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“From the moment when the machine first made its appearance it was clear to all
thinking people that the need for human drudgery, and therefore to a great extent for
human inequality, had disappeared. If the machine were used deliberately for that end,

hunger, overwork, dirt, illiteracy, and disease could be eliminated within a few
generations.”

George Orwell in “1984”
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More and more small and middle-range companies are faced to the increasing demand
in high performance computing due to overwhelming amount of multimedia content avail-
able. Parallel solutions provide a promising workaround for this demand. However, the
prohibitive cost of integrated multi-processor systems can block any purchase decisions,
reducing the possibilities and sphere of activities of the above-mentioned companies or
institutions.

This document proposes an alternative low cost solution. We propose a distributed
system of heterogeneous mono-processor stations, load-balanced on Peer-to-Peer basis.
The model is based on modified Task-farming approach.

The role of MASTER (Or DISPATCHER), is in our model delegated to Peers themselves,
therefore reducing the bottle-necking due to transfers of data from Peer to Dispatcher,
and then from Dispatcher to another Peer, as it happens in traditional Task-Farming
approach. In our study, the Peers manage themselves where to send the surplus of work.

The above-mentioned management is done via message multicast and a strategy based
decision-making. We show how to minimize the network as well as processor overhead
thanks to this automated load-balancing. The resulting prototype demonstrates the
ability of our system to support OS-crashes and varying processor load, thus providing
a solution particularly effective in an unstable environment. This allows the use of the
system on dedicated clusters on one hand, or on the workstations used for text processing
and generally low resource consuming administrative work on the other.

The automated recognition of Peers between them facilitates the installation and more-
over allows the scalability in a hot-plug manner. During the initialization period, the Peer
announces itself and integrates automatically in the working cluster. No further config-
uration is needed.

This report is divided in 9 chapters. The first four chapters introduce the Pervasive im-
age Watermarking and provide some insight on the actual state-of-art of the distributed
computing. Chapter 5 discusses our Peer-to-Peer model and defines the elements of the
network and their roles.

The Chapter 6 discusses some techniques of estimation of the performance of the
distributed systems and provides the theoretical model of our Peer-based computing
environment.

The last two chapters, 7 and 8, go more deeply in the implementation details of the
prototype and summarize the results of performance measures.

The results were concluding and achieve speedups up to 3.986 with five computers
which leads to an efficiency of 79.71%. During the test phase some of the problems
which decrease the performance were spotted. Those, and their solutions are discussed
in Chapters 9 and 10.
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1. Introduction

The revolution in IT! has brought a demand in parallel computing into the small com-
panies. The increased demand in fast image, audio and video processing has put many
of those companies in an embarrassing situation of not having enough computing power.

On the other hand, the personal, middle range computers can be purchased at low cost,
which allows to companies, and even households to upgrade their computer systems on
regular basis. The lifetime of those computers is in consequence very short. The side
effect of this is that a company has, in fact, enough computing power, but it remains
unused since those outdated computers are often disencumbered or even worse, thrown
to trash.

The company Digital Copyright Technologies SA (DCT) designs and develops applica-
tions which allow users to protect their digital data. The main product, everSign, allows
the user to digitally sign an image, which grants the same user the legal rights on such
an image[7]. The signature is invisible and resistant, independently if the image is stored
digitally, eg. on a hard disk, or printed on a physical support, usually paper. The proof
of copyright can be provided by using the everSign application and a given cryptographic
key.

The signature is added to the image using the Pervasive image watermarking (cf. Chap-
ter 2). As this algorithm uses extensively cryptographic and image processing mecha-
nisms, the demand in memory and CPU is very high, specially when considering very
large images, e.g. satellite photographies. It became clear very early that an efficient
distributed system will be needed in order to satisfy the company’s most demanding cus-
tomers. The solution had to be scalable in order to address the both CPU and memory
limits by adding more computers.

As the watermarking process can be applied to a part of the image, without needing
the presence of the whole image in memory, our main idea was to tile the image in
a specified amount of smaller images (tiles), and apply the watermarking algorithm to
each of them separately. In order to address the scalability issue, the tiles must be able
to be processed on an easily upgradeable set of computers. This processing must be
load-balanced in order to assure the optimal processing time.

Our system, P-ICE, takes advantage of the obsolete computers allowing their re-use in
a cluster, performing the computations in the Single Program - Multiple Data (SPMD)
model. Although P-ICE was needed for the particular image watermarking application
(everSign Server), the system was meant to be adaptable to other resource consuming
applications as well. DCT has engineered and implemented several cryptographic and

'T: Information Technologies



steganographic algorithms which should be distributable with a relative ease by using
the same approach.

P-ICE addresses both needs by providing the distributed solution of a concrete applica-
tion and a consistent framework for distributing similar applications. The only condition
a particular data-processing algorithm needs to meet in order to be distributed with
P-ICE, is the independent processing of a chunk of data, i.e. the model in which the
processing of one set of data doesn’t need to interact with processing of other sets.

The computers used to perform the computations execute the particular instance of
the P-ICE application. This instance corresponds to the role of that particular computer
in the overall process. The networked computer executing a particular instance of the
P-ICE application is called a Peer.



2. Pervasive Image Watermark

The watermarking process (|8, 14, 19]) consists in embedding a data in the image. This
data should be hidden, i.e neither detectable by human eye nor by an algorithmic or
mathematical process. This assumes that the sophisticated model of human visual system
is used to ensure the perceptual invisibility of hidden data.

This algorithm modifies the color or greyscale values of a limited amount of pixels
within an image. The exact positions of modified pixels are computed by a pseudo-
number sequence which uses a provided encryption key as seed. The modifications are
interpreted as hidden data (or signature in our example). These modifications must
be invisible but robust, i.e resistant to well known image processing that could be con-
ditionally divided on filtering (denoising, quantization, blurring, compression, contrast
enhancement) and geometrical transformations (scaling, rotation, shearing, change of
aspect ratio, cropping and random geometrical distortion)([20, 22]).

Additional error detection/correction algorithms are used to assure the robustness of
a watermark. The algorithm is provided as a DLL library.

When we embed the signature, we need to provide the algorithm with the image data,
a 64-bit key and a 64-bit signature. After the process has finished, the resulting image
data has the signature embedded in it. The only way to retrieve the signature is knowing
the key. When we retrieve the signature we must provide the algorithm with the image
data and the key. The algorithm returns the signature (if any) which was embedded in
the image using the given key.

The algorithm has the best performance with images with size of 512*512 pixels. The
CPU time needed to embed the signature in such an image is given in (B.1).

The memory used by the algorithm when performing the image watermarking can be
estimated as follows:

Input image memory allocation:

WIDTH(PIXELS) * HEIGHT(PIXELS) * BYTES PER PIXEL (BYTES)

Output image memory allocation:

WIDTH(PIXELS) * HEIGHT(PIXELS) * BYTES PER PIXEL (BYTES)

Memory allocated for processing:

(F(MAX(WIDTH, HEIGHT)))2*BYTES PER PIXEL : f(x): next power of 2, starting from x
Sum:

2*(WIDTH(PIXELS) * HEIGHT(PIXELS) * BYTES PER PIXEL (BYTES)) + (F(MAX(WIDTH,
HEIGHT)))?*BYTES PER PIXEL

Examples for a 24bit color image:



‘ Image size ‘ Used memory

512x512 2*(512x512)*3+5122*3=2.25Mb

1020x1000 | 2*(1020*1000)*3+10242*3=8.83Mb

4096x4096 | 2*(4096%4096)*3 +40962*3=144 Mb

500x4000 | 2*(500*4000)*3+4096%*3=59.54Mb

10



3. Goals

The goal of this project is to construct a distributed environment for embedding and
retrieval of signatures in an huge (disk space and network throughput limited) amount
of images. We have at our disposal a DLL file which contains the watermarking algo-
rithm. The algorithm provides the methods embed(key,signature, &image buffer)
and detect(key, &signature, image buffer). The role of our system is to provide
a framework for execution of a big number of instances of the algorithm on different
computers at the same time. The requirements defined for this project are:

1. the system must be distributed,

2. efficient load-balancing,

3. scalability,

4. fault tolerant,

5. easily installable and configurable,

6. must perform well in a heterogeneous environment,
7. must be able to handle a huge amount of data,

8. must be adaptable to other, similar algorithms,

9. should use an asynchronous data passing protocol.

