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ABSTRACT. Claude Elwood Shannon in 1948, then of the Bell Telephone Laboratories, published one of the most remarkable
papers in the history of engineering [1]. This paper (”A Mathematical Theory of Communication”, Bell System Tech. Journal,
Vol. 27, July and October 1948, pp. 379 - 423 and pp. 623 - 656) laid the groundwork of an entirely new scientific discipline,
information Theory, that enabled engineers for the first time to deal quantitatively with the elusive concept ofinformation”.

In his celebrated work, Shannon nicely laid the foundation for transmission and storage of information. Using a probabilistic
model, his Theory helped to get further insight into what is achievable and what is not, in terms of quantifiable information transfer.
Indeed the very same concept is used to predict the limits on data compression and achievable transmission rate on a probabilistic
channel.These underlying concepts can be thought of as inequalities involving measures of probability distributions. Shannon
defined several such basic measures in his original work. Thefield of Information Theory grew with researchers finding more
results and insights into the fundamental problem of transmission of and storage using probabilistic models. By natureof the
subject itself, the results obtained are usually inequalities involving basic Shannon’s measures such as entropies. Some of them are
elementary, some rather complicated expressions. In orderto prove further theorems as well it required to check whether certain
expressions are true in an Information Theoretic sense. This motivated researchers to seek a formal method to check all possible
inequalities. Raymond Yeung [2] in 1998 came out with a remarkable framework, which could verify many of the inequalities in
this field. His framework thus enabled to verify all inequalities, derived from the basic Shannon measure properties.

A central notion of Information Theory is entropy, which Shannon defines as measure of information itself. Given a set of
jointly distributed random variablesX1, X2, . . . , Xn, we can consider entropies of all random variablesH(Xi), entropies of
all pairsH(Xi, Xj), etc. (2n − 1 entropy values for all nonempty subsets of{X1, X2, ...,Xn}). For every n-tuple of random
variables we get a point inR2

n
−1, representing entropies of the given distribution. Following [2] we call a point inR

2
n
−1

constructible if it represents entropy values of some collection ofn random variables. The set of all constructible points is denoted
by Γ∗

n

It is hard to characterizeΓ∗
n for an arbitraryn (for n ≥ 3, it is not even closed [?]). A more feasible (but also highly non-

trivial) problem is to describe the closurēΓ∗
n of the setΓ∗

n. The setΓ̄∗
n n is a convex cone [?], and to characterize it we should

describe the class of all linear inequalities of the form

λ1H(X1) + . . . + λnH(Xn) + λ1,2H(X1X2) + . . . +

λ1,2,3H(X1, X2, X3) + . . . + λ1,2,3,...,nH(X1, X2, X3, . . . , Xn)

which are true for any random variablesX1, X2, . . . , Xn (λi are real coefficients).
Information inequalities are widely used for proving converse coding theorems in Information Theory. Recently interesting

applications of information inequalities beyond Information Theory were found [10],[12],[14]. So investigation of the class of all
valid information inequalities is an interesting problem.We refer the reader to [15] for a comprehensive treatment of the subject.

Yeung’s framework thus helped to verify all the Shannon typeinequalities. Yeung and Yan have also developed a software,
to computationally verify such inequalities. Since the software is rather outdated, we have made an attempt to make a more
efficient and user friendly implementation of the software,hinging from the original work of Yeung. The software, whichwe
call information inequality solver (iis) is freely available for download from EPFL website. The new software suit has the added
advantage that it is freed of dependencies on any licensed products such as Matlab (or toolboxes).
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1. INFORMATION THEORY: CONCEPT OFINFORMATION

In his seminal work[1], which literally gave birth to the field of Information Theory, Shannon laid the foundation of
transmission and storage of information. Using a probabilistic model, his Theory helped to get further insight into what is
achievable and what is not, in terms of quantifiable information transfer. Indeed the very same concept is used to establish
the limits on data compression and achievable transmissionrate on a probabilistic channel. Shannon’s formulation wasso
fundamental in the sense, he defined the very notion of quantifying information using few basic measures on probability
distributions.

In this section some of the key concepts of information, as put forward by Shannon and some of their very essential
properties are investigated. Indepth treatment of these concepts and information Theory in general can be gathered from
many of the excellent text books in this subject, most notably, [3],[4],[5],[6],[7] [8] and [9]. Shannon’s landmark paper [1]
itself is an excellent reference on the subject.

There are several key notions in Information Theory. These are basic in the sense that, the whole edifice of Information
Theory is built around this. First of such is the notion of entropy.

1.1. Entropy.

1.1.1. Definition of entropy.Let X be a random variable taking values from a discrete alphabetX subject to a probability
distributionPX(x) = Pr{X = x} wherex ∈ X. Then the entropy of a (discrete) random variableX is defined as,

H(X) = H (PX(x)) , EPX

[

log
1

PX(x)

]

=
∑

x∈X

PX(x) log
1

PX(x)
.(1)

HereEP is the statistical expectation1 with respect to the probability distributionP . A further assumption0 log 0 =
limt=0 t log t = 0 is used for mathematical completeness of the definition. It may be observed that, the usual representation
of entropyH(X) is denoted as a function of random variable, even though it isstrictly a function of a distributionPX(x).

Thus, entropyH(X) is the expectation of a random variable− log PX(x) with respect to he probability measureP .
Since we are considering a discrete random variable, by virtue of 0 ≤ P (x) ≤ 1, the functionH(X) will be lower
bounded by0. In other words, the entropy is always non-negative. i.e.,H(X) ≥ 0. In general, the upper bound on
entropy can be∞, unless the disribution takes on a countable set of values. The latter assumption is a reasonably one in
practice since most of the discrete distributions we come across indeed have only countable number of distinct letters.The
easiest example of a countable distribution we could think of is a binary distribution (a single coin flip) with two letters, of
probabilitiesp and1− p. The entropy for such a distribution can be easily computed asp log p + (1− p) log(1− p). If the
alphabet size of the discrete distribution is|X|, the entropy has an uperboundlog |X|.In the binary case, the upper bound
thus islog 2 = 1. This rather simple entropy function for a binary case is shown in Fig.1.

p

h(p)

0.50 1

Figure 1. Entropy bounds of a binary distribution: The entropy functionh(p) = p log p+(1−p) log(1−
p) shows general insights into the entropy function of a discrete distribution with a countable alphabet
size. If the number of distinct letters that the random variableX take isX, then the maximum value of
entropy islog |X|. The concave nature of the entropy function for a binary distribution shown here also
holds true in general, for larger alphabets

1Strictly speaking the expectation isEPX
and the the distribution under consideration to be denoted as PX(x), but partly because of convenience

and partly because of the obvious notion, the termX is omitted in the representation.
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In most systems that deals with Information Theory, at leasttwo entities are relevant. In a communication system,
these are the transmitter (sender) and receiver. We are hence required to consider a pair of random variables not just a
single random variable. The two random variables (corresponding to the two entities) are correlated to each other (in
the special case they can be independent too). In such a scenario, it is possible to define the joint entropyH(X, Y )
between two random variablesX andY . The concept could be extended to an arbitrary numbern of random variables
(X1, X2, . . . , Xn) with joint entropyH (X1, X2, . . . , Xn).

