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ABSTRACT. Claude Elwood Shannon in 1948, then of the Bell Telephort®tatories, published one of the most remarkable
papers in the history of engineering [1]. This paper ("A Mattatical Theory of Communication”, Bell System Tech. Jalrn
Vol. 27, July and October 1948, pp. 379 - 423 and pp. 623 - 6&fl)the groundwork of an entirely new scientific discipline,
information Theorythat enabled engineers for the first time to deal quanvigtiwith the elusive concept afiformatiort.

In his celebrated work, Shannon nicely laid the foundatmmtfansmission and storage of information. Using a prdisioi
model, his Theory helped to get further insight into whatisiavable and what is not, in terms of quantifiable infororatransfer.
Indeed the very same concept is used to predict the limitsatamabmpression and achievable transmission rate on alplistia
channel.These underlying concepts can be thought of asaliggs involving measures of probability distributionShannon
defined several such basic measures in his original work. fielteof Information Theory grew with researchers finding mor
results and insights into the fundamental problem of trassion of and storage using probabilistic models. By naafrthe
subject itself, the results obtained are usually ineqgealinvolving basic Shannon’s measures such as entropiese 8f them are
elementary, some rather complicated expressions. In tod@ove further theorems as well it required to check whetleetain
expressions are true in an Information Theoretic senses Mbtivated researchers to seek a formal method to checkssilge
inequalities. Raymond Yeung [2] in 1998 came out with a rdwalale framework, which could verify many of the inequalitie
this field. His framework thus enabled to verify all ineqtia8, derived from the basic Shannon measure properties.

A central notion of Information Theory is entropy, which 8han defines as measure of information itself. Given a set of
jointly distributed random variableX;, X, ..., X, we can consider entropies of all random variabté€X;), entropies of
all pairs H(X;, X;), etc. ™ — 1 entropy values for all nonempty subsets{d{1, X2, ..., X;, }). For every n-tuple of random
variables we get a point i®2" -1, representing entropies of the given distribution. Foilayw[2] we call a point inR2"—1
constructible if it represents entropy values of some cbtde of n random variables. The set of all constructible points isotiesh
by I'Y

It is hard to characteriz€?;, for an arbitraryn (for n > 3, it is not even closed?]). A more feasible (but also highly non-
trivial) problem is to describe the closufg, of the sefl’}. The sefl';, n is a convex cone?], and to characterize it we should
describe the class of all linear inequalities of the form

MHX1) 4+ ...+ M HXn) + M 2H(X1 X2) 4+ ...+
A23H(X1, X2, X3)+ ...+ X123, .nH(X1,X2,X3,...,Xn)

which are true for any random variablég , Xo, ..., X, (\; are real coefficients).

Information inequalities are widely used for proving carseecoding theorems in Information Theory. Recently irsting
applications of information inequalities beyond InforinatTheory were found [10],[12],[14]. So investigation bEtclass of all
valid information inequalities is an interesting problevde refer the reader to [15] for a comprehensive treatmertteotibject.

Yeung's framework thus helped to verify all the Shannon tymgualities. Yeung and Yan have also developed a software,
to computationally verify such inequalities. Since thetwafe is rather outdated, we have made an attempt to make @ mor
efficient and user friendly implementation of the softwarging from the original work of Yeung. The software, whiake
call information inequality solver (iis) is freely avail@bfor download from EPFL website. The new software suit hesadded
advantage that it is freed of dependencies on any licensahlipts such as Matlab (or toolboxes).
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Key words and phrasednequalities in Information theory,Shannon type inediesli Xitip.
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1. INFORMATION THEORY. CONCEPT OFINFORMATION

In his seminal work[1], which literally gave birth to the fiebf Information Theory, Shannon laid the foundation of
transmission and storage of information. Using a probstislimodel, his Theory helped to get further insight into tiba
achievable and what is not, in terms of quantifiable inforaratransfer. Indeed the very same concept is used to esttabli
the limits on data compression and achievable transmigsateron a probabilistic channel. Shannon'’s formulation seas
fundamental in the sense, he defined the very notion of dyargiinformation using few basic measures on probability
distributions.

In this section some of the key concepts of information, asfguvard by Shannon and some of their very essential
properties are investigated. Indepth treatment of theseeagis and information Theory in general can be gathered fro
many of the excellent text books in this subject, most ngtd8],[4],[5],[6],[7] [8] and [9]. Shannon’s landmark pap[1]
itself is an excellent reference on the subject.

There are several key notions in Information Theory. Theséasic in the sense that, the whole edifice of Information
Theory is built around this. First of such is the notion ofrepy.

1.1. Entropy.

1.1.1. Definition of entropy.Let X be a random variable taking values from a discrete alpH#lseibject to a probability
distribution Px (x) = P{X = z} wherex € X. Then the entropy of a (discrete) random variaklés defined as,

H(X)=H(Px(x)) 2 Ep, [k’g le(m}
W - 3 Ex@lo gy
zeX

Here Ep is the statistical expectatibnvith respect to the probability distributioR. A further assumptiom log0 =
lim;—¢ tlogt = 0 is used for mathematical completeness of the definitionait bee observed that, the usual representation
of entropyH (X) is denoted as a function of random variable, even thougtsitistly a function of a distributio®x ().

Thus, entropyH (X) is the expectation of a random variabldog Px («) with respect to he probability measuke
Since we are considering a discrete random variable, byeviof 0 < P(z) < 1, the functionH (X) will be lower
bounded by0. In other words, the entropy is always non-negative. E&(X) > 0. In general, the upper bound on
entropy can bec, unless the disribution takes on a countable set of valulks.|&tter assumption is a reasonably one in
practice since most of the discrete distributions we comessdandeed have only countable number of distinct letiEns.
easiest example of a countable distribution we could thiri& a binary distribution (a single coin flip) with two letgrof
probabilitiesp and1 — p. The entropy for such a distribution can be easily compusedag p + (1 — p) log(1 — p). If the
alphabet size of the discrete distributiorjJ§, the entropy has an uperbouldg |X|.In the binary case, the upper bound
thus islog 2 = 1. This rather simple entropy function for a binary case isxghim Fig.1.

h(p)

0 0.5 1 P

Figure 1. Entropy bounds of a binary distribution: The entropy fioeh(p) = plog p+(1—p) log(1—

p) shows general insights into the entropy function of a discdéstribution with a countable alphabet
size. If the number of distinct letters that the random J@e& take isX, then the maximum value of
entropy islog |X|. The concave nature of the entropy function for a binaryrithistion shown here also
holds true in general, for larger alphabets

lStrictly speaking the expectation Isp, and the the distribution under consideration to be denatefehg(x), but partly because of convenience
and partly because of the obvious notion, the téfris omitted in the representation.
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In most systems that deals with Information Theory, at léast entities are relevant. In a communication system,
these are the transmitter (sender) and receiver. We areshiequired to consider a pair of random variables not just a
single random variable. The two random variables (cornedpm to the two entities) are correlated to each other (in
the special case they can be independent too). In such arggeihds possible to define the joint entrogy (X, Y)
between two random variablé§ andY. The concept could be extended to an arbitrary numbef random variables
(X1, Xo, ..., X,) with joint entropyH (X1, Xo,..., X,).

