
Security Observance throughout the Life-Cycle of
Embedded Systems

S. Hasan Mirjalili, Arjen K. Lenstra

IV, EPFL, Lausanne, Switzerland

Abstract - Embedded systems are an established part of life.
Their security requirements underline the importance of
properly formulated, implemented, and enforced security
policies throughout their life-cycle. Currently, security is just
an afterthought, and most solutions are meant to thwart
particular attacks. However, the increasing number of security
breaches, the ensuing economical losses, and potential
dangers all emphasize the importance of fundamental security
solutions. This paper first surveys the current situation and
then proposes a holistic approach where security is
considered from the beginning of the design of embedded
systems throughout their entire life-cycle. In our approach, the
entire system life-cycle is analyzed and appropriate
countermeasures are incorporated in the design. Obviously,
prevention is not the complete solution. A 4-level defense
strategy assures not only that a system has been properly
designed in terms of security, but also that the liabilities of its
designers are adequately covered.

Keywords: Security, Embedded Systems, System life-cycle,
Design Methodologies.

1 Introduction
 The idea of pervasive computing is growing and
computing devices will be available anywhere and anytime.
Our lives and our businesses depend unavoidably on
computing systems and, increasingly, on embedded systems in
particular. In this paper, our focus is on embedded systems,
which are ubiquitously used to sense, capture, store, process,
transmit personal, private and vital data. When an embedded
system performs any of these tasks, security observation is a
necessity. Moreover, security of embedded systems provides
new business opportunities and prevents losing many
opportunities. For example, it prevents safety disasters and
should help preserving user privacy. Time limited services or
on-demand digital services are examples of new business
opportunities benefiting from well established secure
embedded devices. The increasing number of security breaches
which have been detected in embedded systems in recent years
also reveals the importance of fundamental security solutions.
Current solutions are mostly the addition of features, such as
specific cryptographic algorithms and security protocols to the
system. This is mostly done at the end of the design phase or
only as addition to a part of the system, such as the transceiver
part of the system to encrypt and decrypt outgoing and
incoming data. In fact, solutions of this sort are comparable to
‘patching’ a system. They cannot result in a complete solution

and are often not integrated into the entire system. Sometimes
these solutions violate the criteria that designers have taken
into consideration from the beginning. These are subtle points
that are not addressed by designers who tend to focus mainly
on functionality and by companies that tend to focus on short
term profits.

 In this paper we set out to have a comprehensive view on
the security of embedded systems and propose a design
methodology that can help designers and developers to deliver
more secure systems. To clarify what embedded systems are,
we provide an informal definition of embedded systems. This
also explains what distinguishes them that we must consider
their security as a special case. A definition of security also
helps to know when a system is considered secure and what
should be done to make it secure. In the following paragraphs,
several definitions are provided that are used in the rest of the
paper.

1.1 Embedded systems
 Embedded systems are specialized electronic systems that
are part of a larger system. They are normally not directly
visible to the user [1]. Examples of embedded systems are
computing systems, which are inside, for instance,
automobiles, planes, trains, space vehicles, consumer
electronics, medical equipments, vending machines, network
appliances, smart cards, cell phones, PDAs and other
handhelds as well as robots and toys. They are designed and
developed for a specific application and not as general purpose
computing devices. They play a significant role in areas such
as education, health care, ambient intelligence, consumer
electronics, avionics, car industry, and controllers in industrial
plants. The uses are endless, and their number is increasing in
our new world of pervasive computing. Embedded systems
have common characteristics such as: They should be efficient
in terms of criteria such as power consumption, size, run-time
requirements, weight, and cost. Also they are often embedded
in portable systems with network capabilities.

1.2 Computing Systems Security
 Computer security is the protection of computing systems
against threats to confidentiality, integrity and availability [2].
In other words, a secure computing system provides three
properties: confidentiality, integrity, and availability. All three
are essential but depending on the application of system, one
or two of them may receive more attention. Confidentiality
means that information is disclosed only according to a
security policy. Integrity means that information or system

structure can be changed according to a security policy and
availability means that services of system are available
according to a security policy. The security policy addresses
constraints on functions, flow among functions and constraints
on users’ access. Constraints on function and access may be
correlated with time, location and/or other parameters. Users
are external systems or human users. All of the details about
users and constraints is explained precisely in a security
policy.