For two random variables, we can also define the entropy conditioned on an event. In the same vein, we define the
averaged (with respect to the distribution of the conditional event) entropy conditioned on an event, known as conditional
entropy. The following illustrate the concepts:

The entropy of random variableX conditioned on an eventx is defined as,

(2) H(X |Y = y) =
∑

x∈X

PX|Y (x|Y = y) log
1

PX|Y (x|Y = y)

Re-working the above will lead us to

H(X |Y = y) =
∑

x∈X

PX|Y (x|Y = y) log
1

PX|Y (x|Y = y)
(3)

= EPX|Y

[

log
1

PX|Y (x|Y = y)

]

(4)

Expectation of this with respect toPY (y) gives us what is known as conditional entropyH(X |Y ) between random
variablesX andY .

H(X |Y ) = E [H(X |Y = y)](5)

=
∑

y∈Y

PY (y)
∑

x∈X

PX|Y (x|Y = y) log
1

PX|Y (x|Y = y)
(6)

=
∑

y∈Y

∑

x∈X

PY (y)PX|Y (x|Y = y) log
1

PX|Y (x|Y = y)
(7)

=
∑

y∈Y

∑

x∈X

PX,Y (x, ) log
1

PX|Y (x|Y = y)
(8)

= EPX,Y

[

log
1

PX|Y (x|Y = y)

]

(9)

1.1.2. Additivity of entropy.A simple additive property exists between entropy, joint entropy and conditional entropies.
This is known as the chain rule of entropy. For the two random variable case, it reflects as,

H(X |Y ) =
∑

y∈Y

∑

x∈X

PX,Y (x, ) log
1

PX|Y (x|Y = y)
(10)

=
∑

x∈X,y∈Y

PX,Y (x, y) log
1

PX|Y (x|Y = y)
(11)

=
∑

x∈X,y∈Y

PX,Y (x, y) log
PY (y)

PX,Y (x, y)
(12)

=
∑

x∈X,y∈Y

PX,Y (x, y) log
1

PX,Y (x, y)
−
∑

x∈X

PY (y) log
1

PY (y)
(13)

= H(X, Y ) − H(Y )(14)

It is easily seen that symmetric property holds (change the random variablesX to Y ) In summary,

(15) H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ).

The property can be extended to arbitrary number of random variables to get the chain rule in general.

H(X1, X2, X3, . . . , Xn) = H(X) + H(X2|X1) + H(X3|X1, X2) +

. . . + H(Xn|X1, X2, X3, . . . , Xn−1)
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1.2. Mutual information. Mutual information between two random variablesX andY is defined as the reduction of
entropy of one (sayX) given the other (Y ). It is denoted asI(X ; Y ) and is formally,

I(X ; Y ) = H(X) − H(X |Y ).

I(X ; Y ) = H(X) − H(X |Y )

= H(X) + H(Y ) − H(X, Y )

=
∑

x∈X

PX(x) log
1

PX(x)
+
∑

y∈Y

PY (y) log
1

PY (y)
−

∑

x∈X,y∈Y

PX,Y (x, y) log
1

PX,Y (x, y)

=
∑

x∈X,y∈Y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)

= EPXY

[

log
PX,Y (x, y)

PX(x)PY (y)

]

.

By symmetry, the following is true as well:

I(X ; Y ) = H(Y ) − H(Y |X).

1.3. Conditional mutual information.

I(X ; Z|Y ) =
∑

y∈Y

PY (y)I(X ; Z|Y = y)

=
∑

y∈Y

PY (y)
∑

x,z

PX,Z|Y (x, z|y) log
PX,Z|Y (x, z|y)

PX|Y (x|y)PZ|Y (z|y)
.

1.4. Inequalities concerning mutual information.

1.4.1. simple 3 rv Markov chain.

(16) I(X ; Z|Y ) ≥ 0

and

(17) H(X |Y, Z) ≤ H(X |Y )

and
equality only ifX → Y → Z.

1.4.2. Markov chain.For a simple Markov chain

(18) X1 → X2 → X3 → . . . → Xn,

(19) I (X1, X2, X3, . . .Xi−1; Xi+1|Xi) = 0.

1.4.3. Independence.If each component of the random vector

(20) X
n = (X1, X2, X3, . . . , Xn)

is independent from all others,then

(21) I(Xn;Yn ≥
n∑

i=1

I(Xi; Yi).

1.4.4. Memoryless.For a memoryless channel, we have

(22) I (Xn;Yn) =

n∑

i=1

I(Xi; Yi).

Some of these native properties of the basic measures discussed above can be summarized pictorially in Fig.2.
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H(X|Y ) H(Y |X)I(X;Y )

H(X)

H(Y )

H(X, Y )

Figure 2. Basic information measures-relationship

2. INEQUALITIES IN INFORMATION THEORY

Information Theory provides fundamental limits on (digital) data transmission and storage. Most of the achievable
limits are thus stated in the form of inequalities involvingfundamental measures of information such as entropy and mutual
information. Such inequalities form a major tool chain to prove many results in information Theory. In a sense, these
inequalities separates the possibilities from impossibilities in Information Theory. The study of information expressions
and inequalities thus are of paramount importance in solving key results in information Theory.

What constitutes an Information Theoretic inequality? Thesimple answer to this would be

any expression, linear or non linear involving informationmeasures, on (multiple) random variables.

The information measures are the usual entropy (single, joint, or conditional) and mutual information (including con-
ditional and those involving multiple random variables). Even though it is not impossible to find a non linear expression
involving these measures, they are not much of interest in Information Theory. What brings more interest thus are the
linear expressions involving the fundamental measures of information. The fundamental informations are also known as
Shannon’s information measures. We could formally define aninformation expressionf as a linear combination of Shan-
non’s information measures involving a finite number of random variables. For instance, each of the following are valid
information expressions:

H(X) + 1.2H(Y |Z) + 0.882I(A; B|C)

I(X ; Y ) − 3H(X, Y |Z) + H(A|B, C, D) − 2I(L; M |N, Q)

I(X ; Y |Z) − H(Z) − 3H(X, Y ).

2.1. Information inequality. What makes an information inequality then? Any informationexpressionf such thatf ≥ 0
or f ≤ 0 candidate itself to be called as an information inequality.By definition two information expressionsf andg such
thatf ≥ g or f ≤ g also make a valid information inequality. Equality is not required to be explicitly stated since it is
equivalent to state the condition of both≥ and≤ being true. For example, iff ≥ g andf ≤ g, then it is as good as saying
f = g.

2.2. True information inequality. When can one say an information inequality is true? Since information expressions
are functions of information measures, which itself being (measure) functions of distributions, in order for an information
inequality to be (always) true, it must hold the inequality true for all possible (probability) distributions (of random vari-
ables). In simplified terms, an information inequalityf involving information measures ofn random variables, is said to
be (always) true if,

• The information inequality is true for any possible sets of distribution involvingn random variables (joint proba-
bility distribution)

Thus an information inequality satisfied for certain selected distributions, but not for all possible distributions cannot
be considered as a true information inequality. However, itis possible to have a constraint on certain random variablesand
state an information inequality, provided the latter is true for all distributions (under the constraint).
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SupposeA is a discrete random variable which takes3 different values (cardinality of the sample space =3). Then we
could write,

H(A) ≤ log 3

Even though the expression is true for the particular choiceof A, the information expression is not quite true in general
(When the sample space is expanded to have cardinality more than3, the entropy could have a higher value thanlog 3).
Now consider,

I(X ; Y |Z) ≥ 0

is a true information inequality since this is true for any possible distributions ofX, Y andZ. On the other hand

I(X ; Y |Z) ≤ 0

is not a true information inequality when no further constraints are assumed. However, if a constraint is imposed in the
form thatX, Z, Y form a Markov chainX → Z → Y thenI(X ; Y |Z) = 0. Thus, the expression

I(X ; Y |Z) ≤ 0

is a true information inequality with the Markov constraintX → Z → Y .