For two random variables, we can also define the entropy tiondd on an event. In the same vein, we define the
averaged (with respect to the distribution of the condaiavent) entropy conditioned on an event, known as conwditio
entropy. The following illustrate the concepts:

The entropy of random variabl€ conditioned on an eventis defined as,

1
2 HX|)Y =y) = P z|Y =y)log ———
(2 (X| Y) ;C XIY( | Y) gPX|Y(CC|Y=y)

Re-working the above will lead us to

1
3 H(X|Y = = P z|Y =y)log ———
3 (X| Y) ;C XIY( | Y) gPX|Y(£C|Y=y)

1

4 = E log ——————~
@ P“[ * Pxy el =)

Expectation of this with respect tBy (y) gives us what is known as conditional entroffif X |Y') between random
variablesX andY'.

(5) HX[Y) = E[H(X]Y =y)]

(6) = %Py(y)ngw(wlY:y)logm
(7) = %%Py y) Pxpy ( |Y—y)logm
®) = %%ny 1ogm

1.1.2. Additivity of entropy.A simple additive property exists between entropy, joinrepy and conditional entropies.
This is known as the chain rule of entropy. For the two randanable case, it reflects as,

1
(20) H(X|)Y) = P J)log ———————
(] 2, 2 Pevle)los por—
1
(11) = Pxy(z,y)log 5—————
zegey PX|y($|Y = y)
Py (y)
(12) = Z Px y(z,y)log ———
zeX,yeY Px Y(x’ y)
1 1
(13) = Y Pxy(@ylog5——— > Pr(y)log 5
z€X,y€Y Pxy (@) z€X Py (y)
(14) = H(X,Y)-H()
It is easily seen that symmetric property holds (changeahdam variable to Y) In summary,
(15) HX,Y)=HX)+ HY|X)=H(Y)+ HX|Y).
The property can be extended to arbitrary number of randaahlas to get the chain rule in general.
H(X1,X9,X3,...,Xy,) = HX)+ H(Xq|X1)+ H(X3|X1,X2) +

.+ H(anXl,Xg,Xg, .. -,Xn—l)
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1.2. Mutual information. Mutual information between two random variabl&sandY is defined as the reduction of
entropy of one (say) given the otherY). Itis denoted ag(X;Y") and is formally,

I(X:Y) =

I(X;Y) = H(X) — H(X|Y).

H(X) - H(X]Y)
H(X)+H(Y) — H(X Y)

1 1
Z Px(z)log —— —|— Z Py (y)log —— Z Pxy(z,y)log ——
zeX Px Py ( ) zeX,yeyY Px Y( )

P x,
Z Pxy(z,y)log #(P?))
zeX,yeY X vy

Pxy(x,y)
Py [bg Px<x>Py<y>} |

By symmetry, the following is true as well:

I(X:Y)=H() - H(Y|X).

1.3. Conditional mutual information.

I(X;2]Y) = > Pr(I(X;Z]Y =y)

y€eY

_ x, z|y) lo XZIY(x “1y)
= ZPY ZPX z|y (7, 2[y) 1 gPX\Y(UCHJ)PZIY( ly)’

yeY T,z

1.4. Inequalities concerning mutual information.

1.4.1. simple 3 rv Markov chain.

(16)
and

(17)

and

I(X:Z]Y) >0

H(X[Y,Z) < H(X|Y)

equalityonlyifX - Y — Z.

1.4.2. Markov chain. For a simple Markov chain

(18)

(19)

X1 = Xog—> X3 — ... > X,

I(X1,X2,X3,...Xi-1;X;41]X5) =0

1.4.3. Independencelf each component of the random vector

(20)

X" = (X17X23X37 .. aXn)

is independent from all others,then

(21)

XY™ > ) I(XY).

i=1

1.4.4. Memoryless.For a memoryless channel, we have

(22)

(X" Y™ ZI X Y5).

Some of these native properties of the basic measures dentabove can be summarized pictorially in Fg.
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e

H(Y|X)

H(X|Y) I(X;Y)

Figure 2. Basic information measures-relationship

2. INEQUALITIES IN INFORMATION THEORY

Information Theory provides fundamental limits on (dif)itdata transmission and storage. Most of the achievable
limits are thus stated in the form of inequalities involvingdamental measures of information such as entropy andahut
information. Such inequalities form a major tool chain toye many results in information Theory. In a sense, these
inequalities separates the possibilities from imposs#sl in Information Theory. The study of information exps@ns
and inequalities thus are of paramount importance in sglk@y results in information Theory.

What constitutes an Information Theoretic inequality? $imeple answer to this would be

any expression, linear or non linear involving informatioreasures, on (multiple) random variahles

The information measures are the usual entropy (singlet, jor conditional) and mutual information (including con-
ditional and those involving multiple random variablesyeh though it is not impossible to find a non linear expression
involving these measures, they are not much of interestfordmation Theory. What brings more interest thus are the
linear expressions involving the fundamental measuresfofination. The fundamental informations are also known as
Shannon’s information measures. We could formally definmfommation expressiolfi as a linear combination of Shan-
non’s information measures involving a finite number of mmdvariables. For instance, each of the following are valid
information expressions:

H(X)+1.2H(Y|Z) + 0.882I(A; B|C)
I(X;Y)—3H(X,Y|Z)+ H(A|B,C, D) — 2I(L; M|N, Q)
I(X;Y|Z) - H(Z) - 3H(X,Y).

2.1. Information inequality. What makes an information inequality then? Any informagapressiory such thatf > 0
or f < 0 candidate itself to be called as an information inequalBtydefinition two information expressiorfsandg such
thatf > g or f < ¢ also make a valid information inequality. Equality is noué@ed to be explicitly stated since it is
equivalent to state the condition of bathand< being true. For example, jf > g andf < g, then itis as good as saying

=g

2.2. True information inequality. When can one say an information inequality is true? Sincarin&tion expressions
are functions of information measures, which itself beimgésure) functions of distributions, in order for an infation
inequality to be (always) true, it must hold the inequalityet for all possible (probability) distributions (of randovari-
ables). In simplified terms, an information inequalftynvolving information measures of random variables, is said to
be (always) true if,
e The information inequality is true for any possible setsisfribution involvingn random variables (joint proba-
bility distribution)

Thus an information inequality satisfied for certain seddadistributions, but not for all possible distributionsinat
be considered as a true information inequality. Howevés pbssible to have a constraint on certain random variaivids
state an information inequality, provided the latter istfar all distributions (under the constraint).
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Suppose is a discrete random variable which takedifferent values (cardinality of the sample spa&.=Then we
could write,
H(A) <log3
Even though the expression is true for the particular chofcé, the information expression is not quite true in general
(When the sample space is expanded to have cardinality hanstthe entropy could have a higher value thag3).
Now consider,

I(X;Y|Z)>0
is a true information inequality since this is true for anggible distributions o, Y andZ. On the other hand
I(X;Y|Z)<0

is not a true information inequality when no further conistimare assumed. However, if a constraint is imposed in the
form thatX, Z, Y form a Markov chainX — Z — Y thenI(X;Y|Z) = 0. Thus, the expression

I(X;Y|Z)<0
is a true information inequality with the Markov constraiit— Z — Y.