1.3 Security model and definitions
 Vulnerability, threat, attack and safeguard or
countermeasures make up a framework that enables arguing
about computer security. Vulnerability is some weakness or
fault in the system that could allow security to be violated. A
threat is a circumstance or event that could cause harm by
violating security. An adversary exploits a vulnerability in the
system to perform an attack. A safeguard is any technique,
procedure, or other measure that reduces vulnerability.
Safeguards make threats weaker or less likely. This framework
─vulnerability, threat, attack and safeguard─ is useful for
analyzing and evaluating system security, also for deciding
what safeguards to use [2].

 The rest of this paper is structured as follows. Section 2
argues why the security of embedded devices is important and
in section 3 challenges in designing secure embedded systems
are presented. In section 4, it is discussed why security is
treated as an afterthought. In a system, different stakeholders
may have different security expectations. This is discussed
with an example in section 5. In section 6, a holistic approach
is proposed in which, by studying the system life-cycle,
vulnerabilities are predicted and their countermeasures are
applied during the system design. Since the complete behavior
of the system cannot be predicted, all threats and attacks
cannot be prevented. In section 7 a 4-level defense is described
that assures a system has been properly designed in terms of
security and may be expected not to pose a security hazard.

2 Why Embedded Security
 Making embedded systems secure is not only to protect
resources and assets; it also provides opportunities for new
services and new businesses. In [3] it is argued why the
security of embedded systems is important. More arguments
are listed here that emphasize the significance of embedded
systems security.

Pervasive security
Embedded systems are becoming pervasive as they are
becoming cheaper. Their networking degree also is growing to
let them have a better synergy by sharing resources and
connecting users. They also contain assets of different
stakeholders. Networking, sharing resources and holding
assets exposes embedded systems to a growing range of
threats.

New look
In the past decades a lot of research has been carried out in the
area of information security and system security. Many mature
and well studied solutions exist. Some of the solutions are
applicable to embedded systems but some of them cannot be
utilized. The common characteristics of embedded systems
─mobile and resource constrained systems─ enforce
researchers to take a new look at current solutions. For
example, security solutions that consider the life-cycle of
software do not consider the disposal phase as we would do in
embedded systems because software does not have a disposal
phase.

Safety
Application of embedded systems in areas such as health care,
avionics, or car industry where humans are involved raises the
issue of safety. For example, the violation of integrity and
availability of an artificial hearth, brake of a car and navigation
system of an airplane may have disastrous consequences [4].
Attacks are turning from digital-data attacks to human attacks.

Financials
M-commerce is followed by e-commerce, where mobile
devices are the main player in financial transactions. Smart
cards with e-wallet function or micropayments are examples of
embedded systems in finance. There is enough incentive to
break into these systems and there is high benefit for financial
institutes to protect their systems.

New business model
There will be many new applications or business models that
strongly depend on the security techniques of embedded
systems e.g., pay-TV, video on demand or time-limited
services. Investors will invest in these businesses when they
are sure their revenue is properly protected.

Privacy
Some embedded systems are able to sense and capture a huge
amount of data about location or status of a user to provide
them some services. For example GPS systems process a lot of
data about whereabouts of a user. By this information the
location and personal information of a user can be observed
easily which may affect the user’s privacy.

Legal issues
Some applications have legal concerns, e.g., e-voting or road-
toll systems. They should meet applicable governmental
standards to be acceptable for usage. They should not be
manipulated easily. Producers should implement sound
security techniques in their products to receive approval from
authorities.

Secure identification of components
Third parties will contribute components and subsystems to a
system. The secure identification of them is a major concern
for a large number of applications. Counterfeiting products and
parts (e.g. printer cartridges and ICs) are areas with urgent
need for strong and secure device identification. Also, secure
identification is important for access control.

Light-weight crypto
Since resources are limited in embedded systems, some of the
current security solutions are not applicable. New security
solutions with less computational requirements, smaller size
and lower energy consumption are necessary.

3 Embedded Security Challenges
 Designing secure embedded systems is not
straightforward. There are many challenges that should be
defied in order to secure them. Some of the challenges are
explained below.