The system should have a good performance and be fault tolerant. We want it expand-
able, easy to install, configure and maintain. When needed, it should be able to interact
with a workflow which would provide the images to be signed (eg. e-commerce appli-
cation). Additional capabilities and decisional algorithms should be integrated with a
reasonable amount of time and effort.

11



4. The State of the Art

The first significant openings in parallel computing were made in early 1980s.[21]
The first hypercube architecture came in 1981 with Caltech’s VAX 11/780. From this
moment on, the research on parallel computing tend to optimize hardware connections
between processors. The main goal was to produce an parallel hardware architecture
which is scalable to a very large number of processors. For some topological aspects not
discussed here, hypercube was at this moment the most appropriate candidate. Nowadays
many topological architectures exist. Every architecture is adapted to a particular set of
problems. An example among them, the linear architecture, is appropriate for pipelined
parallel computing. More sophisticated crossbar architecture allow modifications of all
physical interprocessor connections.

The past decades many efforts were involved in developing hardware but also the pro-
gramming languages adapted to parallel computing. Major parallel oriented capabilities
were added to Fortran (HPF!([15])) and C (Parallel C).

With the growing number of networked mono-user/mono-processor computer stations,
the idea of distributed computing has appeared. Instead of using one multiprocessor
computer, the usage of many networked mono-processor stations seemed to be a perfect
solution for the low-budget computing. Nowadays we have a large amount of application
libraries which allow the parallel code to execute either on dedicated parallel architecture,
either on distributed architecture formed of networked mono-processor workstations. We
will discuss some of them.

4.1. PVM/MPI

Parallel Virtual Machine (PVM)|4] is an API which allows a heterogeneous network of
computers to appear as a single machine. This machine is called Virtual Machine. The
development of PVM started in summer 1989 at Oak Ridge National Laboratory. Due
to its experimental nature, PVM is available freely.

The goal of MPI (Message Passing Interface)[3] is to develop a standard for writing
message passing programs. MPI implements features from a number of existing message
passing systems. Started April 1992, MPI was presented in 1993.

Both MPI and PVM provide library interfaces to C and Fortran. These libraries,
by their nature, demand the modification of the source code when the architecture of
the distributed network changes. As these libraries involve consequent effort to scale,
but also to install and maintain, they were not considered as acceptable solution for

'HPF: High Performance Fortran
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our project. Moreover, by using RPC? mechanisms for communication, they are mainly
oriented toward synchronous data passing protocols.

4.2. CORBA

CORBA stands for “Common Object Request Broker Architecture”[1]. It was developed
by the Object Management Group (OMG). CORBA provides a platform and language
independent architecture for writing parallel object-oriented applications. CORBA ob-
jects can reside on the same machine or on a dispersed set of computers. CORBA takes
advantage of Java object oriented approach.

CORBA wasn’t suitable for our model due to it’s synchronous data passing mechanism.
However, the last version of CORBA implements some of the asynchronous paradigms.

4.3. JXTA

Sun Microsystems introduced a set of libraries aiming to provide all the tools needed to
conceive Peer to Peer applications. Project Juxtapose (JXTA)[2], is a set of protocols
intended to standardize distributed computing. The JXTA API is written in Java and
fits perfectly for communications within a worldwide distributed system. It is optimized
and suits very well the Peer-to-Peer communications on the Internet range clusters. The
features provided by JXTA would be useful if we decide to apply our model on this kind
of WAN’s.

The message passing through routers involve additional overhead in order to detect
peers, while for obvious reasons, routers do not route the broadcast packets. As our
model is simpler due to it’s LAN-based architecture, we did not use JXTA. Further work
on our algorithm will probably include JXTA in order to enable the communication of
many, router separated LAN clusters.

JXTA is an open source project.

2RPC: Remote Procedure Call
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5. P-ICE

5.1. Introduction

After considering some existing solution for distributed computing (Chapter 4), we have
decided to use the Peer-to-Peer approach in order to solve the problem. Our solution
follows the actual tendency in abandoning the well known client-server model and giving
more liberty in implementation of efficient and robust load-balancing algorithms.

Many other, mainly file-sharing, applications use Peer-to-Peer protocols for data ex-
change. First SETI then Napster, Gnutella, Kazaa and Morpheus Peer-to-Peer systems
provide very popular alternatives for file-sharing applications. Limewire, the well known
implementation of Gnutella protocol, in Java, provides load-balanced download of a re-
quested file from several sources. The force of those systems is based on supposition that
the information is present at several places, among which one is closer to us than the
others.

The needs which led to P-ICE are different. The system which we provide doesn’t
share files but CPU resources. We could generalize and presume that the CPU’s, as the
files, are the available resources which we want to obtain in a most efficient way. There
is always a processor that has less work to do as the others. The goal is to locate that
processor in order to make it perform a job for us.

In nowadays Peer-to-Peer systems there is always a central server to which the Peers
connect in order to obtain the list of available resources (or Peers which detain them).
This server can go down either for commercial (Napster) reasons, or because of a hard-
ware/software failure. One of advantages of P-ICE is that it doesn’t need a central server
due to its LAN-based architecture.

The other limit of the existing peer-to-peer applications is that the Peers doesn’t have
an information on the topology of the resources. When the request for the resource
is issued, it is at best (Gnutella) provided to the neighboring peers who provide them
further and so on, up to the Peer who can handle it positively. Some times the request
for the resource is directly queried from the centralized server (Napster) to which all the
Peers connect.

P-ICE handles the information on a resource topology. This information is not queried
but communicated periodically by all the Peers too all the others, thanks to network
multicast protocols, granted to be effective only in a Local Area Network (LAN).

We have proved trough this document that in mixing two emergent technologies, Peer-
to-Peer communications and Multi-Agent Systems, we can provide a highly versatile
platform for CPU sharing among individual computers.
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5.2. Proposed solution

Our idea was to provide a set of standalone applications which can be executed on
a varying amount of personal computers. Those applications should share the same
communication protocol in order to communicate and exchange data. The topology of
the available computational resources must be known to every running instance of the
application in order to address the load-balancing issue. Therefore, this topology is
automatically discovered and monitored by the application itself.

P-ICE application allows the computer to behave as a Peer, ie. to provide or receive
the different tasks as well as the updated information on the topology of the network.
The Peer which participates in a P-ICE network is executing its tasks in daemon mode.
This allows the usage of the computer at the same time as a workstation and as a part of
the P-ICE cluster. The information about the topology allows the system to load-balance
efficiently in such a heterogeneous environment.

The proposed solution encapsulates the image data, signature and key at some starting
point of the system, and provide this information as a self-contained task to the cluster
of Peers, depending on a discovered topology of the network. The Peers receive this
information and execute the algorithm on the provided data. The result is sent to the
exit point of the system. The Peers present in the workflow have different roles depending
on their location(eg. the Send Peer is located on the image file server and a Scheduler
Peer is located on the workstation which performs the initial request for watermarking
(entry point for the key and a signature)).

The information on the topology is broadcasted by each Peer to all the others. All
the Peers keep the information on the topology of the available resources, and use it to
load-balance the tasks. The load-balancing is done individually by every Peer.

The base idea of the solution is shown in figure 5.1, p.16. A scenario of a whole process
is described in Figure 5.2 on page 17.