3. CHARACTERIZING INFORMATION INEQUALITIES

Given the importance of information inequalities, it is natural to ask this motivating question. Are there ways, if at all
possible, to characterize all information inequalities? Raymond Yeung asked this question and found a rather surprising,
simple and amazingly elegant way to characterize, almost all information inequalities. His seminal work [2] brought out
an interesting framework to characterize and solve a type ofinequalities classified as Shannon Type inequalities. He
defines Shannon type inequalities are those, which are (directly or indirectly) implied by thebasic inequalities, which
are inequalities that can be expressed as linear combination of non-negative weighted fundamental measures (Shannon’s
measures) such as entropy and mutual information. It turns out that, most of the inequalities known till date can be
classified as Shannon type. The basic inequalities simply refers to the non-negativity of fundamental measures. Because
of the possibility of expressing most of the inequalities (all Shannon type) in terms of positive combinations of basic
inequalities, the latter is often referred as thelaws of Information Theory.

It was long conjectured that[13], there could be laws of Information Theory, outside these simple looking basic inequal-
ities. Such inequalities are now classified as non-Shannon type inequalities. This was indeed validated when Yeung came
out with examples of such inequalities [2]. This finding proves that, there exist laws in Information Theory, beyond those
laid down by Shannon. While the framework for Shannon type gives a direct way to computationally verify any Shannon
type inequality, no such methods are known till date for the non-Shannon type. We will study and discuss Yeung’s work
on Shannon type inequalities.

The distinct difference between Shannon type and non Shannon type inequalities are further discussed in section9.2

4. YEUNG’ S FRAMEWORK TO SOLVESHANNON TYPE INEQUALITIES

Raymond Yeung developed a systematic method to verify all Shannon type inequalities. The outline of Yeung’s method
is listed below. In subsequent sections, more detailed explanations of the concepts described here are provided.

(1) Letf ≥ 0 be a given information expression. We need to check whether this indeed is a Shannon type inequality.
First we claim that any expression can be written in canonical form f(h) = bT h. By this it mean that, the given
expression can be written as a linear combination of entropies and joint entropies, weighed by real scalars. For
expression involvingn distinct random variables, the canonical representation is essentially of the following form:

f(h) = bTh = λ1H(X1) + . . . + λnH(Xn) + λ1,2H(X1X2) + . . . +

λ1,2,3H(X1, X2, X3) + . . . + λ1,2,3,...,nH(X1, X2, X3, . . . , Xn)

wheren is the number of distinct random variables involved in the given expression.
(2) Establish the pyramidΓn formed by all elemental inequalities. All elemental inequalities reside inΓn

(3) Check whetherΓn = h : Gh ≥ 0} ⊂ {h : bTh ≥ 0}. This is done using the simplex method of optimization in
linear programming (see section??): Check whether the minimum for the problem statement belowis 0

minimizebTh

s.t.Gh ≥ 0
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If yes the inequality indeed is a Shannon type inequality (byvirtue of the following fact). If not, the inequality is
either not true or perhaps be a non Shannon type which couldn’t be characterized. Further tricks are required to
validate such inequalities.

(4) Γ∗
n ⊂ Γn. HereΓ∗

n is the region containing constructible expressions. Any constructable expression has to be an
elemental inequality.

Given a set of jointly distributed random variablesX1, X2, . . . , Xn, we can consider entropies of all random variables
H(Xi), entropies of all pairsH(Xi, Xj), etc. (2n − 1 entropy values for all nonempty subsets of{X1, X2, ..., Xn}). For
everyn-tuple of random variables we get a point inR

2n−1, representing entropies of the given distribution. Following [2]
we call a point inR2n−1 constructible if it represents entropy values of some collection ofn random variables. The set of
all constructible points is denoted byΓ∗

n. The [15], set of entropy values inΓ∗
n is named asentropicset.

It is tempting to ask why we requireΓn at all, when we have the pyramid of constructible points! Thesimple reason is
that it is hard to characterizeΓ∗

n for an arbitraryn (for n ≥ 3, it is not even closed [?]). This is where Yeung pulled out
his magicians hat to describe a regionΓn, which can be characterized from basic inequalities. A morefeasible (but also
highly non-trivial) problem thus, is to describe the closure Γ̄∗

n of n of the setΓ∗
n. The setΓ̄∗

n n is a convex cone [?], and to
characterize it we should describe the class of all linear inequalities of the form

f(h) = bT h = λ1H(X1) + . . . + λnH(Xn) + λ1,2H(X1X2) + . . . +

λ1,2,3H(X1, X2, X3) + . . . + λ1,2,3,...,nH(X1, X2, X3, . . . , Xn)

which are true for any random variablesX1, X2, . . . , Xn.(λi are real coefficients).
One of the other beautiful finding of Yeung’s work is bringingin the relationship between the entropy space and a

measure space. He brings in a new idea of a one to one correspondence between information measure (what he refer as
I-measure) and a signed measure in a measure field. A brief illustration of this is presented in section 5. He uses this
mapping to prove some key results in establishing the minimality of representing information expressions in canonical
form. The details of its implication are not addressed in thid report, but the concept is illustrated in the next section.In that
sense, sections [?] and [?] are somwhat detached from the genral flow of this document. Interested readers are encouraged
to refer [15] for full justification of this useful idea.

5. MEASURE THEORY BASICS

Yeung establishes a general, one to one correspondence between Set Theory and Shannon’s information measures, using
which manipulations of random variables can be done, analogous to that of sets. Effectively, one could use properties ofset
operations and use them to establish equivalent propertiesof random variables. A rather short description of the concept
used in that endeavour is furnished here. Detailed treatment of this can be seen in [15].

The fieldFn generated by setss1, s2, . . . , sn is formed by performing sequence of set operations on these sets. The set
operations are

(1) complement
(2) union
(3) intersection
(4) difference

s1 ∩ s
c
2 s

c
1 ∩ s2s1 ∩ s2

s
c
1 ∩ s

c
2

Figure 3. Venn Diagram for two setss1 ands2

As an example, the setss1 ands2 produces 16 elements through the set operations.