3. CHARACTERIZING INFORMATION INEQUALITIES

Given the importance of information inequalities, it isurat to ask this motivating question. Are there ways, if &t al
possible, to characterize all information inequalities®/Rond Yeung asked this question and found a rather surgrisi
simple and amazingly elegant way to characterize, almbstfafrmation inequalities. His seminal work [2] broughttou
an interesting framework to characterize and solve a typmexfualities classified as Shannon Type inequalities. He
defines Shannon type inequalities are those, which arecljirer indirectly) implied by thebasic inequalitieswhich
are inequalities that can be expressed as linear comhinattioon-negative weighted fundamental measures (Shasnon’
measures) such as entropy and mutual information. It tumghat, most of the inequalities known till date can be
classified as Shannon type. The basic inequalities simfdyséo the non-negativity of fundamental measures. Bexaus
of the possibility of expressing most of the inequalitieb &hannon type) in terms of positive combinations of basic
inequalities, the latter is often referred as ks of Information Theory

It was long conjectured that[13], there could be laws of tnfation Theory, outside these simple looking basic inequal
ities. Such inequalities are now classified as non-Sharypaitequalities. This was indeed validated when Yeung came
out with examples of such inequalities [2]. This finding pesthat, there exist laws in Information Theory, beyondé¢hos
laid down by Shannon. While the framework for Shannon typega direct way to computationally verify any Shannon
type inequality, no such methods are known till date for the-8hannon type. We will study and discuss Yeung’s work
on Shannon type inequalities.

The distinct difference between Shannon type and non Shetype inequalities are further discussed in secfigh

4. YEUNG'S FRAMEWORK TO SOLVESHANNON TYPE INEQUALITIES

Raymond Yeung developed a systematic method to verify @lhBbn type inequalities. The outline of Yeung’s method
is listed below. In subsequent sections, more detaileda@gpions of the concepts described here are provided.

(1) Letf > 0 be a given information expression. We need to check wheltieirtdeed is a Shannon type inequality.
First we claim that any expression can be written in candfizen f(h) = b”'h. By this it mean that, the given
expression can be written as a linear combination of ergsoand joint entropies, weighed by real scalars. For
expression involving distinct random variables, the canonical representasiessentially of the following form:

fh)y=b"h = MNHX)+...+MH(X,) +MoH(X1 X2) +...+
A3l (X1, Xo, X3) + oo+ A3 o H (X1, Xo, X350, X))
wheren is the number of distinct random variables involved in thegiexpression.
(2) Establish the pyramitl,, formed by all elemental inequalities. All elemental inelifies reside inl",,

(3) Check whethel,, = h: Gh > 0} ¢ {h: b”h > 0}. This is done using the simplex method of optimization in
linear programming (see secti@f): Check whether the minimum for the problem statement bédaw

.

minimizeb” h
st.Gh>0
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If yes the inequality indeed is a Shannon type inequality(iotyie of the following fact). If not, the inequality is
either not true or perhaps be a non Shannon type which cduldrcharacterized. Further tricks are required to
validate such inequalities.

(4) I'r, c I',,. Herel} is the region containing constructible expressions. Amystictable expression has to be an
elemental inequality.

Given a set of jointly distributed random variabl&s, X5, ..., X,,, we can consider entropies of all random variables
H(X;), entropies of all pair$f (X;, X,), etc. " — 1 entropy values for all nonempty subsets{df,, X, ..., X, }). For
everyn-tuple of random variables we get a poinfR8" —, representing entropies of the given distribution. Foltay[2]
we call a point inR2"~! constructible if it represents entropy values of some ctib@ of » random variables. The set of
all constructible points is denoted bY,. The [15], set of entropy values Iy, is named agntropicset.

It is tempting to ask why we requifg, at all, when we have the pyramid of constructible points! $imeple reason is
that it is hard to characteriZg&;, for an arbitraryn (for n > 3, it is not even closed?]). This is where Yeung pulled out
his magicians hat to describe a regiby, which can be characterized from basic inequalities. A nfieasible (but also
highly non-trivial) problem thus, is to describe the clasly, of n of the sef’. The sef; n is a convex cone?], and to
characterize it we should describe the class of all lineaguralities of the form

f(h)y=b"h = MH(X1)+ ...+ \MH(Xn) + M2 H(X 1 Xo) + ...+
M23H (X1, X0, X3) + ...+ A2, nH (X1, X2, X3,...,X,)
which are true for any random variabl&s, X, ..., X,,.(\; are real coefficients).

One of the other beautiful finding of Yeung'’s work is bringimgthe relationship between the entropy space and a
measure space. He brings in a new idea of a one to one cordspmmbetween information measure (what he refer as
I-measure) and a signed measure in a measure field. A brsfraltion of this is presented in section 5. He uses this
mapping to prove some key results in establishing the miliiynaf representing information expressions in canonical
form. The details of its implication are not addressed id tieport, but the concept is illustrated in the next sectinrthat
sense, sectiong]and [?] are somwhat detached from the genral flow of this documetdrésted readers are encouraged
to refer [15] for full justification of this useful idea.

5. MEASURE THEORY BASICS

Yeung establishes a general, one to one correspondencedreBet Theory and Shannon’s information measures, using
which manipulations of random variables can be done, avaletp that of sets. Effectively, one could use propertiesgbf
operations and use them to establish equivalent propeiftiemdom variables. A rather short description of the cphce
used in that endeavour is furnished here. Detailed tredtofehis can be seen in [15].