The persistence of the information is assured by the Send Peer in conjunction with the
Get Peer.

5.3. Actors involved

5.3.1. Introduction

Some degree of abstraction is needed to understand and use efficiently the Peer-to-Peer
architecture. The base actor of our Peer-to-Peer model is a Peer. The Peer should be
considered as an entity composed of the computer algorithm and a set of basic input and
output streams.

Within this report we will use some concepts described in [10]. Although the purpose of
our work was not to conceive an agent-oriented system, some points are enough similar
to be mentioned here. Besides this, the resulting construction is definitely a Peer-to-
Peer network and not an Multi-Agent System (Section 5.3.2). The further work on this
system would be to convert it in a Multi-Agent philosophy, which would allow even more
efficient load-balancing.

15
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5.3.2. Multi-Agent Systems

We should consider briefly the Multi-Agent Systems (MAS) in order to understand the
differences and the similitudes between the two models. When we use MAS, we do
not consider any of the low-level implementation issues. We consider an agent as an
entity with perceptions, internal states, and a set of actions which the agent can execute.
Actions to be executed are returned by a function that based on input parameters, i.e.
internal states and perception, returns the corresponding action.

There are two main categories of agents. The Agents participating in a MAS can be
tropic, without memory (the Agent doesn’t remember past states or events), or hysteretic,
with memory (the Agent do remember the past states or events). In the case of hysteretic
Agents, the function which returns the action takes one more input parameter which is
the past states table.

Our model is constructed in the way to permit its use within a MAS. However, the
actions, internal states and the functions are not formalized as they would be in a MAS.
There is not an unique function which takes the decision on further actions. The decision
is brought by a set of Strategies which each fit the particular decisional skim. To simplify,
we have different functions which control the links between a particular perception and a
particular action. To obtain the Multi-Agent System we should unify all those Strategies
in one function.

However, we use the Multi-Agent approach in order to schematize the perceptions, ac-
tions and strategies. Past events are saved and published in order to obtain the hysteretic
model for our Peer.

5.3.3. Definitions
Environment

The environment represents the topology of the Peer-to-Peer network. This environment
is presented as a set of records on every Peer participating in the network. This envi-
ronment changes constantly. New Peers can connect to the network, existing Peers can
leave the network and the distribution of the load over the network may vary. Some
of the Peers may get congested with too many requests, and some other may remain
inactive due to lack of tasks. The environment reflects all this changes. The environment
is discovered by the Peers via their Perceptions.

Perceptions/Stats

The Peer can perceive its environment. The peers that can perceive each other (and can
communicate with each other) are considered as colleagues. In a further section we will
see that not all the peers that participate in the network are colleagues. For example, the
Scheduler Peer (Section 5.3.8) is not a colleague of anyone because no Peer can perceive
it.

When a peer A perceives another peer B, we consider that it has a local copy of data
that peer B decides to publish. This data can be published on a regular basis (UDP

18



Broadcast) or transmitted on request (TCP/IP request, UDP Broadcasted response).
We can put about any useful information in this set of data. It can be e.g. the system
load, amount of data waiting to be processed or the network load. This data should
not be confused with Job data, i.e. the data on which we are performing a specific
transformation (Image Data, in our example). That is why we will call it the Statistics
of a particular Peer. The Statistics (Stats) are the way one peer perceives another Peer
or himself (Internal state in multi-agent terminology). Some of the pertinent information
to publish as Stats is listed here:

List {T1,T5... T} : T; = Time (milliseconds) needed to perform task i

Number of entries waiting to be processed

System load
e Network load

e Number of users connected to the computer (if not in a dedicated environment)

Interactions

It shouldn’t be important what underlying protocols and network technologies peer col-
leagues use to interact, but the language they use. This allows to adapt the model on
every communication layer needed. We are supposing that the language level is very
simple, composed of exchange of messages (for.ex PROVIDE STATS). The definition
of the language used is given in 5.4.2 p.24. Deeper overview of the communication layer
used to transport the interactions will be presented in 5.4 p.24. For now we just sup-
pose that the peers can exchange message objects containing an arbitrary set of data.
Messages are discussed further in 5.4.1 p.24.

Actions

Besides the communications and environment perceptions, the Peers have the ability to
perform a limited set of actions. Those actions are provided as computer algorithms.
[Send Datal|, [Query Stats| [Embed Watermark| are the perfect examples of Actions.
Actions can be triggered by message, or invoked within a particular Task.

Tasks

Tasks are specific processes which occur periodically, for ex. at a predefined time interval.
The Tasks can serve to monitor some environmental changes, or to execute an action.
[Broadcast Stats| is an action triggered mainly by a Task.

19



Core

The core part of a peer uses the (networked) I/O streams to gather data about its
environment, handles requests and performs specific tasks depending on its inputs. The
peer can be provided with some basic intelligence. This allows a peer to handle the
tasks in a more efficient way. The intelligence of a peer consist mainly in responding to
environmental or internal changes with some predefined action. These changes can be
detected by the peer’s perceptual means, or imposed by a communication request. Our
core model is very simple, basically a pre-programmed set of stimulus-response paths.
The stimulus is represented by the Command(5.4.2 p.24) received, or environmental
change perceived, and the response is the corresponding Action(5.3.3).

5.3.4. Involved Peers

Our model aims to provide a coherent set of colleagues which can perform massive
parallel computations. The prototype will be used to perform some mathematical
operations, involved in copyright data protection, on a huge amount of images.

The Peer is provided with data from another Peer. The Peer does some computation
on the above-mentioned data and returns the results to another Peer. The basic idea
was that 3 classes of Peers are needed. One class that provides the data, one that does
the job and the last one which collects the results of that job.

The Peer has a perception of its environment. It knows where his colleagues are, and
how they are going, i.e. what amount of work they already have. In addition, every' Peer
knows the average time that its colleagues need to do some job (in Stats). Of course, we
suppose that all chunks of data sent are of the same size, therefore we can predict the
behavior of a Peer with a certain accuracy; the watermarking algorithm takes the same
time to execute on the images of the same size.

The next sections describe in detail all the Peer classes (cf . 5.1, p.16.) Table 5.1 p.21
summarizes the base Peers and their Perceptions, Actions and Tasks.

In order to use P-ICE to distribute a different algorithm, we should modify the actions
that Peers perform. Instead of [Embed Watermark| we would have a more generic action
[Process data]. However, as P-ICE was developed with pervasive watermarking in mind,
the actions are named in consequence.

5.3.5. Send Peer

Send Peer provide the data to other Peers. It consults its schedule table in order to
know which jobs should be done, in our example which images should be watermarked.
When it spots a new (or a next) job, the image data is loaded from disk. The copy of
the schedule is written in the waiting table. This table is used by the [Check & Reinject
Pending Jobs| Task in order to reinject the non-confirmed jobs(Section 5.3.7).

INot all, in fact. Peers that only send the data don’t need to announce their statistics.
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Table 5.1.: Peer Perceptions-Actions-Tasks Card

Computing Send Peer Get Peer Scheduler
Peer Peer
Perceptions | S(This), L(This), S(CP), L(GP) L(SP) @
S(CP), L(GP)
[Inject Image]
[Load Image]
[Send Tmage To Get] [Confirm Data Arrival]
Actions [Request FD]
[Inject Image] [Schedule Job]
[Embed Watermark] [Save Image]
[Provide FD]
[Retrieve Watermark]
[Broadcast Stats]
[Discard Pending Peers]
TaSkS [Check Load & Distribute] © @
[Check & Reinject
Pending Jobs]
[Discard Pending Peers]
Legend:

CP: Computing Peer(s) , GP: Get Peer

SP: Send Peer , ScP: Schedule Peer
This: This Peer

S(X): Statistics of X. Xe [CP,GP,SP,ScP]
L(X): Location of X. Xe [CP,GP,SP,ScP]
FD: File descriptors
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The next step is the choice of the Peer to which the data will be sent. In order to
make this choice, Peer provides its perceptions to the Distribution Strategy (Section 7.3),
which returns the candidate Peer. The data is then sent to that Peer.