• s1, s
c
1, s2, s

c
2

• s1 ∪ s2, s1 ∪ sc
2, s

c
1 ∪ s2, s

c
1 ∪ sc

2

• s1 ∩ s2, s1 ∩ sc
2, s

c
1 ∩ s2, s

c
1 ∩ sc

2
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• s1 − s2, s1 − sc
2, s

c
1 − s2, s

c
1 − sc

2

These sixteen elements obtained from the set{s1, s2} is the fieldF2 generated by{s1, s2}. It can be quickly inspected
that, not all of them are unique (some can be represented equal or equivalent to other member sets). The number of unique
elements of the field are called theatomsof the field. They are essentially the sets of the form∩n

i=1αi whereαi ∈ {si, s
c
i}

Example: The setss1 ands2 generateF2, whose atoms are
{s1 ∩ s2, s1 ∩ sc

2, s
c
1 ∩ s2, s

c
1 ∩ sc

2}
Indeed, any element in the field can be represented as the unions of the subsets of the atoms. In other words, the atoms are
the minimal representation of the field itself. The cardinality of the fieldF2 is 16 and the number of atoms ofF2 is 4. In
general, the number of elements of the fieldFn is 22n

and the number of atoms are2n

It is very helpful to visualize the concept of atoms usingVenndiagram. The distinct (disjoint) regions of the Venn
diagrams are the atoms. All possible unions of these atoms form the field. The simple case of two sets example is shown
in Fig.7.

s1 − s2 s2 − s1s1 ∩ s2

Figure 4. Collapsed field :Venn Diagram for two setss1 ands2

5.1. Signed measure of a field.For disjointA, B ∈ Fn, a real functionµ is called a signed measure if it is set additive,
i.e., for disjointA andB ∈ Fn,

(23) µ(A ∪ B) = µ(A) + µ(B)

By the definition it implies that

(24) µ(∅) = 0

It can be observed that, a signed measure (again, by definition) µ onFn is completely specified by the values on atoms
of Fn. Using set additivity, the values ofµ on other sets inFn can be obtained. For the case ofF2, the4 values of the
signed measures (corresponding to the atoms) are enough to represent all the other12 values (corresponding to the non
atoms in the field).

(25) µ (s1 ∩ s2) , µ (s1 ∩ sc
2) , µ (sc

1 ∩ s2) , µ (sc
1 ∩ sc

2)

Values of other elements can be obtained from these measure values. Say for instanceµ (s1) can be written as

µ (s1) = µ ((s1 ∩ s2) ∪ (s1 ∩ sc
2))(26)

= µ (s1 ∩ s2) + µ (s1 ∩ sc
2)(27)

5.2. Connection to Shannon’s measures.To establish the connection between Measure Theory (Set Theory to be more
precise) and information measures, we have to first associate a set to a random variable.

H(X|Y ) H(Y |X)I(X; Y )

Figure 5. Information diagram for2 random variablesX, Y

Let us consider the simplest case of two random variablesX1 andX2. We associate two sets, says1 ands2 to the
random variablesX1 andX2 respectively. This set generate a measure fieldF2 with cardinality3 and the atoms. The field
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can be expressed conveniently in the form of a Venn diagram. Now let us adopt the following rules to structure the Venn
diagram to suit the representation of information measures.

(1) Remove the atomsc
1 ∩ sc

2 from the context. Now we are left with2 atoms. Alternate interpretation of this is: The
atomsc

1 ∩ sc
2 degenerate to an empty set∅. This essentially has the following implication.

(2) Collapse the universeΩ to simply the union of the two setss1 ∪ s2. Here we force the universal set to shrink into
simply the union of non-empty atoms of fieldF2 (That is atoms ofF2 excludingsc

1 ∩ sc
2). By doing this, we have

essentially shrunk the Venn diagram as well (The box region disappeared!)
(3) The new universe now iss1 ∪ s2 and there are2 non empty atoms which are{s1 ∩ s2, s

c
1 ∪ s2, s1 ∪ sc

2}.

The Shannon’s information measures for two random variablesX1 andX2 are,

H (X1) , H (X2) , H (X1|X2) , H (X2|X1) , H (X1, X2) , I (X1; X2)

H(X|Y, Z) H(Z|X, Y )

H(Y |X, Z)

I(X; Z|Y )

I(X; Y ; Z)

I(X; Y |Z) I(Y ; Z|X)

Figure 6. Information diagram for3 random variablesX, Y, Z

Introducing the notation− as in
A ∩ Bc = A − B

we define a signed measureµ by,

µ (s1 − s2) = H (X1|X2)

µ (s2 − s1) = H (X2|X1)

µ (s2 ∩ s1) = I (X1; X2)

These are the measures on the non-empty2 atoms of the fieldF2. Using the measure property, the measures of other
elements of the field can be obtained by addition of these measures on atoms.

For example,

µ (s1 ∪ s2) = µ ([s1 − s2] ∪ [s2 − s1] ∪ [s1 ∩ s2])

= µ (s1 − s2) + µ (s2 − s1) + µ (s1 ∩ s2)

= H (X1|X2) + H (X2|X1) + I (X1; X2)

= H (X1, X2)

µ (s1) = µ ([s1 − s2] ∪ [s1 ∩ s2])

= H (X1|X2) + I (X1; X2)

= H (X1|X2) + H (X1) − H (X1|X2)

= H (X1)

µ (s2) = µ ([s2 − s1] ∪ [s2 ∩ s1])

= H (X2|X1) + I (X1; X1)

= H (X2|X1) + H (X2) − H (X2|X1)

= H (X2)

2atoms ofF2, other thansc
1
∩ sc

2
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Thus, the measure on all non-empty elements of the field can besummarized as follows:

µ (s1 − s2) = H (X1|X2)

µ (s2 − s1) = H (X2|X1)

µ (s2 ∩ s1) = I (X1; X2)

µ (s1 ∪ s2) = H (X1, X2)

µ (s1) = H (X1)

µ (s2) = H (X2)

from this, we could establish the following mapping:

µ → H/I

∪ → ,

∩ → ;

− → |

(28)

s1

s2

Figure 7. Atoms: Venn diagram ofF2

6. INFORMATION MEASURE (I-MEASURE) FOR ARBITRARY NUMBER OF RANDOM VARIABLES

For a given set of random variables, sayn (random variables), the construction of I-measures is merely extending the
idea of2-random variable case.

Let us denote then random variables asX1, X2, X3, . . . , Xn and the corresponding to them (respectively) bes1, s2, s3, . . . , sn.
The universal setΩ is a collapsed version of the conventional universe3. In simple terms,

(29) Ω =
⋃

i∈Nn

si

WhereNn is,

(30) Nn = {1, 2, 3, . . . , n}

Because of the collapsing, the atom formed by the complementintersection
⋂

i∈Nn

sc
i degenerate to empty set. That is,

(31)
⋂

i∈Nn

sc
i =

(
⋂

i∈Nn

si

)c

= Ωc = ∅

The cardinality of non empty atoms ofFn is 2n−1. Extending the idea of two random variable (and two corresponding
set scenario) we can claim that, a signed measureµ on Fn is 2n − 1 is fully specified by the measureµ on non empty
atoms ofFn. A formal proof of this can be found in [2].

3If the universe were not collapsed, the field would also contain the element
⋂

i∈Nn

sc
i . Collapsing the universe can be thought of as the case where in

⋂

i∈Nn

sc
i = ∅
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Non-negative orthant

x

y

z

Figure 8. Non negative orthant illustration for 3 dimension

7. ENTROPY SPACE

7.1. Entropy SpaceHn: The region Γ∗. With n random variables, we have2n − 1 joint entropies (including then
entropies of individual random variables).

Examples:

(1) n = 3: Let the random variables beX, Y, Z. The non empty joint entropies are

H(X), H(Y ), H(Z),

H(X, Y ), H(Y, Z), H(X, Z),

H(X, Y, Z)

(2) Forn = 4,Let the random variables beA, B, C, D, then the non empty joint entropies (15 of them) are

H(A), H(B), H(C), H(D),

H(A, B), H(B, C), H(C, D), H(A, C), H(A, D), H(B, D),

H(A, B, C), H(B, C, D), H(A, B, D), H(A, C, D),

H(A, B, C, D)

Now, let us consider a set ofn random variables. Each of the entropies (and joint entropies) associated with this chosen
set of random variables are non negative real values (depending solely on the probability and joint probability distribution
of the random variables in hand). If we consider several possible sets of suchn random variables, the entropy values could
assume many different (some times same as other sets) real values (non negative). Thus for everyn random variables we
have a2n − 1 tuple of real values.