The fieldF,, generated by sets, so, .. ., s, is formed by performing sequence of set operations on tretse Bhe set
operations are

(1) complement
(2) union

(3) intersection
(4) difference

Figure 3. Venn Diagram for two sets; ands,

As an example, the sets ands, produces 16 elements through the set operations.
® 51, S(]fa 52, 55
o 51 Usg, 51 Us5, 87 Usg, s§UsS
® 51 M sy, 81 MsS,s{MNs2, 87N sS
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® 5] — 82,51 — 85,8] — 52,8 — 55

These sixteen elements obtained from the{sets, } is the fieldF; generated by sy, so}. It can be quickly inspected
that, not all of them are unique (some can be represented @geguivalent to other member sets). The number of unique
elements of the field are called tatomsof the field. They are essentially the sets of the forfn, a; wherea; € {s;, s¢}

Example: The sets; andss generatéf,, whose atoms are
{81 N 52,81 N s5,8{ N sa,sfNsst
Indeed, any element in the field can be represented as thesupfithe subsets of the atoms. In other words, the atoms are
the minimal representation of the field itself. The cardiyalf the fieldF; is 16 and the number of atoms &% is 4. In
general, the number of elements of the figldis 22" and the number of atoms a2&

It is very helpful to visualize the concept of atoms usWenndiagram. The distinct (disjoint) regions of the Venn
diagrams are the atoms. All possible unions of these atomstfee field. The simple case of two sets example is shown
in Fig.7.

Figure 4. Collapsed field :Venn Diagram for two setsandss

5.1. Signed measure of a field.For disjointA, B € F,,, a real functioru is called a signed measure if it is set additive,
i.e., for disjointA andB € F,,,

(23) n(AUB) = pu(A) + u(B)
By the definition it implies that
(24) n(®) =0

It can be observed that, a signed measure (again, by definitionF,, is completely specified by the values on atoms
of IF,,. Using set additivity, the values @f on other sets iff',, can be obtained. For the caself, the4 values of the
signed measures (corresponding to the atoms) are enoughreesent all the othdr2 values (corresponding to the non
atoms in the field).

(25) i (s N s2) (5101 5) g (5 01 s2) o (5 1 55)

Values of other elements can be obtained from these meaaluesv Say for instange(s;) can be written as
(26) p(s1) = p((s1Ns2)U(s1Nsy))

(27) = p(s1Ns2)+p(syNss)

5.2. Connection to Shannon’s measuresTo establish the connection between Measure Theory (Setry e be more
precise) and information measures, we have to first assogiseét to a random variable.

Figure 5. Information diagram fo2 random variablex', Y

Let us consider the simplest case of two random varialllesnd X>. We associate two sets, say and s, to the
random variables(, and X, respectively. This set generate a measure figldith cardinality3 and the atoms. The field
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can be expressed conveniently in the form of a Venn diagramv Mt us adopt the following rules to structure the Venn
diagram to suit the representation of information measures

(1) Remove the atorsf N s§ from the context. Now we are left withatoms. Alternate interpretation of this is: The
atoms§ N s§ degenerate to an empty $etThis essentially has the following implication.

(2) Collapse the univerde to simply the union of the two sets U s,. Here we force the universal set to shrink into
simply the union of non-empty atoms of fiedg (That is atoms off2 excludings§ N s§). By doing this, we have
essentially shrunk the Venn diagram as well (The box regisaygpeared!)

(3) The new universe now is U se and there ar@ non empty atoms which afes; N sa, s§ U s2, 51 U s5}.

The Shannon'’s information measures for two random vars&ableand X, are,
H(X1),H (X2), H (X1]|X2), H (X2|X1), H (X1, X2), [ (X1; X2)

Figure 6. Information diagram foB random variablex(, Y, Z

Introducing the notatior- as in

ANB‘=A-B
we define a signed measyrédy,
p(s1—s2) = H(X1[Xy)
p(s2—s1) = H(X2[Xy)
w(saNsy) = 1I(Xy;X9)

These are the measures on the non-efmiiyms of the fieldF,. Using the measure property, the measures of other
elements of the field can be obtained by addition of these unea®n atoms.

For example,
(81U s2) w([s1 — s2) U [s2 — s1] U [s1 N s2])

= p(s1—s2)+pu(s2—s1)+ p(s1Ns2)
= H(X1|X2) + H (X2|X1) + 1 (X1; Xa)
= H(X1,Xs)

ps1) = p(fs1—s2)Uls1Nsa))
= H(X1|Xo) +1(X1;X2)
= H(X1|X2)+ H (X1) — H (X1]X2)
— H(X)

f(s2) = p(ls2—s1]U[s2Ns1))
= H(X2|X1) —|—I(X1,X1)
= H(Xo|X1) + H (X2) — H (X2|X1)
— H(X)

2atoms ofF>, other thars§ N s§
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Thus, the measure on all non-empty elements of the field canenarized as follows:

p(si—s2) = H(X1[Xs)
p(s2—s1) = H(Xz|X1)
w(saNsy) = I(Xq1;Xo)
w(s1Use) = H(X1,Xo)
p(s1) = H(X1)
1 (s2) H (X2)
from this, we could establish the following mapping:
w — HJ/I
u —
n — 3

(28)

Figure 7. Atoms: Venn diagram df,

6. INFORMATION MEASURE (I-MEASURE) FOR ARBITRARY NUMBER OF RANDOM VARIABLES

For a given set of random variables, sayrandom variables), the construction of I-measures is inesdending the
idea of2-random variable case.

Letus denote the random variables ak, X, X3, ..., X,, and the corresponding to them (respectivelydhes, ss, ..., s,.

The universal sef is a collapsed version of the conventional univérse simple terms,
(29) Q= J s

€N,
WhereN,, is,
(30) N, ={1,2,3,...,n}
Because of the collapsing, the atom formed by the complemtsrsection [ s$ degenerate to empty set. That is,
1ENy,
i€ENy, i€ENy,

The cardinality of non empty atoms 8%, is 2" — 1. Extending the idea of two random variable (and two corrasgpty
set scenario) we can claim that, a signed meagura 7,, is 2" — 1 is fully specified by the measuge on non empty
atoms of¥,,. A formal proof of this can be found in [2].

3If the universe were not collapsed, the field would also darttze element (| s¢. Collapsing the universe can be thought of as the case wiere i

1ENp,
N s$=0
i€N,
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/\ /1 Non-negative orthant

A
\4

Figure 8. Non negative orthant illustration for 3 dimension

7. ENTROPY SPACE

7.1. Entropy SpaceX,,: The region I'*. With n random variables, we ha@" — 1 joint entropies (including the:
entropies of individual random variables).
Examples:
(1) n = 3: Let the random variables b€, Y, Z. The non empty joint entropies are
H(X),H(Y), H(Z),
H(X,Y),H(Y,Z),H(X,Z),
H(X,Y,Z)
(2) Forn = 4,Let the random variables b&, B, C, D, then the non empty joint entropies(of them) are
H(A),H(B),H(C), H(D),
H(A,B),H(B,C),H(C,D),H(A,C),H(A,D),H(B, D),
H(A,B,C),H(B,C,D),H(A,B,D),H(A,C,D),
H(A,B,C,D)
Now, let us consider a set efrandom variables. Each of the entropies (and joint ents)issociated with this chosen
set of random variables are non negative real values (démgsdlely on the probability and joint probability distution
of the random variables in hand). If we consider severaliptessets of such random variables, the entropy values could

assume many different (some times same as other sets) hee$\aon negative). Thus for everyrandom variables we
have a&2™ — 1 tuple of real values.