Heterogeneity
Most embedded systems are heterogeneous. They include
software, hardware, mechanical components, optics, etc., and
may consist of different components based on different
technologies. Securing a heterogeneous system may be more
challenging than a homogeneous system.

Complexity
Embedded systems have constraints which make the
application of general security solutions difficult or
impossible. Integrating security mechanisms with other
functionality requirements is also not straightforward. Some
embedded systems have real-time requirements, low power
considerations and reliability requirements that should be
considered besides security requirements. In fact, security is
now a new metric that should be considered besides the other
metrics. Meanwhile, security policies may violate other
parameters [5]. These issues make security of embedded
systems complicated.

Flexibility
Personalization of a system is a desirable feature for users.
This implies provision of some flexibility and ability of
customization in the system. On the other hand, this flexibility
may impact the security of a system. It is challenging to find
an equilibrium point of flexibility and security in a system.
Also, it is desirable to have a flexible security policy in the
system. Since security utilizes resources, in some
environments we prefer to reduce the level of security to save
resources.

Decentralized control
Not all embedded systems are controlled centrally; some of
them are working independently. In some situations
maintaining, repairing or restoration of them is done remotely.
Some have adaptive behaviors in different environments.
These systems will communicate and interact in ways that
were unforeseen during their design. In these scenarios, there
should be self-adaptive, self-configuring or self-restoring
techniques to preserve security.

Alternative energy sources
Side channel attacks are strong attacks based on information
gained from the physical implementation of a cryptosystem,
e.g., power consumption, electromagnetic leaks, timing
information, or even sound [6, 7]. These can provide an extra
source of information which can be exploited to attack the
system. These attacks and their countermeasures have been
studied for a long time [8]. Introduction of alternative energy
sources e.g., light, vibration, walking, etc. might introduce new
types of side channel attacks.

Time-to-market
The first product that reaches the market is the winner. Time-
to-market is a criterion that forces producers to prevent
applying well studied security solutions. In this case, producers
emphasize more on legal enforcements. Security solutions
which will not cause a delay in time-to-market are essential
and valuable for producers.

Security Cost
Security needs more management which leads to higher costs.
Having cheap security solutions would make systems more
secure, since manufacturers avoid utilizing costly solutions.
They prefer to add more functionality than securing current
functionalities. Affordable security mechanisms are
demanding.

 We explained the importance of the security of embedded
devices, and existing challenges. Current solutions are mostly
as an afterthought and the security is not considered from the
beginning. In the next section, it is discussed why security is
an afterthought.

4 Security: an Afterthought
 The software industry and embedded device developers
rarely think about security from the beginning. Security is
usually an afterthought because the primary consideration of
producers and consumers is not security. Companies pay more
attention to: Sending the product to the market as soon as
possible; Producing a user friendly product; A product with
more features that competes better in the market than a more
secure product; Massive production for more income and a
cheaper device.

 Since security affects all of the above considerations it is
not an economic priority for companies. Meanwhile, at the
moment, security is also not a primary consideration for all
users. Most users pay more attention to: Saving money; Ease
of use, features and functionalities. Hence companies know
there is no immediate return by making their product secure.
They have little incentive if the consumer does not consider it
to be important. Moreover most consumers do not know the
difference between a secure product and an insecure one
before purchase. They are more interested in the technologies
that solve their problem in the short term and if they want to

opt for more secure technologies, then companies discourage
them by higher prices. However, producers and consumers will
worry about security of their product when they lose their
assets by a breach of their device. As more news of security
breaches and hacks are reported, the awareness and importance
of security is raised. The best comprehensive solution is
considering the security from the beginning and throughout the
life-cycle of the system. In next sections, this approach is
explained in detail.

5 Security Expectations from a System
 The first step in designing a secure embedded system is
its security analysis. For security analysis of a system, all the
resources that should be protected are specified. Also all
stakeholders, both for and against the system should be
identified. In fact, whoever has an asset in a system has a
security requirement for it and whoever interacts with the
system could be a potential adversary of part or the entire
system. Different stakeholders have different expectations
from the security of a system.

 With an example, we explain how different stakeholders
are concerned about the security of a system. We suppose a
taxi agency that owns some cars and several drivers working
for them. Also we suppose the cars in this agency are all
modern cars equipped with the latest electronics.