Now, we think of an Euclidean space of dimension2n − 1. Let the space have co-ordinates labeled ashi, i =
1, 2, . . . , 2n − 1. Let us call this space asHn. The 2n − 1 tuple corresponding to a random variable set (ofn ran-
dom variables) is a column vector inHn. A column vectorh ∈ Hn is calledentropicif the 2n − 1 tuple represented byh
correspond to a valid set of random variables4. In other words, when the vectorh contains elements (co-ordinate weights)
which correspond to joint entropies for any valid random variable set (valid probability distributions) thenh is entropic.
An example will illustrate this concept:

Example: Letn = 2, the entropy spaceHn has co-ordinatesh1, h2, h13

h =





1
0.5
0.25





4Yeung in his papers also defined a term entropy function,HΘ(α)
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is not entropic sinceH(X) = 1, H(Y ) = 0.5 andH(X, Y ) = 0.25 does not correspond to a valid entropy measures
for any distribution. This can be checked by

H(X, Y ) − H(X) = H(Y |X) ≥ 0

0.5 − 1 = H(Y |X) ≥ 0

cant be true. Hence it is not entropic.
The region in the Euclidean spaceHn whereh is entropic is of special interest. This region denoted asΓ∗

n. Formally,

Γ∗
n = {h ∈ Hn : h is entropic}

Clearly, all entropy measures are non negative, which necessitates that the regionΓ∗
n is in the non-negative orthant of

the2n − 1 dimensional spaceHn. The origin is included inΓ∗
n since all constantn random variables (special case when

all the random variables are deterministic5) hash an all0 tuple.

8. SHANNON’ S INFORMATION MEASURES IN CANONICAL FORM

All Shannon’s information measures (entropies, conditional entropies and mutual informations) can be expressed as a
linear combination of entropies and joint entropies. The well known identities to do this translation are

H(X |Y ) = H(X, Y ) − H(Y )

H(Y |X) = H(X, Y ) − H(X)

I(X ; Y ) = H(X) + H(Y ) − H(X, Y )

I(X ; Y |Z) = H(X, Z) + H(Y, Z) − H(Z) − H(X, Y, Z)

This style of representation in terms of joint (and single) entropies is known as canonical representation of information
expressions. Mathematically,

(32) f(h) = bT h

Canonical form representation is unique[15].

9. INFORMATION INEQUALITIES IN ELEMENTAL FORM

All information measures formulated by Shannon are non negative measures. These measures, known as Shannon’s
measures are quantities defined as the entropies,conditional entropies, joint entropies, mutual informations and conditional
mutual informations. It is rather rudimentary to check the following basic properties

H(X) ≥ 0

H(Y ) ≥ 0

H(X, Y ) ≥ 0

H(X |Y ) ≥ 0

I(X ; Y ) ≥ 0

H(X, Y, Z) ≥ 0

H(X, Y |Z) ≥ 0

I(X ; Y |Z) ≥ 0

These are some of the Shannon’s’ measures with up to3 random variables. For any set of random variables, all possible
such measures are non-negative. This non negativity of all Shannon’s information measures form a set of inequalities
known asbasic inequalities. It may be noted that, the basic inequalities are not unique,in the sense that some of them
can be directly inferred from other. This is by virtue of the fact that, Shannon’s information measures can itself be written
in terms of some or more (linear) combinations of themselves. For instance a Shannon’s measureH(X |Y ) can also be
written as follows:

(33) H(X |Y ) = H(X |Z, Y ) + I(X ; Z|Y )

Here one information measure is written as sum of two information measures, all of them are Shannon’s’ information
measures.

5However contradicting this may be!
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9.1. Elemental Information measures. An information measures in the form of entropies, conditional entropies, mutual
information or conditional mutual information is termed aselemental information measure. More precisely, they are of
either of the following form

(1) H (Xi|XNn−i) , i ∈ Nn

(2) I (Xi; Xj|XK) , i 6= j, K ⊂ Nn − {i, j}

where
Nn = {1, 2, 3, . . . , n}

is a set of numbers from1 to n (n ≥ 2). XNn−i refer to string (all ofn‘) of random variables excludingXi. XNn−{i,j}

is a string of random variables, not includingXi andXj . Note that,Xi; Xj|XK with K ⊂ Nn − i, j refers to any string
(including null string) not includingXiXj. The following example will clarify this.

Example:H(X1, X2) can be written as,

H(X1, X2) = H(X1) + H(X2|X1)

= H(X1|X2, X3) + I(X1; X2, X3) + H(X2|X1, X3) + I(X2; X3|X1)

= H(X1|X2, X3) + I(X1; X2) + I(X1; X3; X2)

+H(X2|X1, X3) + I(X2; X3|X1)

In general, forn random variables, total number of elemental measuresm of the formH
(
Xi|XNn−{i}

)
is n and that

of the formI (Xi; Xj |XK) , i 6= j, K ⊂ Nn − i, j are

m =

(
n

2

)

×

[(
n − 2

0

)

+

(
n − 2

1

)

+ . . . +

(
n − 2

n − 3

)

+

(
n − 2

n − 2

)]

=

(
n

2

)

× 2n−2

Together, total number of Shannon’s information measures in elemental form, forn random variables is

(34) m = n +

(
n

2

)

2n−2

Since there arem elemental forms forn random variables, we havem non-negative measures. This is just restating
the fact that the elemental forms are always non-negative. This set ofm inequalities (≥ 0) compose what is known as
elemental inequalities. With the example withn = 3 we confirm the already known fact thatH(X1, X2) ≥ 0 using
elemental inequalities.

H(X1, X2) = H(X1|X2, X3)
︸ ︷︷ ︸

≥0

+ I(X1; X2)
︸ ︷︷ ︸

≥0

+ I(X1; X3; X2)
︸ ︷︷ ︸

≥0

+ H(X2|X1, X3)
︸ ︷︷ ︸

≥0

+ I(X2; X3|X1)
︸ ︷︷ ︸

≥0

≥ 0

It turns out that, the set of elemental inequalities form a considerable space where in many information inequalities
reside. In fact, Yeung uses (and proves) this very own fact tocheck whether an arbitrary information expression satisfy
inequality or not.

9.2. Elemental inequalities in canonical form. Them = n +
(
n

2

)
2n−2 elemental inequalities can also be expressed in

canonical form (with just entropies and joint entropies). This seemingly redundant step is not merely to validate the exis-
tence of a canonical form for elemental inequalities. It rather helps us to formulate a good geometrical and subsequently
to a linear programming framework. The idea is this: When theelemental inequalities are expressed in canonical form, it
become linear inequalities in entropy spaceHn . Yeung define a regionΓn (Note that,Γ∗

n is not quite the same, but there
is some relation, which is coming later) withinHn where these set of inequalities hold.

Consider a simple elemental inequality as an exampleI(X1; X2). The cannonical representation of this would be:

I(X1; X1) = H(X1) + H(X2) − H(X1X2)

=
[
1 1 − 1

]





H(X1)
H(X2)

H(X1, X2)




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Similarly, we can express other elemental inequalities involving two random variables in this form. The collection of all
such inequalities form a regionΓ2. The concept extended to arbitrary number of random variablesn leades toΓn. Since
this correspond to linear inequalities, they are of the formGh ≥ 0, whereG is a matrix with real elements.

