , (6.3)

13See [43] for an analysis of the hypermultiplet sector.
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where cz = c0z + c1z, c̃z = c0z − c1z and H = db − c̃z/2w
z
3. We dropped from (6.3) the

other linear combination b̃ = 1/2(b0 +b1) since its dynamics is completely determined

from that of b. Let us connect this Lagrangian with the one expected from type I

compactified on K3. In presence of D5-branes, the ten dimensional kinetic terms for

b and the F9,5 field strengths are schematically, in the string frame:

e−1
S L(10)

kin. ∼ e−2D10 RS +H2 + e−D10 trF 2
9 + e−D10 δ(4)(y) trF 2

5 , (6.4)

with D10 the ten dimensional dilaton. Compactifying on D = 6 and going to the

Einstein frame, one gets

e−1
E L(6)

kin. ∼ RE + V4H
2 + V

1/2
4 trF 2

9 + V
−1/2
4 trF 2

5 , (6.5)

where V4 is the volume of K3. By comparing (6.5) with (6.3), we see that V4 = e−2〈φ〉,

φ being the scalar in the tensor multiplet. Moreover the comparison requires also that

c9 = c̃5 = 0. This is the case for the Z2 orientifold model, where these considerations

apply. We found in last section that the tensor field b couples only to the gauge group

of the 5 sector through X
(5)
4 , whereas its Bianchi identity, obtained by integrating by

parts and dualizing the coupling to b̃, involves only the 9 sector. Moreover c5 = c̃9 > 0;

no phase transitions can occur in this case.

Let us consider now the other orientifold models with nT > 1. The first task is

to identify the combination of anti-self-dual and self-dual tensor fields giving rise to

the unconstrained untwisted b field and to the remaining nT − 1 tensors. Although

these models do not have a clear geometric interpretation, the kinetic term for the

untwisted tensor field b, being independent of the details of the orientifold, can still

be seen as a reduction from D = 10 to D = 6 and has to be multiplied just by

the volume V4 of the internal orbifold. In this case, we define the scalar φ such

that V4 = e−2〈φ〉. Let us now parametrize the scalar fields vr as v0 = cosh φ, vi =

Ωi sinh φ, i = 1, ..., nT , where Ωi are coordinates on the unit S(nT−1)-sphere (
∑

i Ω
2
i =

1). With this choice of parametrization, there is a natural (and probably unique)

choice for the vacuum expectation values for the scalars vr and xM
r , that reproduce

the kinetic term for H : 〈v〉0 = cosh〈φ〉 = 〈x〉11, 〈v〉1 = sinh〈φ〉 = 〈x〉10, 〈x〉Ii = δI
i

for i, I = 2, ..., nT , all the other being equal to zero. This strongly suggests that the

orientifold string construction is appropriate only at this point in the moduli space

parametrized by the vacuum expectation values of the scalars belonging to the extra

tensor multiplets. Notice that the vacuum 〈Ωi〉 = 0 breaks the global SO(1, nT )

symmetry spontaneously to SO(1, 1)×SO(nT −1). The untwisted b field is obtained

precisely like in the nT = 1 case whereas bi = Ki(−) are identified with the additional

nT − 1 anti-self-dual two-forms. Correspondingly, at this point in moduli space the

gauge coupling constants depend only on the coefficients cz and c̃z associated to the

Bianchi identity and couplings of b only. Notice that for all the ZN models c9 = c̃5 = 0

and c5 = c̃9 > 0. Again, all the gauge kinetic terms are positive definite at this

particular point in the moduli space.
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All the coefficients czr do not depend on the vev’s of the scalars vr and can be

fixed from the four-forms X4 found in last section. This allows to analyze the gauge

couplings for generic values of the moduli. We have checked that for each of the

models considered here there exist a continuous family of points in moduli space

where the gauge couplings vanish and tensionless strings occur. A detailed analysis

of the loci where this phenomenon occurs and their interpretation would be extremely

interesting. As an illustrative example, consider the Z3 model. Modulo an irrelevant

overall factor, the constants crz for the two factors z = a, b of the gauge group are

found to be c0a = −c1a = 1/2
√

6, c0b = −c1b = 1/4
√

6, cma = 1/6
√

2, cmb = −1/6
√

2,

m = 1, ..., 9. It is then easy to check that for generic values of 〈Ωi〉, there exists

in general a value of 〈φ〉, corresponding to a particular V4, for which vrc
r
z vanishes.