• User: entities that use services of a system. In our example,
a driver is a user of system. For safety reasons, the
availability of computing parts of the car and the location
privacy of the driver are some of driver’s security concerns.

• Owner: entities that have ownership of a system. Owner
can be the user of system or they may be separate entities.
In our example, the taxi agency is the owner. The agency
may record some information on the car, the confidentiality
and integrity of which is important for them. Except agency
nobody else even the driver of car should have access to
that information.

• Manufacturer: entities that produce or manufacture the
system. Car manufacturers design some components for the
car and it is their intellectual property. The confidentiality
and integrity of their design, their code and non-forgeability
of components are their concern.

• Repairer or component provider: entities that maintain or
repair the system. This entity can be the manufacturer itself
or they may be two separate entities. If the car should be
repaired or transferred for updating of some parts or for
safety control, a repairer should not have access to the
information of the driver or owner. Meanwhile, maintainer
may add some components or codes that are their
intellectual property.

• Platform provider: entities that provide the infrastructure or
specialized services to the system such as network facilities,
communication links, power sources, etc. Future cars can
communicate with each other and forward safety messages.
They can also receive information from road side

equipment. Such wireless platforms help cars to operate
safely, so the availability of such platforms is important.
Integrity and confidentiality of messages communicated by
cars or road side equipment over these platforms are also a
concern.

• Service provider: entities that provide some services to the
end user or to the owner, such as infotainment or games,
etc. Cars can download music, movies or games on their
media player and DRM is an issue that infotainment
providers worry about.

• Dealer: entities that act between manufacturer and end
users or between two users. Sometimes a dealer is just a
middleman who delivers a system to the user. A dealer may
store some information on a car that should be kept
confidential. Some information is not confidential to
manufacturer or user but a dealer should not have access to
them. Integrity and confidentiality of information stored on
the device by the manufacturer to be used by the user or
owner should be secure from dealer attack. Another
example is delivery of a smart card to a user or a dealer
may install malicious software on a mobile phone and sell it
to a user.

• Legal bodies (e.g., police): entities that enforce the
legislations of government into a product, e.g., police and
standards bodies. Suppose that a car has a digital
identification or digital license plate. Its integrity is the
police’s concern or the digital speedometer of trucks, for
example, should not be manipulated by driver.

• Beneficiary (e.g. bank): in some systems, in addition to user
and manufacturer, there might be another entity that
benefits from the usage of the system by its user. Like a
bank that is the beneficiary of ATM machines. In our
example, the taxi agency is the beneficiary of the cars.

• Other systems: entities are not always human beings; they
may be other systems which are a user or provider of
services to the system. In our example, cars transmit safety
messages to other cars. Integrity of these messages is a
security concern.

As one can see from this example, many entities are involved
in the security requirements of an embedded system.
Accomplishing all the security requirements of the various
stakeholders is challenging. A strong security modeling is
necessary to have a secure design leading to a secure product.

6 Considering security from the
beginning

 In the literature, the need for considering security from
the early stages of design has been emphasized [9, 10, 11].
Some initial efforts towards design methodologies to support
security are described in [12, 13, 14, 15] but they don’t present
a holistic approach as we intend to do in this paper. A sound
approach to a secure design is to consider the security from the
beginning. There should be an analysis of the life-cycle of the
system to detect all the conceivable vulnerabilities and to have

appropriate solutions for preventing those vulnerabilities or
threats from happening.

 Below the life-cycle of an embedded system is analyzed
and possible sources of vulnerabilities in each step are
explained. We call this strategy insecurity prevention.

6.1 System Life-cycle
 The life-cycle of an embedded system consists of three
phases: development, use and disposal.

 The development phase includes all activities from the
requirement specification of a product to the decision that the
system has passed all acceptance tests and is ready to be
delivered. The development phase also consists of some sub-
phases such as: Requirement specification, Design,
Production, Product shipment and Support/maintenance.

 The use phase of a system’s life-cycle begins when the
system is accepted for use and starts the delivery of its services
to users. Use phase consists of alternating periods of correct
service delivery, service outage, service shutdown and
maintenance.