(35) Γn = {h : Gh ≥ 0}

So, what does the regionΓn tell us? Clearly, this is the region which houses all elemental inequalities. We will consider
the example with2 random variables to get the idea right.

Example:Γ2

There are3 elemental inequalities (n = 2, m = n +
(
n

2

)
2n−2 = 2 + 1 = 3) namely,I(X1; X2) ≥ 0, H(X1|X2) ≥ 0 and

H(X2|X1) ≥ 0. The cannonical representation of these three elemental inequalities are,

I(X1; X2) = H(X1) + H(X2) − H(X1, X2) ≥ 0

H(X1|X2) = −H(X2) + H(X1, X2)

H(X2|X1) = −H(X1) + H(X2, X1).

Expressed in matrix representation this states,




I(X1; X2)
H(X1|X2)
H(X2|X1)



 =





1 1 −1
0 −1 1
−1 0 1





︸ ︷︷ ︸

,G





H(X1)
H(X2)

H(X1, X3)





︸ ︷︷ ︸

,h

≥ 0.

Thus the regionΓ2 is simply,

(36) Γ2 = {h : Gh ≥ 0}.

Because of thelinearity (in linear inequality), it is easy to characterize the region Γn, which includes all elemental
inequalities (which are equivalent to basic inequalities involving random variables). Since elemental inequalitiesare
satisfied by entropy function of any random variable set (n of them) satisfyingh ∈ Γ∗

n, it is clear that

Γ∗
n ⊂ Γn.

We have established the inclusion relation ofΓ∗
n in Γn, but we have insufficient clues as to whether they indeed represent

two different regions. We are sureΓ∗
n occupy no larger thanΓn. We are tempted to ask this question here.

CouldΓ∗
n andΓn be the same?

If they were so, characterizing one implies the other automatically (both ways). In such a case, we could have concluded
that all inequalities in Information Theory are derived from the basic inequalities (through elemental inequalities repre-
sentation) and a formal way to characterize is available throughΓn. Most of the inequalities found in the earlier stage of
Information Theory were of this form. But the story doesnt end there.

It turned out that, there are inequalities which cannot be derived simply from the basic inequalities. That is, the
fundamental Shannon measure non-negativity properties alone, do not lead to all inequalities. First such findings were
presented by Yeung and Zhang [18], when they discovered an inequality with four random variables. This strongly
asserted the conjecture6 that, indeed there exist inequalities which cannot be characterized simply byΓn. Characterizing
Γ∗

n is required instead. In other words, there are laws of Information Theory beyond what is ruled by the fundamental
Shannon measure non negativity.

The existence of inequalities beyond what originated from basic Shannon measures, necessetiated clasiffication of
information inequalities into two types. They are called

(1) Shannon type inequalities: These are ineuqalities which are derived from the basic inequalities. Recall that,
basic inequalities are nothing but, the non negativity property of Shannon information measures. Inequalities of
this class are completely characterized throughΓn itself.

(2) Non Shannon type inequalities: These are inequalities, which cannot be derived just, fromthe basic inequality
postulates. They are governed by further constraints, which are not yet identified. Some inequalities of this type
are known to the Information Theory world. To characterize them,Γn is inadequate. It is still and open question,
on whether there exist a way to characterizeΓ∗

n, which would have solved the riddle.

6This question was posed by Pippenger [13] as whether there really exist laws beyond the basic ineqaulities?.
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We will focus exclusivley on Shannon type inequalities and study on their characterization a little more detail. For a
discussion on non-Shannon type inequalities, readers are referred to [2] and [15]. More recent findings on new class of
non-Shannon type inequalities can be seen in [19].

10. CHARACTERIZING SHANNON TYPE INEQUALITIES

We realize that, Shannon type inequalities are those, whcihinherited from the fundamental Shannon measures (basic
inequalities). Raymond Yeung’s framework enables us to do acharacterize them. Yeung’s trick hinge on the following
rules:

(1) Γn is a pyramid in thek = 2n − 1 Euclidean spaceHn

(2) Γ∗
n ⊂ Γn

All possible measures of random variables (n random variables) are in the regionΓ∗
n. Hence, to check the validity of and

information expressionf() it is enough to check whether the region (pyramid)Γn ⊂ {h : f(h) ≥ 0}.
If this condition is established, it is automatic that the expression is true in general for all random variables, since

Γ∗
n ⊂ Γn.

In essence, the key to check whether an information expression7 is to check the following

(1) For once, consider the information expression as an algebraic expression in a Euclidean space (of same dimension)
and partition the Euclidean space into two. The region wherethe inequality holds is the region of interest.

(2) Check whether the region (pyramid)Γn of all possible information inequalities (elemental inequalities) reside in
the region of interest (where the algebraic inequality stays true). If so, we are sure to say that the expression is
true for any random variable set. This is because, all possible expressions involving information measures form a
regionΓ∗

n which is a subset ofΓn.

So, in principle we know how to characterize Shannon type inequalities. By virtue of the linearity, further insight can be
achieved intoΓn, which will enpower us to see a geometrical view and subsequent formulation as a computational form.
The next section discusses the geometry ofΓn.

11. GEOMETRY OF UNCONSTRAINED INFORMATION INEQUALITIES

It is rather appealing to put a geometric perspective of the information inequality in an entropy spaceHn. Remember,Hn

is R
2n−1 space spanned by joint entropiesH(X1), H(X2), . . . , H(X1, X2, . . . , Xn. We will illustrate this geometrical

idea using an example [2].
Let us examine a Shannon type inequality

f = I(X1; X2) ≥ 0

First we write this into canonical form as follows:

I(X1; X2) = H(X1) + H(X2) − H(X1, X2)
︸ ︷︷ ︸

bT h

≥ 0

whereh =
[
H(X1) H(X2) H(X1, X2)

]T
andb =

[
1 1 −1

]T

Now we could see that,bT h ≥ 0 will split the entropy spaceHn into two regions. But this splitting is more of an
algebraic splitting without, any assumption on the validity of the tupleH(X1), H(X2), H(X1, X2), being entropy values
of some distribution. In other words, not all points in the half spacebTh ≥ 0 are entropic. On the other hand, not all
tuples which are entropic stay within the half space of interest either. We are exposed to two scenarios here:

(1) The region of all tuplesH(X1), H(X2), H(X1, X2) which are entropic is completely inside the half spacebT h ≥
0. The pyramid which contain all entropic tuple is denoted byΓ∗

2. So, in this case,Γ∗
2 ⊂ bT h ≥ 0. This scenario

would qualify to say that, the given inequality is true (for all possible valid distributions). This is pictorially shown
in Fig.9

(2) If there exist at least one entropic tuple, which stay outside the half spacebTh ≥ 0, then we are no longer able
to say that the expression is true for all valid distributions. In this case, we could say, the expression is not true.
Remember, when we say an expression is true, it means the truthfulness for any probability distribution (even one
distribution failing disqualifies the expression being called true). This scenario is illustrated in Fig.10

7Let us remind ourselves that, information expressions involves Shannon’s measures, associated with random variablesthrough their probability
distributions
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f(h) = bT h ≥ 0