Choosing for instance 〈Ω1〉 = 0, 〈Ωi>1〉 = 1/3, the gauge couplings of Fa and Fb

vanish for coth〈φ〉 =
√

3 and coth〈φ〉 = 2
√

3 respectively.

The linear couplings of the scalars to the field strengths can also be derived once

the constants crz are known. Using the general results and notation of section four,

these couplings can be rewritten in a concise way as

S
(k)
GC =

1

32π2

√
π

N
sin

πk

N

∫
d6x




χ
(k)1tr [γk F

2
5 ] +

( 1√
Nk

Nk∑

ik=1

χ(k)ik
)
tr [γk F

2
9 ]




 ,

where χ(k), k = 1, ..., N/2−1 are the NSNS twisted scalars belonging to the additional

tensor multiplets, and F5,9 are now conventional field-strengths rather than curvature

two-forms. As for the 9 sector, the above couplings are in agreement with the recent

results of [31], modulo an overall numerical coefficient that we have not attempted to

check14.

7. Discussion and conclusions

In this paper, we have computed particular topological amplitudes in the odd spin-

structure enabling us to understand in detail how anomalies cancel in a class of N = 1

D = 6 orientifold models with maximal unbroken gauge group. By factorization, we

have also found the D-brane, O-plane and fixed-point couplings to the RR fields

arising in these models.

The mechanism of anomaly cancellation applies in its most general form, with

the exchange of different tensor fields [25] and, whenever Abelian factors are present,

scalar fields as well [41, 26]. The RR scalars involved in the inflow mechanism belong

always to neutral hypermultiplets and are responsible for a spontaneous symmetry

breaking of all U(1) factors but one in the Z6 model, in the maximally symmetric

case. More generically, the maximum number of U(1) that can be spontaneously

broken never exceeds the number of neutral hypermultiplets arising from the twisted

closed string sector.

14The scalar fields mk of [31] have to be identified as mk = 1/
√

Nk

∑Nk

ik=1 χ(k)ik .
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By comparing some terms in the low-energy effective actions of these models

with the most general ones allowed by supersymmetry, we deduce that the vacuum

expectation values of the scalars belonging to the extra tensor multiplets are fixed

at particular values. In these points in moduli space all the gauge kinetic terms are

definite positive. However, varying these moduli - flat directions in the low-energy

action - we always find special loci where the gauge couplings diverge and tensionless

strings occur. Analogously, we can also fix the gauge couplings of these scalars for

both the D9 and D5 gauge groups.

The models we discussed in this paper are particular examples of six-dimensional

theories with extra tensor multiplets. These arise for instance in F and M-theory

D = 6 compactifications15. In this last case, each extra tensor multiplet is believed

to come from an M5-brane in the bulk of the 11th dimension [46]. Although the non-

perturbative heterotic Spin(32)/Z2 duals to the IIB orientifolds models are known

[47], their explicit realization as M-theory vacua is not a simple issue, especially in

the maximally symmetric case discussed here. Nevertheless, some questions might still

be qualitatively addressed. Assuming that each extra tensor multiplet comes from a

single M5-brane, one might naively hope that these models are somehow related to M-

theory compactified on an orbifold like T 4/ZN ×S1/Z2. However, from [48] it is clear

that such M-theory vacua corresponds to non-perturbative vacua of strongly coupled

E8 × E8 heterotic theory on T 4/ZN , with total instanton number 25 − nT . These

vacua could in turn be related to K3 orientifolds. The nT − 1 M5-branes are located

at distinct fixed-points of the orbifold. One is also tempted to consider somehow the

vev 〈Ωi〉 as the moduli corresponding to move the ith brane on the S1/Z2 segment.

It seems that the orientifold description requires all these M5-branes to be stuck at

some point in the segment and at different fixed-points on the T 4/ZN orbifold. On

the other hand, in M-theory one has the freedom of moving the M5-branes along

the segment by turning on 〈Ωi〉. As already said, this leads to tensionless strings at

special points. It would be then very interesting to better understand the connection

with M-theory by a full and deeper analysis of this phenomenon. In this direction, a

more general analysis with different configurations for the D5 branes and with Wilson

lines turned on, would also be quite interesting.

Generalizing the idea of [48], in compactifying M-theory on orbifolds new twisted

sectors are expected to arise at fixed-points. These will play a decisive role in making

the theory anomaly-free. It would be then extremely interesting to see how new

couplings to the twisted sectors, as well as the compactification of the D = 11 Chern-

Simons term C3∧X8 on orbifolds, are related to the anomalous couplings found here.

This could yield important informations on M-theory at the microscopic level.