This process of load-balanced emission of data will be trough this report called injection
(Peer injects the data into the environment). This injection is made conformable to
the particular strategy chosen. As the Send Peer is, first of all, a Peer, it has all the
information necessary to take this decision (ie. all the Stats). The image data is then
encapsulated in the Message (Section 5.4.1) along with diverse informations needed for
the processing of that image.

The Send Peer knows which data has been sent and it keeps that information until
the confirmation of the success has arrived. If that information doesn’t arrive within a
reasonable amount of time?, the Send Peer re-injects the data into the Peer Network.
This prevents against data loss due to OS or hardware malfunction. Unfortunately, if the
same happens on Send and Get Peers, there will be no one to resume the job. For this
reason this two services are the weak part of the system and should be protected in an
adequate manner. For now, this situation is an acceptable compromise if we consider that
there is lot more Computing Peers than Send and Get Peers (about 1 to 10 should be a
reasonable bet), so the majority is well protected. More, Send and Get Peers can run on
about any UNIX environment which supports the JAVA Virtual Machine (JRE1.3_1).

The Send Peer doesn’t broadcast it’s statistics while it doesn’t receive any data except
the confirmation of success of the operation. That reduces the network overload on the
Send Peer (6.2,p. 26). Details on implementation of the main Send Peer threads are
given in Section 7.5.4.

5.3.6. Computing Peer

Computing Peer is the main brick of our system. Its job is to embed or retrieve a signature
to/from an image. It receives the messages which encapsulate all the data that a specific
image processing algorithm needs. When the embedded algorithm returns the result (ex.
watermarked image), Peer forward the data to the perceived destination (L(GP)). It
periodically checks it’s load (perceive it’s Stats) and, if needed (based on a particular
Strategy), injects the surplus of data to it’s most available colleagues (most available
according to a particular Strategy). This is achieved trough Check Load & Distribute
task. The Action which is executed by this Task is [Inject Tile]. Further information
concerning Strategies is provided at 7.3,p. 34.

Computing Peer is a daemon. It is executed once and it waits on it’s inputs for the
commands.

5.3.7. Get Peer

The Get service is provided by the Get Peer. During the initialization phase, Get an-
nounces itself as a receiver for the resulting data. From this moment all the concerned

2Some kind of average traversal time.
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peers perceive L(GP). The Computing Peers put their results in a buffer until this an-
nounce has been made. After this, all the results are flushed to the Get Peer. Get Peer
saves the received data on a hard disk.

Besides this, the Get Peer has the responsibility of post-processing the data. In our case
it reassembles the tiles in one image. Moreover, the Get Peer confirms a successful arrival
of the data to the Send Peer (Action [Confirm Data Arrival]). Details on implementation
of the main Get Peer threads are given in Section 7.5.5.

If the Get Peer crashes, the system stops. Even worse things that happen if this occurs,
along with the solutions to this problem are discussed in Section A.2.1.

Get Peer is a daemon. It is executed once and it waits on it’s inputs for the commands.

5.3.8. Scheduler Peer

Our system is envisaged for usage with high data throughput workflows. The quantity
of data to process is tremendous, virtually infinite. That’s why we consider the data as
the flow and not as the quantity. If Send Peer is executed on the predefined amount of
data (for example process of the whole directory of images), it must wait until Get Peer
confirms the arrival of all the data before quitting. For injecting further data into the
Peer Network, we must re-launch the Send Peer.

This is not very efficient when working with data flows. The time wasted waiting for
confirmations can be used to inject more data. For this reason Send Peer works as a
daemon. It waits on his inputs a message indicating what data to send into the network.
At the same time, one of his tasks is to re-inject the data for which it didn’t receive a
confirmation of successful arrival.

Scheduler Peer is launched by a user (or any Internet technology based script). Upon
the initialization phase, the request for file descriptors [Request FD] is broadcasted. Send
Peer replies with it’s file descriptors. Those are returned to the user via the GUI. The user
fills the key and the signature fields, chooses which files and/or directories to process, and
clicks on a desired action in order to send the job. The Scheduler Peer then broadcasts
the request into the environment. Send Peer perceives that request and inserts it in his
schedule table.

Scheduler Peer is not a daemon. Although when the jobs are scheduled it doesn’t quit,
which allows the schedule of further jobs, the received Send Peer file system descriptors
are not updated. It is not recommendable to update those periodically because of Send
Peer performance concerns. Some issues on this are discussed in Section A.2.2.

Initially, the Scheduler Peer doesn’t know where the Send Peer is, while the latter
doesn’t publish it’s Stats. That is why it broadcasts it’s requests. Send Peer however
reply to the Scheduler Peer directly, because it responds to a message. The good sec-
ondary effect is that from now on Scheduler can schedule jobs without “disturbing” the
Send Peer (It conserves the network address of Send Peer).
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Table 5.2.: Used Commands

Command name Sender | Receiver | Data Socket | Description
Type

WM_IMAGE Send Peer Tile Data be watermarked!

WM _TILE Peer Peer Tile Data be watermarked!
UPDATE_STATS Peer Peers, Send Peer Multicast Here are my stats, up-

date locally!
PROVIDE_STATS Peers, Send Peers Peer Multicast, Give me your stats!
Control
ASSEMBLE_TILE (If applicable) Peer Get Tile Data This tile is water-

marked, assemble the

image!
ANNOUNCE_AS_GET_PROCESS Get Peers Peer 1P Multicast I announce as get pro-
cess.
ANNOUNCE_AS_SEND_PROCESS Send Get Peer IP Multicast I announce as send
process.
SCHEDULE Scheduler Send Scheduler Multicast Do this.
Entry
QUERY _SEND Scheduler Send Peer IP Multicast Send Peers, please
provide your available
file descriptors.
UPDATE_ AVAILABLE_FILES Send Scheduler Filesystem Control Here are my available
descriptor files.
CONFIRM_DATA_ARRIVAL Get Send Hash code Multicast Data has successfully

arrived.

5.4. Interactions

5.4.1. Messages

Messages embed the Commands(Section 5.4.2) and data that Peers want to communicate.
The Messages can be sent to the specific Peer or broadcasted. A Message is usually issued
by an Action or a Task.

5.4.2. Commands

Commands are character string data encapsulated in a message sent by the Peer. Table
5.2 on page 24 shows the commands used in our model. For the structure of the message
object please consult Figure 7.1 on page 31.
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6. Theoretical performance

6.1. Performance evaluation methods

Within this chapter we will remind some techniques used to express and compute the
efficiency of a distributed algorithm. For further lectures please consult [17, 11].

Speedup

Given a single problem with a sequential algorithm running on one processor and a
concurrent algorithm running on p independent processors, Relative Speedup is defined
as:

S _ Tsequential
p =

T , P = number Of Processors.
parallel

Relative Efficiency

Relative Efficiency is defined as:

It computes what percentage of available computing resources is used for performing
the job. 1-E, is the overhead due to additional tasks involved in data distribution and
transfers.

Amdahl’s Law

Amdahl’s Law ([5]) expresses the speedup gained using multiple processors versus single
processor, for accomplishing the same task. The speedup for a given program is defined
as:

— SeqP+ParP — 1
SeqP—I——PapTP SeqP—I——P‘;TP

SeqP= portion of the sequential part of the algorithm, ParP= portion of the parallel part of the algorithm,

p=number of processors
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Amdahl’s law defines the mazimum speedup achievable by a parallel computer with p
processors as follows:

mazxS <

For additional information please consult [11, 16, 17].