Γ∗
n

h1

h2

Figure 9. Geometry of unconstrained inequality: Information inequality f ≥ 0 holds always
.

f(h) = bT h ≥ 0

Γ∗
n

h1

h2

Figure 10. Geometry of unconstrained inequality: Information inequality f ≥ 0 not necessarily hold
always. In this case, it is possible to find a tupleh which is entropic, but reside outside the half space
bT h

We could extend the example we considered for two random variables to an expression with arbitrary, sayn, random
variables case. Let us consider a more general information inequalityf ≥ 0. We can write this in canonical form as

f(h) = bT h = λ1H(X1) + . . . + λnH(Xn) + λ1,2H(X1X2) + . . . +

λ1,2,3H(X1, X2, X3) + . . . + λ1,2,3,...,nH(X1, X2, X3, . . . , Xn)
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f(h) = bT h ≥ 0

All elemental inequalities
{h : f(h) = bT h ≥ 0}

h1

h2

Γ∗
n

Γn

Γn = {h : Gh ≥ 0}

Γ∗
n = {h ∈ Hn : h entropic}

Figure 11. Geometry of unconstrained inequality: Information inequality f ≥ 0 not necessarily hold
always. This is a case where the inequality is not true.

f(h) = bT h ≥ 0

All elemental inequalities
{h : f(h) = bT h ≥ 0}

h1

h2

Γn = {h : Gh ≥ 0}

Γ∗
n = {h ∈ Hn : h entropic}

Γ∗
n

Γn

Figure 12. Geometry of unconstrained inequality: Information inequality f ≥ 0 not necessarily hold
always. This is a case of Non Shannon type inequality. Here the inequality is true (since Green region
is inside yellow) but not quite a elemental inequality (Blueregion partially stay outside yellow region.
Better framework needed here to characterize such inequalities.
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All elemental inequalities

{h : f(h) = bT h ≥ 0}

f(h) = bT h ≥ 0

h1

h2

Γ∗
n

Γn

Γn = {h : Gh ≥ 0}

Γ∗
n = {h ∈ Hn : h entropic}

Figure 13. Geometry of unconstrained inequality: Information inequality f ≥ 0 not necessarily hold
always. Here constructible points are completely residinginside the region ofΓn. Such inequalities can
be fully characterized byΓn and these are Shannon type inequalities.

f(h) = bT h ≥ 0

h1

h2

Γ∗
n ∩ Φ

Γ∗
n

Figure 14. Geometry of constrained inequality: Information inequality f ≥ 0 holds always. This is the
case of constrained inequalities. These are Shannon type inequalities, given the constraints.

We say that, the expression is true (for all distributions) if entropic space stay completely inside the half space deter-
mined by the inequality. Formally,

f ≥ 0 is true iff8 Γ∗
n ⊂ {h ∈ Hn : f(h) ≥ 0}
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f(h) = bT h ≥ 0

h1

h2

Γ∗
n

Γ∗
n ∩ Φ

Figure 15. Geometry of constrained inequality: Information inequality f ≥ 0 holds always, but without
constraint, the inequality may not hold always

In principle, this gives a truly complete characterizationof unconstrained information inequalities. Unfortunately, it is
not that easy to characterize the regionΓ∗

n. If we were to do, this, we may have to search for (and construct) the infinite
number of possible distributions, which is rather not a viable alternative. However, Yeung had found a way to characterize
a larger region namedΓn which envelope the regionΓ∗

n. HereΓn refers to the region where all elemental inequalities
(Shannon type inequalities) reside. The less tasty part of this sweet method is that, we are no longer able to characterize
all information inequalities, but only Shannon type. Whilemajority of the information inequalities are of Shannon type,
there exist non Shannon type inequalities as well, as discussed in section9.2.

Because of the simplicity of the framework, it is indeed possible to formulate the problem into a computational form.
This would help us to verify any non Shannon type inequality.Yeung [2] proposed a linear programming framework which
could lead to efficient validation of all Shannon type inequalities. We will discuss this next. Detailed discussion on this
can be found in [2].

12. COMPUTATIONAL METHOD TO VERIFY INEQUALITIES

Using the framework discussed earlier, it is indeed possible to computationally verify whether any information expres-
sion is of Shannon type. The idea, Yeung proposed is briefly discussed here. Only a gist of the idea discussed in [2] is
presented here.

12.1. Linear programming method. We have seen that, in order to verify whether an information expressionf(h) =
bT h ≥ 0 is Shannon type inequality, we only need to ask the followingquestion:

(1) IsΓn ⊂ {h : f(h) = bT h ≥ 0} ?

If the answer is affirmative, then we have the conviction thatthe expression is indeed a Shannon type inequality. Else,
nothing conclusive could be derived at this stage.

A computational procedure to check this condition exist using the well known Linear programming (See section for
an elementary treatment on this topic. Readers are referredto the references [?] [?][?][?] for more detailed study of this
topic.).

For the unconstrained inequality, the problem formulated by Yeung is summarized as follows: Theorem (Yeung):
f(h) = bT h ≥ 0 is a Shannon type inequality iff the minimum of the problem

minimizebTh

s.t.Gh ≥ 0
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is 0. In this case, the minimum occurs at the origin

13. CONSTRAINED INEQUALITIES

So far, we have focused on information expressions and inequalities without further constraints. When there is con-
straints on the joint distributions (of random variables),the dynamics of the information inequalities changes. Information
inequalities with such constraints are known as constrained (information) inequalities. The constraints on joint distribu-
tions can itself be expressed as linear constraints on the entropies9. Following examples illustrate this concept:

(1) X, Y andZ are independent iff

(37) H(X, Y, Z) = H(X) + H(Y ) + H(Z)

H(X, Y, Z) = E

[

log2

(
1

pX,Y,Z(x, y, z)

)]

= E

[

log2

(
1

pX(x)pY |X,Z(y|x, z)pZ|X,Y )(z|x,y)

)]

= E

[

log2

(
1

pX(x)pY (y)pZ)(z)

)]

= E

[

log2

(
1

pX(x)

)]

+ E

[

log2

(
1

pY (y)

)]

+ E

[

log2

(
1

pZ(z)

)]

= H(X) + H(Y ) + H(Z)

(2) Pairwise independence can be expressed through the mutual information. IfX, Y, Z are pairwise independent,

I(X ; Y ) = H(X) − H(Y |X)

= H(X) − H(X)

= 0

I(Y ; Z) = H(Y ) − H(Z|Y )

= H(Y ) − H(Y )

= 0

I(X ; Z) = H(X) − H(Z|X)

= H(X) − H(X)

= 0

Pairwise equivalence thus necessitates

(38) I(X ; Y ) = I(Y ; Z) = I(X ; Z) = 0

(3) If Y = g(X) whereg(.) is a deterministic function, thenH(X |Y ) = 0. The converse is true as well
(4) Markov ChainW → X → Y → Z implies

I(W ; Y |X) = 0(39)

I(W, X ; Z|Y ) = 0(40)

(41)

13.1. Geometrical framework of constrained information inequalities. Let there beq constraints on distributions,
which translates equivalently toq linear constraints on entropies. We could write these equivalent constraints on entropies
as a set ofq linear equations in the entropy spaceFn. But among theq linear equations not all of them may be linearly
independent, which means a certain numberr ≤ q linearly independent equations fully describe the constraints.

(42) Qh = 0

whereQ is q × k matrix (k = 2n − 1).