15See also [45] for other constructions of these vacua.
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A. Inflows

In this appendix, we recall some formulae from [5] which are needed to check that

the anomalous couplings that we have proposed indeed reproduce the inflows from

which they have been derived.

Sector k = 0

Two anomalous coupling of the form

SA =
√

2π
∫

A
C(0) ∧A(F,R) , SB =

√
2π
∫

B
C̃(0) ∧ B(F,R)

with C(0), C̃(0) given by (4.4), produce an inflow on the AB intersection given by

δη (i SA+B) = 2πi
∫
I

(1)
AB where

IAB =
1

2

[
A4(F,R)B4(−F,R) + A4(−F,R)B4(F,R)

]
. (A.1)

In this case all the couplings are even in F due to the property ch (−F ) = ch (F ) of

the Chern class in the Chan-Paton representation. The inflow then reduces to

IAB = A4(F,R)B4(F,R) =
[
A(F,R) ∧B(F,R)

]

8
. (A.2)

Of course we neglect here and in the following the eight-form components A8(F,R)

and B8(F,R), because their sum automatically vanishes once the tadpole conditions

are solved, and therefore there is no inflow associated with them. For non-distinct

objects, an additional 1/2 is needed.

Sector k = N/2

Two anomalous coupling of the form

SA =
√

2π
∫

A
Ci

(N/2) ∧A(F,R) , SB =
√

2π
∫

B
Ci

(N/2) ∧B(F,R)

with Ci
(N/2) given by (4.11), produce an inflow on the AB intersection given by

IAB =
1

2

[
A2(F,R)B6(−F,R) + A6(F,R)B2(−F,R)

+A2(−F,R)B6(F,R) + A6(−F,R)B2(F,R)
]
. (A.3)
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Now all the couplings are odd in F due to the property ch (γN/2(−F )) = −ch (γN/2F )

in the Chan-Paton representation. The inflow then reduces to

IAB = −A2(F,R)B6(F,R) −A6(F,R)B2(F,R) = −
[
A(F,R) ∧B(F,R)

]

8
. (A.4)

For non-distinct objects, an additional 1/2 is needed.

Sectors k 6= 0,N/2

The anomalous couplings

SA =
√

2π
∫

A
Cik

(k) ∧A(F,R) , SB =
√

2π
∫

B
Cik

(k) ∧ B(F,R)

with Cik
(k) as in (4.16), produce an inflow given by

IAB =
1

2

[
A2(F,R)B6(−F,R) + A6(F,R)B2(−F,R)

+A2(−F,R)B6(F,R) + A6(−F,R)B2(F,R)

−A4(−F,R)B4(F,R) −A4(−F,R)B4(F,R)
]
. (A.5)

Furthermore, the 4-form couplings are even in F whereas the 2 and 6-form couplings

are odd, due to the property ch (γk(−F ))|p = (−)p/2ch (γkF )|p valid for the p-form

component. The inflow then reduces to

IAB = −A2(F,R)B6(F,R) − A6(F,R)B2(F,R) − A4(F,R)B4(F,R)

= −
[
A(F,R) ∧ B(F,R)

]

8
. (A.6)

For non-distinct objects, an additional 1/2 is needed as usual.

B. Anomalous couplings

We report here for completeness the Wess-Zumino couplings computed in section

five, but in a form that makes clearer the different contribution due to D9-branes,

D5-branes, O9-planes, O5-planes and Fk fixed-points.

Z2-model

There are 32 D9-branes, 32 D5-branes, 1 O9-plane and 16 O5-planes or F1 fixed-points

(Z2-fixed). Applying the general results of section four, their anomalous couplings

are found to be

SD5 =
√

2π
∫




1

2
b ch(F5) − (ϕ+ ϕ̃)1 ch(γ1 F5)






√
Â(R) ,

SD9 =
√

2π
∫




1

2
b̃ ch(F9) +

1

4

16∑

j=1

(ϕ+ ϕ̃)j ch(γ2 F9)






√
Â(R) ,

SO5 = −
√

2π
∫
b
√
L̂(R) ,

SO9 = −
√

2π
∫
b̃
√
L̂(R) . (B.1)
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It is understood that all the products are wedge products and that one has to pick

up the six-form component of each term only.