Now, we think of an Euclidean space of dimensi@h— 1. Let the space have co-ordinates labelechas =
1,2,...,2™ — 1. Let us call this space d&,,. The2" — 1 tuple corresponding to a random variable set:(afan-
dom variables) is a column vector ,,. A column vectoih € H,, is calledentropicif the 2 — 1 tuple represented by
correspond to a valid set of random variaBlds other words, when the vectarcontains elements (co-ordinate weights)
which correspond to joint entropies for any valid randomalale set (valid probability distributions) theénis entropic.
An example will illustrate this concept:

Example: Letn = 2, the entropy spac#&,, has co-ordinatek, , ho, his

1
h= 105
0.25

4Yeung in his papers also defined a term entropy functfég,(«)
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is not entropic sincé? (X) = 1, H(Y) = 0.5 andH (X,Y) = 0.25 does not correspond to a valid entropy measures

for any distribution. This can be checked by
H(X,Y)-H(X) = H(|X)

0
05—-1 = H(Y|X)>0

(AVARLYS

cant be true. Hence it is not entropic.
The region in the Euclidean spa§, whereh is entropic is of special interest. This region denotedl’asFormally,

Iy ={heXH,:h isentropi¢
Clearly, all entropy measures are non negative, which s@eéss that the regioli, is in the non-negative orthant of
the2™ — 1 dimensional spac&(,,. The origin is included i1"} since all constant random variables (special case when
all the random variables are determinidticash an all0 tuple.

8. SHANNON’S INFORMATION MEASURES IN CANONICAL FORM

All Shannon’s information measures (entropies, cond@i@mntropies and mutual informations) can be expressed as a
linear combination of entropies and joint entropies. Thé weown identities to do this translation are

HX|Y) = H(X,Y)-H(®Y)

HY|X) = H(X,Y)-H(X)

I(X;Y) = H(X)+H(Y)-H(X,Y)

I(X;Y|Z) = H(X,Z)+H(Y,Z)—-H(Z) - H(X,Y, Z)

This style of representation in terms of joint (and singl&yepies is known as canonical representation of inforomati
expressions. Mathematically,

(32) f(h)=b"h
Canonical form representation is unique[15].
9. INFORMATION INEQUALITIES IN ELEMENTAL FORM

All information measures formulated by Shannon are non tegeeasures. These measures, known as Shannon'’s
measures are quantities defined as the entropies,coralitiotmopies, joint entropies, mutual informations andditional
mutual informations. It is rather rudimentary to check tbkofving basic properties

IV IV IV IV IV IV IV IV
O oo o o oo

I(X:;Y|2) 0

These are some of the Shannon’s’ measures with @paadom variables. For any set of random variables, all pessi
such measures are non-negative. This non negativity oftelh8on’s information measures form a set of inequalities
known asbasic inequalities It may be noted that, the basic inequalities are not uniguthe sense that some of them
can be directly inferred from other. This is by virtue of tlaetfthat, Shannon’s information measures can itself beéemrit
in terms of some or more (linear) combinations of themsel#&s instance a Shannon’'s measéféX|Y') can also be
written as follows:

(33) H(X|Y)=H(X|Z,Y)+ I(X; Z|Y)

Here one information measure is written as sum of two infdimnameasures, all of them are Shannon’s’ information
measures.

SHowever contradicting this may be!
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9.1. Elemental Information measures. An information measures in the form of entropies, condai@ntropies, mutual
information or conditional mutual information is termedelemental information measure. More precisely, they are of
either of the following form

where
N, ={1,2,3,...,n}
is a set of numbers fromton (n > 2). Xy, —; refer to string (all ofn*) of random variables excluding’;. Xy, _(; ;3
is a string of random variables, not includifg and X ;. Note that,X;; X ;| X with K C N,, — 4, j refers to any string
(including null string) not includingX; X ;. The following example will clarify this.
Example:H (X, X2) can be written as,
H(X1,X,) = H(X))+ H(Xs|X))
= H(X1|Xo, X3)+ I(X1; X0, X3) + H(X2| X1, X3) + I(X2; X5|X1)
= H(X1]|X2, X3) + I(X1; Xo) + I(X1; X3; Xo)
+H(X2|X1, X3) + I(Xg; X3|X1)
In general, fom random variables, total number of elemental measureds the form H (XilXan{i}) is n and that
of the form/ (X;; X ;| Xk),i # j, K C N,, —i,j are

= ()5 () (D) ()]
- (5)x

Together, total number of Shannon’s information measuresegmental form, fon random variables is

(34) m=n-+ (Z) on—2

Since there aren elemental forms for random variables, we have non-negative measures. This is just restating
the fact that the elemental forms are always non-negatités Jet ofm inequalities & 0) compose what is known as
elemental inequalitiesWith the example witm = 3 we confirm the already known fact thaf(X;, X») > 0 using
elemental inequalities.

H(X1,X2) = H(X1|X2,X3)+1(X1; X2) + 1(X1; X35 Xo)
_—— —— —m——
>0 >0 >0
+ H(X2|X1, Xg) + I(XQ, X3|X1)

>0 >0

Y

0

It turns out that, the set of elemental inequalities form asiterable space where in many information inequalities
reside. In fact, Yeung uses (and proves) this very own fachexk whether an arbitrary information expression satisfy
inequality or not.

9.2. Elemental inequalities in canonical form. Them = n + (’21)2"*2 elemental inequalities can also be expressed in
canonical form (with just entropies and joint entropieshisiIseemingly redundant step is not merely to validate tle ex
tence of a canonical form for elemental inequalities. Iheathelps us to formulate a good geometrical and subseguentl
to a linear programming framework. The idea is this: Whenelleenental inequalities are expressed in canonical form, it
become linear inequalities in entropy spdtg . Yeung define a regiohi,, (Note thatI'’ is not quite the same, but there
is some relation, which is coming later) with#,, where these set of inequalities hold.

Consider a simple elemental inequality as an exam@l ; X,). The cannonical representation of this would be:

H(X1)
= [1 1-— 1} H(X5)
H(X1, X2)
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Similarly, we can express other elemental inequalitieslirimg two random variables in this form. The collection 8f a
such inequalities form a regidr,. The concept extended to arbitrary number of random vassableades td",,. Since
this correspond to linear inequalities, they are of the f@in > 0, whereG is a matrix with real elements.