6.2. Theoretical performance of our model

Amdahl’s law clearly states the limit of theoretical speedup of an algorithm. To simplify,
a parallel algorithm with 10% of it’s work done sequentially cannot achieve better speedup
as 10, regardless of the number of processors used to solve the problem.

In our model this is applied to Send Peer. If the ratio between parallel portion of the
algorithm ([Embed Signature| for ex.), and the sequential portion of the same algorithm
([Inject Datal) is 0.1, the maximum speedup would be 10. For achieving this value we
should have at least 10 processors. For some bound effect concerns the ideal number
would be 11 (consult the figures 6.1, 6.2 and 6.3). If we use more Peers than that, all
the additional computing resources won’t be used. If we send 10 images in time needed
to watermark one, the eleventh Peer will receive the data when first Peer finishes his
job. On the other hand, the 12th Peer will receive data while first Peer is waiting. The
first Peer will lose 1/10 of potential computing time waiting to receive the new data. As
network speed is supposed constant, we adapt the number of Peers (11 in this example)
with above mentioned concerns in mind.

The goal of P-ICE is to provide a platform which allows experimentation of different
load-balancing techniques which would approach as much as possible the theoretical per-
formance. The overhead due to data transfer is supposed non modifiable. The hardware
solutions or better data compression would be needed, but due to low-cost concerns are
not proposed/discussed here. Concepts discussed in 5.3.3, p.18 are used to grant the
availableness of data for each Peer at every moment of the process and hopefully with a
computational overhead as low as possible.

Figures 6.1 , 6.2 and 6.3 show the delays caused by the inaccurate number of Peers. The
black data processing bars on the figures include the non-network overhead. Please note
that the peer order (horizontally from left to right) on this figures is such only for estheth-
ical reasons. The order in which the incoming data is sent to Computing Peers is defined
by a Strategy. It can be cyclic (Pl,PQ,Pg,Pl,PQ,Pg,...), random (PQ,Pl,Pg,PQ,PQ,Pl,...),
..., or dynamically generated, as in our model. The figures show the situation to which we
tend. Every Peer, when his job finished, must have the data ready for further processing.

This is achieved through different Distribution Strategies (7.3) among which at least
one works better than the others. The aim of this work was not to find that particular
strategy, but to construct the working model which provides enough flexibility and ro-
bustness for being applied on the modern or old hardware. However, some strategies are
discussed in further chapters.
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Figure 6.1.: Optimal # of Peers
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Figure 6.2.: Supra-optimal # of Peers
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Figure 6.3.: Sub-optimal # of Peers
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In order to assure the optimal performance of our system we define some rules to be
respected:

1. Send Peer doesn’t wait. To satisfy this requirement we use the needed number of
Peers. In addition we should assure that the Get Peer saves the data as fast as the
Send Peer can load it.

2. Every Peer has always an available task to execute. This is achieved trough well
implemented Distribution Strategies.

3. The network overhead due to Peer load balancing provoked by the overloaded
buffers [Check Load & Distribute], should be minimized. This is achieved trough
the solutions of points 1 and 2.

6.3. Deadlock avoidance/prevention

Deadlock is a state of the system in which processes are blocked, waiting on an event
that only other (actually blocked) processes can provide. There are four condition which
may lead, if all met, to the deadlock of the system ([6]):

1. Mutual exclusion (mutex): only one process can access a resource at a given
time.

28



2. Hold and wait: a process demands a resource while already holding one.
3. No preemption: the resource cannot be forcibly taken from the process.

4. Circular wait: circular graph in which all the processes are waiting the release of
the resource by the next process, in order to continue.

Deadlock prevention consists in the assurance that the mentioned conditions for the
deadlock are never met ([13]). Deadlock avoidance applies on systems which cannot
negate these conditions. Deadlock avoidance imply the usage of different algorithms
(eg.Banker’s algorithm) in order to detect the future states of the system in which the
deadlock can arise ([9]). Those states are then avoided with different resource allocation.

In our system the deadlock cannot happen as there is always a loophole for the data
evacuation (no circular wait). Even if three or more processes want to send data circularly
to each other, and all those processes have the buffers full, we have the guarantee of
deadlock resolution because of the Get Peer, to which all the peers send the processed
job data, which empties the buffers. Of course, if on get Peer there is no more disk space,
we will experience a halt of a whole system.
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7. Prototype implementation

7.1. Analysis

Figure 7.1 on page 31 shows the architecture of a Computing Peer. The Computing Peer
consists of two main parts: The Watermarker and the Dispatcher. While the Water-
marker limits itself on processing the image data, the dispatcher assures the availability
and recuperation of data. Following subsections give some more insight on those two
parts.

7.1.1. Dispatcher

Dispatcher is the “head” of the Peer. It handles the network requests and performs specific
maintenance tasks:

e Message processing: Commands are extracted from messages and executed.

e Load-balancing: The surplus of job to be done is extracted from watermarker
input buffers and sent to less overloaded Peers.

e Sending and retrieving of data from the watermarker: the data is inserted in
watermarker’s input buffer in a controlled manner in order to avoid buffer overloads.
When the watermarker output buffer receives data, the dispatcher is notified in
order to proceed to the evacuation of that data.

All the Peers have a dispatcher. The behaviour of the dispatcher depends however on
a type of service this Peer provides (Send, Get, Schedule or Compute). Although the
core procedures are the same for all types of peers, the reaction on incoming messages
depends of type of service. For example, the Get and Schedule peers don’t reply on
PROVIDE STATS broadcasts.

7.1.2. Watermarker

The Watermarker object is a java thread with an input and an output buffer. Water-
marker thread retrieves data from the input buffer, performs an operation on that data
and inserts the processed data in the output buffer. The routines for embedding and
detecting watermark are provided as Windows DLL’s and therefore are accessed via the
Java Native Interface (JNI)[18].
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Some image manipulation is needed to convert data from it’s compressed form (JPEG,
PNG) into the raw RGB model needed for the Watermark embedding and retrieving
DLL’s. The DLL accepts only the byte array with aligned R, G and B (8-bit) components
of each pixel. The needed conversions are done using java.awt.image package. The
prototype application doesn’t support the tremendous amount of image codec’s present
in Java Advanced Imaging (JAI) libraries. As the JAI is an add-on on Java SDK, we
don’t use it in the prototype application. One should, in order to support more image
types, install the JAI. However, JPG and PNG image formats are supported without the
JAT.

Only the Computing Peer has the Watermarker object. The Watermarker main pro-
cedure checks continuously the presence of data in the input buffer. When this data
becomes available, it is extracted, processed and inserted into the output buffer. The
output buffer notifies the dispatcher via the Observer design pattern[12]. The dispatcher
then extracts the data and sends it to the Get Peer.

7.1.3. Message

For transporting the messages we are using a standard Ethernet switched or hubbed
network with broadcast capabilities. The lower layers are traditional TCP/IP or UDP
layers. Java language adds a tremendous set of APIs for network socket programming.
They are provided within Sun’s JDK (Java Development Kit). All the necessary in-
formation about Java Socket API is available at "http://java.sun.com". The message
object structure is shown in Figure 7.1 on page 31. Each message consist of the com-
mand string and an attached data object. The receiver (unless it is a broadcast) and
the sender fields are also provided. The message object is serialized and piped through
socket to its destination.

Network

We use Java’s SocketAPI to perform network communications. These communications
are socket oriented. We are not using any middleware for performing those data transfers
in order to make our model portable and platform independent. Java VM exist for many
hardware architectures.

Unicast

Unicast transfers are used for sending job data. The integrity and packet order are
regulated by the TCP/IP stack. We don’t add additional control structures. In case of
brutal malfunction of a receiving peer, the sender is notified via an java exception which
is properly handled.