Z3-model

There are 32 D9-branes, 1 O9-plane and 9 F1 fixed-points (Z3-fixed), with anomalous

couplings given by

SD9 =
√

2π
∫ {

1

6
b̃ ch(F9) +

1

3
√

2

9∑

m=1

[
b′− b̃′+

√
2 (φ′+ φ̃′)

]m
ch(γ1 F9)

}√
Â(R) ,

SO9 = −
√

2π
∫ 2√

6
b̃
√
L̂(R) ,

SF1 = −
√

2π
∫

1

6
√

2

9∑

m=1

(b′ − b̃′)m
√
L̂(R) . (B.2)

Z4-model

There are 32 D9-branes, 32 D5-branes, 1 O9-plane, 16 O5-planes or F2-fixed-points

(Z2-fixed), and 4 F1-fixed-points (Z4-fixed). Among the 16 scalars ϕi
(N/2) of the

Z2-twisted sector, only 10, ϕj, are physical. These are defined as ϕj = ϕj
(N/2) for

j = 1, ..., 4, and ϕj =
√

2 (ϕj
(N/2) + ϕj+6

(N/2)) for j = 5, ..., 10. The anomalous couplings

are then found to be

SD5 =
√

2π
∫




1

2
√

2
b ch(F5) −

1

2

[
b′− b̃′+

√
2 (φ′+ φ̃′)

]1
ch(γ1 F5)

− 1√
2
(ϕ+ ϕ̃)1ch(γ2 F5)

}√
Â(R) ,

SD9 =
√

2π
∫




1

2
√

2
b̃ ch(F9) +

1

4

4∑

m=1

[
b′− b̃′+

√
2 (φ′+ φ̃′)

]m
ch(γ1 F9)

+
1

4
√

2

[ 4∑

j=1

(ϕ+ ϕ̃)j+
√

2
10∑

j=5

(ϕ+ ϕ̃)j
]
ch(γ2 F9)






√
Â(R) ,

SO5 = −
√

2π
∫ 1√

2
b
√
L̂(R) ,

SO9 = −
√

2π
∫ 1√

2
b̃
√
L̂(R) ,

SF1 = 0 . (B.3)

Z6-model

There are 32 D9-branes, 32 D5-branes, 1 O9-plane, 16 O5-planes or F3 fixed-points

(Z2-fixed), 1 F1 fixed-point (Z6-fixed), and 9 F2 fixed-points (Z6-fixed). Among the

16 scalars ϕi
(N/2) of the Z2-twisted sector, only 6, ϕj , are physical. These are defined

as ϕ1 = ϕ1
(N/2) and ϕj =

√
3 (ϕj

(N/2) + ϕj+5
(N/2) + ϕj+10

(N/2)) for j = 2, ..., 6. Similarly,

among the 9 copies of scalars and 2-forms φi
(2), b

i
(2)µν of the Z3-twisted sector, only 5
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copies, φ′′m, b′′mµν , are independent. These are defined as φ′′1 = φ1
(N/2), b

′′1
µν = b1(2)µν , and

φ′′m =
√

2 (φm
(2) + ϕm+4

(2) ), b′′mµν =
√

2 (bm(2)µν + bm+4
(2)µν) for m = 2, ..., 5. The anomalous

couplings are then found to be

SD5 =
√

2π
∫ {

1

2
√

3
b ch(F5) −

1

2
√

3

[
b′− b̃′+

√
2 (φ′+ φ̃′)

]
ch(γ1 F5)

−1

2

[
b′′− b̃′′+

√
2 (φ′′+ φ̃′′)

]1
ch(γ2 F5)

− 1√
3
(ϕ+ ϕ̃)1ch(γ3 F5)

}√
Â(R) ,

SD9 =
√

2π
∫




1

2
√

3
b̃ ch(F9) +

1

2
√

3

[
b′− b̃′+

√
2 (φ′+ φ̃′)

]
ch(γ1 F9)

+
1

6

[
[b′′− b̃′′+

√
2 (φ′′+ φ̃′′)]1+

√
2

5∑

m=2

[b′′− b̃′′+
√

2 (φ′′+ φ̃′′)]m
]
ch(γ2 F9)

+
1

4
√

3

[
(ϕ+ ϕ̃)1+

√
3

6∑

j=2

(ϕ+ ϕ̃)j
]
ch(γ3 F9)






√
Â(R) ,

SO5 = −
√

2π
∫

1√
3
b
√
L̂(R) ,

SO9 = −
√

2π
∫

1√
3
b̃
√
L̂(R) ,

SF1 = −
√

2π
∫

1

4
(b′′− b̃′′)1

√
L̂(R) ,

SF2 = −
√

2π
∫
− 1

12

[
(b′′− b̃′′)1+

√
2

5∑

m=2

(b′′− b̃′′)m
]√
L̂(R) . (B.4)
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