(35) I, ={h:Gh>0}

So, what does the regidn, tell us? Clearly, this is the region which houses all elermenequalities. We will consider
the example witl2 random variables to get the idea right.

Examplel'y
There are3 elemental inequalitiesy(= 2, m = n + (3)2" 72 = 2+ 1 = 3) namely,/ (X1; X5) > 0, H(X1]X;) > 0 and
H(X2|X1) > 0. The cannonical representation of these three elemewigalities are,

I(X1;X2) = H(X1)+H(Xz) — H(X1,X2) >0
H(X1|X2) = —H(X2)+ H(X1,Xs)
H(X2|X1) = —H(X;)+ H(Xq, X4).
Expressed in matrix representation this states,
I(X1; X9) 11 -1 H(X1)
HX|X2)i =10 -1 1 H(X5) > 0.
H(X3|X1) -1 0 1 H(X1,Xs)
E¥e) 2h

Thus the regiof’'; is simply,
(36) Iy ={h:Gh>0}.

Because of thdéinearity (in linear inequality), it is easy to characterize the regit,, which includes all elemental
inequalities (which are equivalent to basic inequalitieglving random variables). Since elemental inequalities
satisfied by entropy function of any random variable sabf(them) satisfying: € I}, it is clear that

ry cTy.

We have established the inclusion relatiod'gfin I',,, but we have insufficient clues as to whether they indeecsemt
two different regions. We are suf& occupy no larger thah,,. We are tempted to ask this question here.

CouldI} andl’,, be the same?

If they were so, characterizing one implies the other autmally (both ways). In such a case, we could have concluded
that all inequalities in Information Theory are derivedrfréthe basic inequalities (through elemental inequalitigse-
sentation) and a formal way to characterize is availableutnI’,,. Most of the inequalities found in the earlier stage of
Information Theory were of this form. But the story doesrd émere.

It turned out that, there are inequalities which cannot bdvee simply from the basic inequalities. That is, the
fundamental Shannon measure non-negativity propertiggealdo not lead to all inequalities. First such findings were
presented by Yeung and Zhang [18], when they discovered equality with four random variables. This strongly
asserted the conjectdrthat, indeed there exist inequalities which cannot be cerized simply byl',,. Characterizing
Iy is required instead. In other words, there are laws of Infdiom Theory beyond what is ruled by the fundamental
Shannon measure non negativity.

The existence of inequalities beyond what originated fraamid Shannon measures, necessetiated clasiffication of
information inequalities into two types. They are called

(1) Shannon type inequalities These are ineuqalities which are derived from the basiquakties. Recall that,
basic inequalities are nothing but, the non negativity propof Shannon information measures. Inequalities of
this class are completely characterized throliglitself.

(2) Non Shannon type inequalities These are inequalities, which cannot be derived just, fiteerbasic inequality
postulates. They are governed by further constraints, wéuie not yet identified. Some inequalities of this type
are known to the Information Theory world. To characterfzm,I",, is inadequate. It is still and open question,
on whether there exist a way to characteiize which would have solved the riddle.

5This guestion was posed by Pippenger [13] as whether thallg exist laws beyond the basic ineqaulities?.
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We will focus exclusivley on Shannon type inequalities atudlg on their characterization a little more detail. For a
discussion on non-Shannon type inequalities, readersefgged to [2] and [15]. More recent findings on new class of
non-Shannon type inequalities can be seen in [19].

10. CHARACTERIZING SHANNON TYPE INEQUALITIES

We realize that, Shannon type inequalities are those, wihbigrited from the fundamental Shannon measures (basic
inequalities). Raymond Yeung'’s framework enables us to dbaaacterize them. Yeung’s trick hinge on the following
rules:

(1) Iy, is a pyramid in thé: = 2™ — 1 Euclidean spacg(,,
2 I cr,
All possible measures of random variables@ndom variables) are in the regid¥). Hence, to check the validity of and

information expressiorfi() it is enough to check whether the region (pyraniig)C {h : f(h) > 0}.
If this condition is established, it is automatic that th@m®ession is true in general for all random variables, since

| Rl
In essence, the key to check whether an information exmn@ssito check the following

(1) Foronce, consider the information expression as arbeadieexpression in a Euclidean space (of same dimension)
and partition the Euclidean space into two. The region wherénequality holds is the region of interest.
(2) Check whether the region (pyramid) of all possible information inequalities (elemental ineliies) reside in
the region of interest (where the algebraic inequality staye). If so, we are sure to say that the expression is
true for any random variable set. This is because, all plessipressions involving information measures form a
regionI} which is a subset df .
So, in principle we know how to characterize Shannon typguaéties. By virtue of the linearity, further insight caa b
achieved intd",,, which will enpower us to see a geometrical view and subsgdoemulation as a computational form.
The next section discusses the geometrly of

11. GEOMETRY OF UNCONSTRAINED INFORMATION INEQUALITIES

Itis rather appealing to put a geometric perspective ofrtf@mation inequality in an entropy spaég,. Remembefi(,,
is R2"~! space spanned by joint entropil§ X1 ), H(X3), ..., H(X1, Xo,...,X,. We will illustrate this geometrical
idea using an example [2].

Let us examine a Shannon type inequality

f = I(Xl;Xg) 2 0
First we write this into canonical form as follows:
I(Xl,XQ) = H(Xl) + H(XQ) — H(Xl,XQ) Z O
bTh

whereh = [H(X,) H(Xs) H(X;,X5)] andb=[1 1 -1

Now we could see thab”h > 0 will split the entropy spacé{,, into two regions. But this splitting is more of an
algebraic splitting without, any assumption on the vajidit the tupleH (X ), H(X>), H(X1, X2), being entropy values
of some distribution. In other words, not all points in théflsmaceb™h > 0 are entropic. On the other hand, not all
tuples which are entropic stay within the half space of ggéeither. We are exposed to two scenarios here:

(1) The regionof all tuple#l (X1), H(X2), H(X;, X2) which are entropic is completely inside the half spaéé >
0. The pyramid which contain all entropic tuple is denoted ¥y So, in this casd,; € b”h > 0. This scenario
would qualify to say that, the given inequality is true (fipssible valid distributions). This is pictorially show
in Fig.9

(2) If there exist at least one entropic tuple, which staysiolét the half spack”h > 0, then we are no longer able
to say that the expression is true for all valid distribusioin this case, we could say, the expression is not true.
Remember, when we say an expression is true, it means théuiness for any probability distribution (even one
distribution failing disqualifies the expression being@alrue). This scenario is illustrated in Fig.10

}T

“Let us remind ourselves that, information expressionshi@g Shannon’s measures, associated with random varittri@sgh their probability
distributions
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ha

A
\
&

f(h) =bTh>0

Figure 9. Geometry of unconstrained inequality: Information inalify f > 0 holds always

_ T
ho f(h) =b"h >0

A

\l

Figure 10. Geometry of unconstrained inequality: Information inalify f > 0 not necessarily hold
always. In this case, it is possible to find a tuplevhich is entropic, but reside outside the half space
b"h

We could extend the example we considered for two randonalvias to an expression with arbitrary, sayrandom
variables case. Let us consider a more general informateguiality f > 0. We can write this in canonical form as

f(hy=b"h = MNH(X1)+...+ \H(Xp) + M oH(X1X2) + ...+
MosH (X1, X0, X3) 4+ ...+ o3, o H(X1, X0, X3,..., X5)

ceey
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f(h) =bTh>0

ho

Ty ={h:Gh >0}
All elemental inequalities

- % ={h € Hn : h entropic

Figure 11. Geometry of unconstrained inequality: Information inalify f > 0 not necessarily hold
always. This is a case where the inequality is not true.