Multicast/Broadcast

Multicasts/Broadcasts are used for publishing statistics on the Peer network. Broadcast
Messages are piped to Java’s Multicast/UDP-based socket. As the UDP protocol doesn’t

32



handle the order of packet arrival, we send only one packet at each broadcast. The size
of this packet is limited by the predefined receive buffer size. It could be dynamically
allocated, but this would need additional messages to be exchanged. As our goal is to
minimize broadcasts, this was not an acceptable solution. Each Peer must check the size
of the packet before broadcasting.

Routing hardware

For the technical reasons we suppose that the Peer network resides within the same LAN.
As multicast packets are usually rejected by routers, technologies like SOAP or JXTA
should be integrated in order to perform WAN or Internet broadcasting. Peers can be
connected by the coaxial cable or hub (RJ45), but performance is better if we use network
switches (collision avoidance).

7.1.4. Sockets

First of all, please note that the socket we are talking about is a particular socket which
implements the Peer-to-Peer paradigm. In Peer2Peer communication each participant
has a client and a server network socket. That’s why, from the networking point of
view, our P2P socket is composed of two generic network sockets. When we use the term
“socket” we refer to the Peer-to-Peer socket.

There are three different socket types:

1. Data Socket: for sending and receiving job data (Images).
2. Control Socket: for sending and receiving control data (available files).

3. Multicast Socket: for broadcasting of stats and announcements of available Peers.

The sockets are based on java.net package. In addition, two buffers hold the incoming
and outgoing messages of each socket. The buffers(Section 7.5.1) are present because of
the asynchronous message passing model. They compensate the differences of processing
time between Peers.

The socket is composed of the server and the client part. The server part receives
incoming connections. When a connection is received, the socket verifies if there is
enough space in the buffer for the next message. If it isn’t the case, the server socket is
not opened until the space frees.

The client part of the socket is notified by the input buffer (see Section 7.5.1) . It
then extracts data from the input buffer and sends it. If, for some reason, the data
can not be sent to the destination, the socket retries several times, and then drops the
message and continues. We rely on the overlying protocol between Send and Get peer
(CONFIRM _ARRIVAL) in detecting the dropped jobs. Those jobs are reinjected in the
network if not confirmed as done (Section 5.3.5, Section 5.3.7).
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Figure 7.2.: Interactions while receiving data
ReceiveData
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7.2. Internal data exchange Protocols

Peer’s internal data exchange relies firmly on Observer-Observable design patterns. Fig-
ures 7.2 to 7.6 show the sequence diagrams of Peer internal protocols.

7.3. Distribution Strategies

Distribution strategies are used to load-balance the data between Peers. Send Peer uses
those strategies in order to decide to which Peer to inject the data. Computing Peers
use the same strategies to discharge some of their data in order to avoid overloads. It is
not necessary that all the peers use the same strategy.

Although the goal of this project was not to provide any particular load-balancing
strategy, for the testing purposes we have developed several, very simple algorithms.
Those algorithms provide essentially decisional patterns which based on environmen-
tal perceptions decide to which peer to send data. Different distribution strategies are
presented below:

e First Peer Strategy: The data is sent to the first Peer in the list.
e Random Peer Strategy: The data is sent to the randomly chosen Peer.

e Circular Peer Strategy: The data is sent to Peers in the order they appear in
the list.
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Figure 7.3.: Interactions while sending data
SendData
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Figure 7.4.: Interactions while receiving tiles
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Figure 7.5.: Interactions while sending tiles
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Figure 7.6.: Interactions while Watermarking
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e Smallest Input Queue Strategy: The data is sent to the Peer that has the
“emptiest” Watermarker input queue (buffer).

As envisaged, the strategy that gives the best data distribution is the Smallest Input
Queue Strategy. This list is not exhaustive and should be updated when further work
on the application is done.

7.4. Broadcast Strategies

Broadcast strategies regulate the publishing of a Peer’s Stats. This type of strategies is
used by the BroadcastStats Action(Table 5.1 on page 21). When the Broadcast Stats
Task decides to trig the Broadcast Stats Action, the Action consults its Strategy, which
returns if or if not to publish the stats. In our implementation, the only implemented
Banal Broadcast Strategy returns always true, which implies the fixed interval broadcasts,
which however can be initialized at a desired value via the Task period.

In further work it should be good to base the decision to publish or not on number of
available Peers. This is further discussed in Section A.1.2.

7.5. Important algorithms
7.5.1. Buffers

The most “tricky” part of our system is the network data exchange and buffering. As our
model is, as stated above, an asynchronous model, the buffers are the quite important part
of the system. The buffers are used at the socket part (Section 7.1.4) and a Watermarker
part (Section 7.1.2) of the Peer. The Watermark buffer compensates the varying speed
of the data processing algorithm, while the Socket buffers compensate the variations in
network load.

Those buffers are based on a linked list which acts as a queue. The queue implements
the Observable interface in order to notify the observers on its status change. This is
used in order to trig data processing from the Socket output queue and sending of the
data from the Watermarker’s output queue to the Get Peer.

7.5.2. Message processing

When the Dispatcher is notified upon a Message arrival (by the Socket output buffer), it
calls the processMessage() method. This method extracts the Message from the buffer,
and de-capsulates the Command. Depending on the Command and the Peer type (Com-
puting, Get, Send or Scheduler) , the particular action is taken. If necessary, the data is
extracted from the Message.

7.5.3. Initialization phase

During the initialization phase, the Peer creates all the necessary objects (Sockets, Wa-
termarker, ...). Then, it queries its IP Address in order to set the sender field on its
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future messages. The Sockets are opened and the Stats broadcast performed. Peer then,
depending on its role, executes the corresponding main thread.

7.5.4. Send Peer Main Thread

The following java algorithm is executed on the Send Peer:

while(true){
while (scheduleTable.hasEntries()){
SchedulerEntry job=scheduleTable.getNextWaitingEntry();
waitingTable.insert(job);
Tile tile=new Tile();
tile.loadFile(job.filename());
tile.setKey(job.getKey());
tile.setSignature(job.getSignature());
myDispatcher.injectTile(tile);
}
yield(); //avoiding 100% CPU load
}

All the other services are provided by Tasks and Commands.

7.5.5. Get Peer Main Thread

The Get Peer has no main Thread because of its passive nature. On initialization it
broadcasts its IP, via the ANNOUNCE AS GET command. The service for recupera-
tion of processed data is provided via the ASSEMBLE TILE Command, which is issued
by Computing Peers. There is however an implicit child Thread, Server Socket, which
runs as daemon and keeps the Peer running.

7.5.6. Computing Peer Main Thread

The Computing Peer is also an passive Peer. It does nothing by himself but its Tasks.
Those Tasks, with Sockets and Watermarker are however active as separate Threads.
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8. Results

8.1. Performance

Our model was tested in order to provide a “proof-of-concept” of the underlying technique
of distributed computing. The goal of the test set is to allow the estimation of the speedup
and efficiency (see Section 6.1) of our algorithm. The test cluster is composed of seven
peers: Send Peer, Get Peer and five Computing Peers. The hardware is described in
Table 8.1 on page 39.

The test job is composed of 560 tiles with dimensions of 512 by 512 pixels. This value
represents the optimal dimension for the Watermark embedding algorithm. The tiles
were obtained by cutting 4 huge images using the software developed for the occasion.
The software is based on JAI (Java Advanced Imaging) Libraries. The measured speedup
is showed in Figure 8.1 on page 40 , and the efficiency in Figure 8.2 on page 40 .

The serial processing time (Section 6.1) which we use to compute the efficiency of a
set of Peers is obtained by averaging the serial processing times of the concerned Peers.
Serial performance results are showed in Section B.1, and parallel performance measures
in Section B.2.

The serial measures were obtained using a Serial Peer, coded for the occasion, which
loads files, watermarks them and saves them to the disk. The processing time is obtained
by the subtraction of the system time at the end of the process, from the time at the
beginning of the process.