9Here entropies refers to all information measures like entropies, conditional entropies, joint entropies, mutual information, conditional mutual
information etc. Also remember that all these information measures can itself be represented in terms of entropies and conditional entropies!
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Now the information inequality space shrinks further10 from the unconstrained spaceΓ∗
n. Put in other words, the

constraints confines the space of information inequality ofinterest to a linear subspace smaller than
Let

(43) Φ = {h ∈ Hn : Qh = 0}

Now, with this constraintΦ, the expressionf(h) ≥ 0 always holds iff the region(Γ∗
n ∩ Φ) ⊂ {h : f(h) ≥ 0}

f(h) = bT h ≥ 0

{h : f(h) = bT h ≥ 0}

All elemental inequalities

h1

h2

Γn = {h : Gh ≥ 0}

Γ∗
n = {h ∈ Hn : h entropic}

Γ∗
n ∩ Φ = {h ∈ Hn : h entropic&h ∈ Φ : Qh = 0}

Γn ∩ Φ

Figure 16. Geometry of constrained inequality: Information inequality f ≥ 0 holds always. without
constraint as well, the inequality hold always

10More correctly speaking, the the information inequality space cannot grow beyondΓ∗
n
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{h : f(h) = bT h ≥ 0}

All elemental inequalities f(h) = bT h ≥ 0

h1

h2

Γn = {h : Gh ≥ 0}

Γ∗
n = {h ∈ Hn : h entropic}

Γ∗
n ∩ Φ = {h ∈ Hn : h entropic&h ∈ Φ : Qh = 0}

Γn ∩ Φ

Figure 17. Geometry of constrained inequality: Information inequality f ≥ 0 holds always. However,
without constraint, the inequality is not necessarily true.The regionΓn ∋ f ≥ 0, Γ∗

n ∋ f ≥ 0, but
Γ∗

n ∩ Φ ∈ f ≥ 0 . Note that, however this is a non Shannon type inequality sinceΓn ∩ Φ ∋ f ≥ 0

14. LINEAR PROGRAMMING BASICS

Linear programming deals with optimizing a linear cost (objective) function, with linear constraints (inequality con-
straints as well as equality constraints). Even though it israther unusual to have a linear cost function, linear programming
is often used to solve many problems of practical interest, albeit approximating the cost function to linear.

The number of variables involved in the LP problem can be arbitrary. Since inequality constraints bear a geometrical
shape (polyhedron), a more formal definition of LP problem can be stated as follows:

A linear programming problem, or LP, is a problem of optimizing (maximizing or minimizing) a given linear objective
function over some polyhedron. The standard maximization LP, sometimes called the primal problem, is

maximizecT x

s.t.Ax ≤ b(P)

x ≥ 0

HerecT x is the objective function and the remaining conditions define the polyhedron which is the feasible region over
which the objective function is to be optimized. The dual of(P ) is the LP

minimizeyT b

s.t.yT A ≥ cT(D)

y ≥ 0

The linear constraints for a linear programming problems define a convex polyhedron, called thefeasible regionfor the
problem. The weak duality theorem states that ifx̂ is feasible (i.e. lies in the feasible region) for(P ) andŷ is feasible for
(D), thencT x̂ ≤ ŷT b. This follows readily from the above:

cT x̂ ≤ (ŷT A)x̂ = ŷT (Ax̂) ≤ yT b.

The strong duality theorem states that if both LPs are feasible, then the two objective functions have the same optimal
value. As a consequence, if either LP has unbounded objective function value, the other must be infeasible. It is also
possible for both LP to be infeasible.
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15. SOFTWARE TOOL TO SOLVEINFORMATION INEQUALITIES

Raymond Yeung and Yan [2] had developed a software package named ITIP [17] to solve all Shannon type inequalities.
This software was written in Matlab along with a lexical parser utility yacc. To solve the linear programming problem,
they used the LP toolbox of matlab. The tool had its limitations, in terms of license dependability (requires Matlab and
Matlab Linear programming toolbox licenses) and computational speed (Matlab is considerably slow compared to a native
C program). Besides, the software has become a little outdated in terms of installing (mainly because the dependency
packages keep changing). To overcome these, and still to usethe seminal work of Yeung, we have developed an all
C model software package to solve information inequalities, using the Framework described in [2]. This software is
available for free use [?]. Essentially three different sets of utilities are available with this package:

(1) A graphical user interface based tool calledxiis. One can check any Shannon type inequality with or without
constraints by entering the expressions and constraints into the respective entries.

(2) A command line tool namediis, which can take expression and constraints as string arguments.
(3) A file parsing tool which reads a file containing arbitrarynumber of expressions (one per line) and produces the

output in a file.

Some of the enhancements done on the software are listed below:

(1) The entire program, algorithms and computations are written in C language
(2) A parser using lex and yacc to allow different ways to specify random variables. For example, a random variable

need not be an English caps letter. Random variable can also be specified as for example,
GamePong, CoinToss10,X’,XX YY 123

and so on. For instance, it is possible to specify an expression
H(X;X’)+2.3 I(John LennonBassLevel;RockFest1980Geneva)≥0

whereX, X
′

,JohnLennonBassLevel,RockFest1980Genevaare all (valid) random variables.
(3) A graphical user interface tool is built using GtK.
(4) A file based solver is developed using shell script.
(5) To solve linear programming problem we have used the GLPKsoftware tool [?], which is available for free under

GNU public license.
(6) A speedy version of solving linear programming problem can also be used instead using qsopt [?]. We have made

softwares using both these versions and they are available for download.

A snapshot view of the toolxIIS is shown in Fig.15 and Fig.15

15.1. Syntax while specifying information expressions and constraints. In order to use the software, care must be
done while specifying the expression and constraints. While the software provide support indicating any wrong syntax,it
is worth noting the following notations to be followed, for efficient use of the software. For more detailed specification
(with examples) of the software, readers are referred to thexiis user guide [?].

(1) Information expression: Information inequality (the one need to be verified) is entered on the top text entry box.
Information expressions are linear combinations of any basic measures. The basic information measures can be
scaled by real values (can be negative as well). Some examples are:

I(X ; Y ) + 2H(A 1, B′) ≥ 0

H(A, B, SnowLevel) − 1.23I(X ; Y ) − 2H(A|B) ≤ 0

I(X ; Y Y ) = H(X) − H(X |Y Y )

(2) The information expression must be either and equality or an inequality.
(3) While arbitrary scaling of information measures are allowed, real numbers without associating a measure of

random variable is not allowed. For example, it is not allowed to specifyH(X, Y ) + 2I(X ; Y ) + 3 ≥ 0
(4) The constraints are entered in the second entry box. One constraint per line within the entry box is expected
(5) Constraints cannot be inequalities
(6) Constraint could be an equality expression, a Markov chain or independence
(7) Independence is specified by a dot. For instance, to specify three random variablesX, Y, Z to be independent, the

constraint is specified as
X.Y.Z

(8) W, X, Y, Z forming a Markov chainW → X → Y → Z, the constraint is specified (using a forward slash) as,

W/X/Y/Z
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Figure 18. xiis: Information inequality solver main window. The top row entry is where the information
expression to be entered. The constraints are to be specifiedin the text box below. Each constraint must
be entered in separate lines. Any number of constraints can be specified. The information expression as
well can be arbitrarily long. However the computational time may increase with the number of distinct
random variables in the expression and constraints

Figure 19. A brief summary of the xiis software
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