{h: (k) = bTh > 0}

—_ pT
" F(R)=bTh>0

All elemental inequalities

- T ={h € H, : h entropic

Figure 12. Geometry of unconstrained inequality: Information inalify f > 0 not necessarily hold
always. This is a case of Non Shannon type inequality. Herértbquality is true (since Green region
is inside yellow) but not quite a elemental inequality (Bhegion partially stay outside yellow region.
Better framework needed here to characterize such indigsali

{h: f(h) =bTh >0}

19
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f(h) =bTh>0

ha

A

{h: f(h) =bTh >0}

Iy, = {h:Gh >0}
All elemental inequalities

- Iy ={h € H, : h entropic

Figure 13. Geometry of unconstrained inequality: Information inalify f > 0 not necessarily hold
always. Here constructible points are completely residisgle the region of,,. Such inequalities can
be fully characterized by ,, and these are Shannon type inequalities.

ha

>h

1

f(h)=bTh>0

Figure 14. Geometry of constrained inequality: Information inedfyaf > 0 holds always. This is the
case of constrained inequalities. These are Shannon tgpeatities, given the constraints.

We say that, the expression is true (for all distributiof@ntropic space stay completely inside the half space deter
mined by the inequality. Formally,

f>0 istrueiff T c {he3,: f(h) >0}



ON THE INEQUALITIES IN INFORMATION THEORY 21

f(h) =bTh >0

A

\l

Figure 15. Geometry of constrained inequality: Information inedfyaf > 0 holds always, but without
constraint, the inequality may not hold always

In principle, this gives a truly complete characterizatidunconstrained information inequalities. Unfortungtélis
not that easy to characterize the reglgn If we were to do, this, we may have to search for (and congttbe infinite
number of possible distributions, which is rather not a l@atiternative. However, Yeung had found a way to charazzeri
a larger region namel,, which envelope the regiohi’,. Herel',, refers to the region where all elemental inequalities
(Shannon type inequalities) reside. The less tasty paftisiveet method is that, we are no longer able to charaeteriz
all information inequalities, but only Shannon type. Whitajority of the information inequalities are of Shannonayp
there exist non Shannon type inequalities as well, as disclis sectior®.2.

Because of the simplicity of the framework, it is indeed ploissto formulate the problem into a computational form.
This would help us to verify any non Shannon type inequa¥igung [2] proposed a linear programming framework which
could lead to efficient validation of all Shannon type inddies. We will discuss this next. Detailed discussion ois th
can be found in [2].

12. COMPUTATIONAL METHOD TO VERIFY INEQUALITIES

Using the framework discussed earlier, it is indeed possdtomputationally verify whether any information expres
sion is of Shannon type. The idea, Yeung proposed is brieflgudised here. Only a gist of the idea discussed in [2] is
presented here.

12.1. Linear programming method. We have seen that, in order to verify whether an informatxgressionf(h) =
bTh > 0 is Shannon type inequality, we only need to ask the follovgjngstion:
() IsT,, c {h: f(h) =bTh >0} ?

If the answer is affirmative, then we have the conviction thatexpression is indeed a Shannon type inequality. Else,
nothing conclusive could be derived at this stage.

A computational procedure to check this condition exishgghe well known Linear programming (See section for
an elementary treatment on this topic. Readers are reftordn references?] [?][ ?][?] for more detailed study of this
topic.).

For the unconstrained inequality, the problem formulatgdvbung is summarized as follows: Theorem (Yeung):
f(h) = bTh > 0is a Shannon type inequality iff the minimum of the problem

minimizeb” h
sttGh>0
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is 0. In this case, the minimum occurs at the origin

13. CONSTRAINED INEQUALITIES

So far, we have focused on information expressions and aliigs without further constraints. When there is con-
straints on the joint distributions (of random variableéisg dynamics of the information inequalities changes. rimftion
inequalities with such constraints are known as constdafirformation) inequalities. The constraints on jointtdisu-
tions can itself be expressed as linear constraints on thepes. Following examples illustrate this concept:

(1) X,Y andZ are independent iff
(37) HX,Y,Z)=H(X)+ HY)+ H(Z)

I 1
H(X.Y,Z) = E |log, (7)]
I pxv,z(%,Yy, 2)
I 1
= E |log < )]
L 2 PX(iU)PY|X,Z(y|UC7Z)pZ|X,Y)(z|z,y)

- :logQ <px(:v)pyl(y)pz><z> ﬂ

= E :logQ <]%(x))] +E {10g2 <]%(y))} tE {logQ <]%(Z)>}

= H(X)+H(Y)+H(Z)

(2) Pairwise independence can be expressed through thahmfturmation. If X, Y, Z are pairwise independent,

I(X;Y) = HX)-HY|X)
= H(X)-H(X)
=0

I(V;2) = HY)-HZY)
= HY)-H(®Y)
=0

I(X;2) = H(X)-H(Z|X)
= H(X)-H(X)
=0

Pairwise equivalence thus necessitates
(38) IX;Y)=1Y;2)=1(X;Z)=0

(3) f Y = g(X) whereg(.) is a deterministic function, theH (X|Y") = 0. The converse is true as well
(4) Markov ChainW — X —Y — Z implies

(39) IW;Y|X) = 0
(40) IW,X;ZlY) = 0
(41)

13.1. Geometrical framework of constrained information inequalities. Let there beg constraints on distributions,
which translates equivalently tolinear constraints on entropies. We could write these edeiit constraints on entropies
as a set ofy linear equations in the entropy spa€g. But among they linear equations not all of them may be linearly
independent, which means a certain number ¢ linearly independent equations fully describe the comnssa

(42) Qh =0
whereQ is ¢ x k matrix (¢ = 2™ — 1).