The parallel measures were obtained using a stopwatch. Processing time is measured
from the moment the user schedules the jobs using the GUI, to the moment the last job

Table 8.1.: Test cluster hardware

‘ Name ‘ Role ‘ 0OS ‘ CPU Model ‘ CPU Clock ‘ RAM ‘ Network ‘
Peerl | Computing NT 4 Server Intel Pentium II 346 Mhz 256Mb | 10 Mb/s
Peer2 Get NT 4 Intel Pentium II 345 Mhz 256Mb | 100Mb/s
Peer3 Send Windows 2000 | Intel Pentium II 394 Mhz 256Mb | 100Mb/s
Peer4 | Computing NT 4 Intel Pentium III 544 Mhz 256Mb | 100Mb/s

Peer5 | Computing | Windows 2000 | Intel Pentium III 544 Mhz 128Mb | 100Mb/s
Peer6 | Computing | Windows 2000 | Intel Pentium III 544 Mhz 128Mb | 100Mb/s
Peer7 | Computing | Windows 2000 | Intel Pentium III 725 Mhz 256Mb | 100Mb/s
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arrives to the Get Peer.

The result show that the speedup behaves linearly, which is a good thing. Efficiency
tend to diminish with increasing number of Peers, but we can notice that the curve
stabilizes near the end. It would be interesting to test the system on a greater set of
computers.

As the Send and Get Peers reside on file servers and do not participate in the comput-
ing, they were not counted during the efficiency calculus.

8.2. Data distribution

In order to confirm the needed condition described in Section 6.2 (every Peer works), we
have produced the charts presented in Figure 8.3 on page 42 . Those charts show the
states of the input buffers of the Peers at the moment the Send Peer chooses to inject
the next job. The measures were obtained using a slightly modified SmallestInputQueue
Distribution Strategy, which, when called in order to provide the Peer to whom the job
is to be injected, saves the perceptions (Computing Peers input buffer status) in a text
file.

The important thing to notice is that there is never a Peer without a job. When
some Peer has its buffer almost empty, the load-balancing algorithm (Send Peer or other
Computing Peers) fills it very rapidly.
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9. The future of P-ICE

The future of P-ICE and its possible successors reside in huge, very fast, WAN based
networks. Today, we can purchase copper-based Gigabit network hardware at less than
363, providing 600Mbit /s throughput, opening a whole new field of computer technologies
and applications.

In the future, modern offices, all the hardware will participate in performing the tasks
at its own level. Pocket PC’s, electronic version of our agendas, already provide Firewire
interfaces for high rate data transfers. Why not using this high performant computers
(eg. Intel StrongArm 233MHz CPU’s) for executing jobs during the spare time they pass
on a battery loader?

The aims of JXTA project is to provide support for Peer-to-Peer communications
over Firewire and IR connections, while the Jini project (SUN), provides a framework
for integration of coffee-machines, refrigerators and other household machines into one
unique network. We can reasonably presume that whatever CPU resides in our futuristic
refrigerator, it will most of its time be unused.

The Peer-to-Peer protocols provide an intuitive way of auto-recognition between those
potential CPU resources. What those systems lack is a social characteristics essential in
a good collaboration between this new kind of entities. The MAS paradigms provide a
huge amount of rules and social behaviors among which we can choose in order to make
act and interact our Peers.

One should understand that the social behaviors spotted in animal or human soci-
eties are an invaluable source of informations which should not be neglected when we
talk about resource or job sharing. Although it is true that we cannot understand com-
pletely those behaviors, we can model them and use as the starting point in designing
communication protocols involved in task exchange.

P-ICE is only a starting point of our project. It provides an Peer-to-Peer architecture
without going deeply in interactional aspects of resource sharing. In future work we
should experiment different social behaviors of Peers in order to achieve even higher
performance. Is the society in which entities ask for job better than the society in which
entities impose a job? (pull or push model?). Is the mix of two societies better than
the two separately considered societies? MAS approaches base on studies in different
scientific fields ranging from ethology to sociology trough a wide range of other disciplines.

Unfortunately the Multi-Agent Systems are used in major part for simulation of bio-
logical phenomena and not for providing a consistent framework for world wide computer
interactions. The unification of resources, services and demands is the key of future de-
velopment in computer science. Lot of work in this direction has been done the past few
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years, and even more is to be done. The further step is the integration of all compu-
tational and communicational resources in one world-wide cluster. Considering that a
whole is greater than a sum of all it’s parts, the future seems promising.
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10. Conclusion

Our distributed computing environment, P-ICE, has fulfilled the requirements. The
system is efficient, scalable and fits very well for digital image processing applications.
P-ICE is stable and able to resist the hardware/OS failures.

Even if P-ICE is still a prototype, and not a commercially exploitable application,
the results of the measured performance provide a proof of concept for the peer-to-peer
distributed computing. The efficiency of almost 80% shows that it is possible to obtain
an effective distributed system in highly heterogeneous environments. Using Peer-to-Peer
approach, we have obtained a system which scale very well and which adapts rapidly to
changing environment.

We have not tested P-ICE on a huge number of computers, but the framework is flexible
enough to allow experimentation and development of new algorithms. The informations
about the topology of the network, obtained by network multicasts, add and adaptive
behavior to the whole system. This is valuable when the processor load vary constantly.

The advantages of an efficient distributed computing environment are clear. If we
consider that the cost of developing and manufacturing an integrated distributed system
grows almost exponentially with the amount of processors, the alternative solutions as
ours, which keep this dependency linear, must be envisaged. While it is true that the
performance of the second is lesser, their financial advantage should not be neglected.

Moore’s Law states that the performance of computers doubles every year. Buying 10
computers now, in two years and considering an efficiency of 80%, we will have an equiv-
alent of 4 new computers, leading to an investment return of 40%, which is considerable
having in mind high amortization rate on computer hardware.

The drawback of such low-cost systems is that they rely on cheap and unstable hard-
ware. This should be not an excuse for the poor performance or scalability issues. Such
systems, if constructed carefully, can handle huge tasks and compete with integrated,
massively parallel systems.
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A. Known Bugs and To do List

A.l1. Performance increase issues

A.1.1. Socket latency

When the Peer sends the data trough the actual implementation of the socket, and the
receiver socket is not opened (in order to protect from buffer overload or due to an OS
crash), the receiver Peer is recontacted several times. After the defined number of tries,
the packet is dropped. The loss of packet is not a problem, while the Get and Send Peer
take care of successful arrival of data. The real drawback is performance loss due to this
retries. In order to suppress those, the Peer should directly send the data to an another
available Peer when faced to a closed receiver socket.

One should note that the loss of the image data is not acceptable for the Send Peer,
which uses the same socket implementation. That is why the Send Peer first writes in
his scheduled entries table that the image has been sent. As the Get Peer do not confirm
the arrival of that data, Send Peer re-injects it.

A.1.2. Frequent Broadcasts on huge network

As the number of Peers grows, the broadcasts become more frequent. This not only
saturates the network bandwidth but also slows the computing by a Peer, because the
Peer must handle the broadcasts received.

Although we provide an interface for implementing efficient Broadcast Strategies, our
prototype doesn’t use it extensively. Those strategies should in future base their broad-
cast decision on number of Peers. If this number grows, broadcasts should be done less
frequently.

The problem of less frequent broadcast resides in fact that in that case the perception
of Peers will be less accurate. When the further work on P-ICE is done, we should on
one hand optimize the Broadcast Strategies in an above-mentioned manner, and on the
other, we should develop more sophisticated Distribution Strategies, based on past states
of the system. This should allow to predict the behavior of Peers and compensate the
missing information about environment.