Here entropies refers to all information measures likeogéxs, conditional entropies, joint entropies, mutuabinfation, conditional mutual
information etc. Also remember that all these informatiogasures can itself be represented in terms of entropiescaiitional entropies!
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Now the information inequality space shrinks furtffeirom the unconstrained spad&. Put in other words, the
constraints confines the space of information inequaliyptrest to a linear subspace smaller than
Let

(43) ® ={h €, :Qh=0}
Now, with this constrain®, the expressiorf(h) > 0 always holds iff the regio(";, N ®) C {h: f(h) > 0}

f(h)=bTh >0

ha

<
<

{h: F(h) = bTh > 0}

In ={h:Gh >0}
All elemental inequalities

- Iy ={h € Hn : h entropig

'nne

-F;md):{he%n:h entropidh € ® : Qh = 0}

Figure 16. Geometry of constrained inequality: Information inediyaf > 0 holds always. without
constraint as well, the inequality hold always

10More correctly speaking, the the information inequalitasg cannot grow beyorid,
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ha
A

-
<

{h: f(h) = bTh > 0}

I'n = {h:Gh >0}
All elemental inequalijties

Iy ={h € H, vh entropic

I no \

-r;;mb:{he}cn;h entopidech € @ : Qh = 0}

Figure 17. Geometry of constrained inequality: Information inegyaf > 0 holds always. However,
without constraint, the inequality is not necessarily il regionl’,, > f > 0, > f > 0, but
' Nn® € f > 0. Note that, however this is a non Shannon type inequaligedih N ® > f >0

14. LINEAR PROGRAMMING BASICS

Linear programming deals with optimizing a linear cost éative) function, with linear constraints (inequality eon
straints as well as equality constraints). Even thouglritiser unusual to have a linear cost function, linear pnognang
is often used to solve many problems of practical interdisgibapproximating the cost function to linear.

The number of variables involved in the LP problem can betimtyi. Since inequality constraints bear a geometrical
shape (polyhedron), a more formal definition of LP problem loa stated as follows:

A linear programming problepor LP, is a problem of optimizing (maximizing or minimizing) a @ linear objective
function over some polyhedron. The standard maximizatiersbmetimes called the primal problem, is

maximizec’ x
(P) s.t.Ax <b
x>0

Herec”z is the objective function and the remaining conditions aefime polyhedron which is the feasible region over
which the objective function is to be optimized. The dua{Bj is the LP

minimizey b
(D) stylA> el
y>0

The linear constraints for a linear programming problenfiidea convex polyhedron, called tfeasible regiorfor the
problem. The weak duality theorem states that i$ feasible (i.e. lies in the feasible region) {d?) andj is feasible for
(D), thenc?'z < ¢7'b. This follows readily from the above:

'z < (T Az =97 (Az) < yTb.
The strong duality theorem states that if both LPs are fégsiben the two objective functions have the same optimal

value. As a consequence, if either LP has unbounded olgefetivction value, the other must be infeasible. It is also
possible for both LP to be infeasible.
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15. SOFTWARE TOOL TO SOLVEINFORMATION INEQUALITIES

Raymond Yeung and Yan [2] had developed a software packagedH IP [17] to solve all Shannon type inequalities.
This software was written in Matlab along with a lexical paratility yacc. To solve the linear programming problem,
they used the LP toolbox of matlab. The tool had its limitasicin terms of license dependability (requires Matlab and
Matlab Linear programming toolbox licenses) and compateti speed (Matlab is considerably slow compared to a native
C program). Besides, the software has become a little ceddatterms of installing (mainly because the dependency
packages keep changing). To overcome these, and still téhesseminal work of Yeung, we have developed an all
C model software package to solve information inequalitiesng the Framework described in [2]. This software is
available for free use?]. Essentially three different sets of utilities are avlaiéawith this package:

(1) A graphical user interface based tool called One can check any Shannon type inequality with or without
constraints by entering the expressions and constraitatstie respective entries.

(2) A command line tool named, which can take expression and constraints as string angisme

(3) A file parsing tool which reads a file containing arbitrarymber of expressions (one per line) and produces the
output in a file.

Some of the enhancements done on the software are listed:belo

(1) The entire program, algorithms and computations artemrin C language

(2) A parser using lex and yacc to allow different ways to siygandom variables. For example, a random variable
need not be an English caps letter. Random variable can alspdzified as for example,
GamePong, CoinTosB), X', XX _YY _123
and so on. For instance, it is possible to specify an expressi
H(X;X")+2.3 I(John.LennonBassLevel;RockFesit98Q.Geneva) 0
whereX, X johnLennonBassLeveRockFest198aGenevaare all (valid) random variables.

(3) A graphical user interface tool is built using GtK.

(4) Afile based solver is developed using shell script.

(5) To solve linear programming problem we have used the Ge®fivare tool £], which is available for free under
GNU public license.

(6) A speedy version of solving linear programming problem also be used instead using qs&pt Ve have made
softwares using both these versions and they are availabtivnload.

A snapshot view of the todlllSis shown in Fig.15 and Fig.15

15.1. Syntax while specifying information expressions and consiints. In order to use the software, care must be
done while specifying the expression and constraints. &thi software provide support indicating any wrong syntax,
is worth noting the following notations to be followed, fdfieient use of the software. For more detailed specification
(with examples) of the software, readers are referred taiteeiser guide P].

(1) Information expression: Information inequality (theeoneed to be verified) is entered on the top text entry box.
Information expressions are linear combinations of anychagasures. The basic information measures can be
scaled by real values (can be negative as well). Some exarage

I(X;Y)+2H(A1,B") >
H(A, B, SnowLevel) — 1.231(X;Y) — 2H(A|B) <
I(X;YY) = H(X)-H(X|YY)
(2) The information expression must be either and equatignanequality.
(3) While arbitrary scaling of information measures arew#d, real numbers without associating a measure of
random variable is not allowed. For example, it is not alldweespecifyH (X,Y) + 2I(X;Y)+3 >0
(4) The constraints are entered in the second entry box. @m&raint per line within the entry box is expected
(5) Constraints cannot be inequalities
(6) Constraint could be an equality expression, a Markowcbaindependence
(7) Independence is specified by a dot. For instance, tofsptacee random variableX, Y, Z to be independent, the
constraint is specified as
XY Z

(8) W, X,Y, Z forming a Markov chail’V. — X — Y — Z, the constraint is specified (using a forward slash) as,
W/X/|Y/Z
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Figure 18. xiis: Information inequality solver main window. The tapw entry is where the information
expression to be entered. The constraints are to be spedaifilee text box below. Each constraint must
be entered in separate lines. Any number of constraints eapécified. The information expression as
well can be arbitrarily long. However the computationaldimay increase with the number of distinct
random variables in the expression and constraints

v About xIIS X

L

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANME

xIIS 1.0

XIS
(C) 2007 Rethnakaran Pulikkeoonattu, Etienne Perron, Suhas Diggavi

http:/flicos.epfl.ch

gg Credits License

Figure 19. A brief summary of the xiis software
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