A.1.3. Computing Peer [Check Load & Distribute] Task

The [Check Load & Distribute| Task assures that the distribution of data is done uni-
formly in the Peer network. The Peer, when a specific condition is met, injects some of its
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job in the environment. In our prototype this condition is satisfied when the number of
jobs in the Watermarker input queue exceeds 5. When this happens, we use the “Smallest
Input Queue” Distribution Strategy in order to reinject the data in the environment.

This strategy suits very well for the initial (Send Peer) injection, but in the Sub-
Optimal Peer number environments (Figure 6.3 on page 28) it generates significant over-
head. As lot of Peers have their buffers full, this reinjection occurs very often.

Better strategy would be to choose to reinject only if the candidate Peer has signifi-
cantly less available work as the demanding one.

A.2. To do’s

A.2.1. Get and Send Peer Crashes

There is no lot to do in order to avoid the crash of the Send and the Get Peer. Even if
we didn’t experience this during our tests, it could occur. What however we can do is
assure that the application doesn’t crash the whole computer system, which is often the
file server too.

If the Send Peer crashes, the Computing Peers will finish the pending jobs and suspend
their activity. On the contrary, if the Get Peer crashes, the Send Peer, as it doesn’t receive
any confirmation of the successfully processed jobs, will continue to fill it’s waiting table
(Section 5.3.5) with job’s to be done. Inevitably this will provoke the crash of the Send
Peer. In order to avoid that, we should limit the size of the Send Peer’s waiting table.
Scheduler Peer should be aware of this too.

A.2.2. Update of File system descriptors

Scheduler GUI should provide a button which initiates the update of File descriptors
from the Send Peer. For now, this update is done only during the initialization phase of
the Scheduler Peer.

A.2.3. UDP Packet size

The Multicast Socket uses the UDP Protocol for sending data. Java’s multicast socket
needs to know the size of the data to be received in order to open the connection. We
have fixed this size to an arbitrary number. However, no test is made in order to assure
that the packet which is sent does not exceed this size. As the perceptions which are
broadcasted can vary in their size due to past-states table growing, we should do some
checks before broadcasting.

48



A.3. Known Bugs

Independently of numerous memory leaks of the Watermarking DLL, the next message
appears sometimes:

Not enough memory for random number list!

Terminating program!
After this message the Peer exits. It is possible that this occurs because we initialize
java.util.Random object only once.
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B. Performance measures

B.1. Serial Performance

Table B.1 gives the measures obtained during the serial performance tests.

B.2. Parallel Performance

Tables B.2 to B.6 show the measures obtained during the parallel performance tests.
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Table B.1.:

Serial Performance measurements

Test No

‘ Peerl

‘ Peerd ‘ Peerbd

‘ Peer6 ‘ Peer7 ‘

—_

21m16s

13m34s

13m30s

14m05s

12mb56s

21mb7s

13m33s

13m23s

13mb55s

12m49s

22m06s

13m38s

13m24s

13mb1s

12m46s

21mb5s

13m36s

13m22s

13m49s

12m44s

21m09s

14m27s

13m26s

13m53s

12m43s

20m11ls

14mb51s

13m25s

14m02s

12m44s

20m16s

14m27s

13m27s

13mb2s

12m45s

20m28s

13m40s

13m27s

13mb52s

12m46s

OO0 || U x| DN

20m10s

13m32s

13m20s

13m49s

12m47s

—
o

20m13s

14m08s

13m21s

13mb58s

12m44s

Average

21m18s

13mb56s

13m24s

13m49s

12m46s

Per image Average

2.283s

1.494s

1.437s

1.481s

1.368s

Overall Average

15m02s

Overall per Image Average

1.612s

Table B.2.: One Computing Peer measurements

Test No

‘ Peerl

‘ Peer4 ‘ Peerd

‘ Peer6

‘ Peer7 ‘

—

22m04s

14m19s

13mbls

14m18s

13m13s

22mbls

13m16s

13mb5s

14m07s

13m37s

21m20s

14m12s

13m35s

14m12s

13m17s

21mb7Ts

14m12s

13m46s

14m09s

13m18s

21m?20s

14m40s

13m42s

14m27s

13m29s

21mb5s

15m59s

13m42s

14m15s

13m13s

21m19s

14m45s

13m44s

14m17s

13m30s

22m02s

13m48s

13m34s

14m06s

13m1l4s

OO0 J| | U x| W N

21m24s

14m15s

13m43s

14m13s

13m10s

—
o

22m03s

14m16s

13m32s

14m18s

13m14s

Average

21m49s

14m?22s

13m42s

14m1l4s

13m19s

Per image Average

2.338s

1.539s

1.469s

1.525s

1.427s
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Table B.3.: Two Computing Peers measurements

Test No ‘ Peerl+4 ‘ Peerd+5 ‘ Peer5+-6 ‘ Peer6+7 ‘

1 9ImO08s Tm28s Tm34s 7Tm19s

2 9mO08s Tm27s Tm32s Tml7s

3 9m10s Tm27s 7m29s 7m18s

4 9m13s Tm24s Tm29s Tm21s

5 9m18s Tm28s Tm29s Tm17s

6 9mO08s Tm21s Tm26s Tm18s

7 9m07s Tm24s Tm26s 7Tm19s

8 9m06s 7Tm29s Tm22s 7m19s

9 9mlls 7Tm29s Tm29s Tm18s

10 9m13s Tm30s Tm30s Tm20s

Average 9m10s | Tm26s | Tm28s 7Tm18s

Per image Average | 0.9825s | 0.7976s | 0.801s | 0.78321
| Serial Average | 18m05s | 13m40s | 13m36s | 13m17s |

Speedup 1.9729 | 1.8356 | 1.8214 | 1.8171
Average Speedup 1.86175

Efficiency 0.986 | 0.9178 | 0.910 | 0.9085
Average Efficiency 0.930575
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Table B.4.: Three Computing Peers measurements

‘ Test No ‘ Peerl+4+5 ‘ Peerd+5+-6 ‘ Peer5+4-6+7

1 6m03s 5m18s 5m20s
2 6m01s 5m20s 5m22s
3 5mb4s 5m27s 5m18s
4 5mb6s 5m25s 5m14s
5 5mbH8s 5m14s 5m18s
6 6mO02s om28s dm23s
7 6m01s 5m12s 5m17s
8 6m00s 5ml4s 5m20s
9 6m01s 5m26s 5m19s
10 5mb5s 5m21s 5m13s
Average 5mb59s 5m20s 5m18s
Per image Average 0.641s 0.572s 0.568s

‘ Serial Average ‘ 16m12s ‘ 13m43s ‘ 13m19s ‘
Speedup 2.7067 | 2.5678 2.512
Average Speedup 2.5955
Efficiency 0.9022 ‘ 0.8559 0.8375
Average Efficiency 0.8652
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Table B.5.: Four Computing Peers measurements

‘ Test No ‘ Peer1+44+5+6 ‘ Peerd+5+6+7 ‘
1 4m4ls 4m06s
2 4m40s 4m08s
3 4m?27s 4m06s
4 4m38s 4m09s
5 4m4ls 4m12s
6 4m3ls 4mlls
7 4m38s 4m08s
8 4m31ls 4m14s
9 4m39s 4m18s
10 4m39s 4mlls
Average 4m36s 4m10s
Per image Average 0.4937s 0.4469s
| Serial Average | 15m36s | 13m28s |
Speedup 3.385 3.2281
Average Speedup 3.30655
Efficiency 0.8462 0.807
Average Efficiency 0.8266

Table B.6.: Five Computing Peers measurements

‘ Test No ‘ Peer1+4+5+46+7 ‘
1 3m47s
2 3m43s
3 3m46s
4 3mb4s
5 3m4ls
6 3m47s
7 3m46s
8 3md2s
9 3m48s
10 3m49s
Average 3m46s
Per image Average 0.404s
‘ Serial Average ‘ 15m02s ‘
Speedup 3.986
Efficiency 0.7971
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