 The disposal phase is the disposal of an embedded
system including media, software, components and data stored
on the device. It starts when the system is no longer used or it
no longer delivers services. It can also be transferring of the
system from one person to another. The disposal phase is
essential to prevent inadvertent release of data, information, or
software. Security consideration in this phase is beneficial to
protect sensitive information from disclosure and adhere to
copyright, statutory, and regulatory requirements. In this
phase, if user is not going to use the system anymore and
he/she discards it, the availability of the system is not of
his/her concern, although if the system is transferred to another
user, its availability is the new user’s concern. In disposal
phase, the confidentiality and integrity of system and the data
stored on it, is not less important to the user than in use phase.

6.2 Sources of vulnerabilities in the Life-cycle
 After analyzing the life-cycle of a system, we should
think about the sources of vulnerability in each phase. All the
entities involved in the life-cycle phases of an embedded
system can be the reason of vulnerabilities and threats.

Sources of the development vulnerabilities
In the development phase, the physical world with its natural
phenomena, developers who are lacking competence or having
malicious purposes, development tools, production and test
facilities/tools which are software and hardware used by the
developers to assist them in the development process can be
the source of vulnerabilities.

Sources of use vulnerabilities
In the use phase, the physical world, Administrators
(authorized people), Service Users (limited authorized people),
Service providers, Service infrastructure, other systems and
adversaries are the sources of the vulnerabilities. Involved
entities may lack competence or they may have malicious
purposes.

Sources of disposal vulnerabilities
The disposal phase can be considered as a special case of use
phase with the difference that in disposal phase, if the system
is discarded, its availability is not a concern. Therefore
availability vulnerabilities and threats are ignored in the
security analysis.

 The next step in life-cycle security analysis of embedded
systems is to find the vulnerabilities originating from these
sources and to apply solutions in the design methodology. In
this paper, it is not discussed how safeguards are applied in the
design methodology.

7 4-Level defense strategy
 To design a highly secure system, a 4-Level defense
design strategy is proposed. This strategy consists of
prevention, tolerance, removal and forecasting. Prevention and
tolerance are basic security strategies while removal and
forecasting are strategies for security assurance. Many
applications need more than security, they need assurance, e.g.
military equipments.

7.1 Prevention
 The first and the best strategy to create a secure system is
insecurity prevention. Prevention means preventing the
occurrence or introduction of vulnerabilities. Mostly this is
done by solutions and techniques during the development of
the system. Improvement of design and development methods
can result in good strategies for preventing security
vulnerabilities. We mentioned in section 6 a development
technique for prevention in which security is considered from
the beginning.

 Although designers and developers do their best to
prevent insecurity in the system, it is not guaranteed that the
system will be absolutely secure during its use phase because it
cannot be predicted fully where and how the system is going to
be used. Therefore, we need to consider solutions for
occasions when vulnerabilities were not detected or could not
be detected during the development phase and possible attacks
can happen.

7.2 Tolerance
 Tolerance means providing service in spite of some
vulnerabilities or faults in the system. Different techniques can

be applied towards tolerance. We can categorize them into
three categories: Vulnerability detection, Recovery and Self-
adaptive techniques.

Vulnerability detection
In vulnerability detection, a mechanism is provisioned to
detect possible vulnerability in a system. This detection can be
done in two manners; concurrent detection and preemptive
detection. Concurrent detection takes place during normal
service delivery of system. For example, every file is checked
for virus infection before execution. Preemptive detection
takes place while the normal service delivery is suspended and
the system is checked for faults and vulnerabilities e.g., during
its idle time, the system is checked for existence of viruses.

 However, detecting vulnerabilities is not the whole
process of tolerance, after detecting we should handle these
vulnerabilities. In fact we consider that there might be some
vulnerability. We might detect them before becoming a threat
to the system or we might not detect them and an attack could
happen. Therefore, we should have strategies for both cases;
handling detected vulnerabilities, handling threats or actual
attacks. Vulnerability handling prevents vulnerabilities from
being activated again. There can be different methods such as:
Diagnosis, Isolation, Reconfiguration and Re-initialization.

 After detecting vulnerabilities, we can collect and record
information about the cause of the vulnerability for a future
prevention or diagnosis. However, to prevent the utilization of
a vulnerability and turning it into a threat for the system, we
can isolate physically or logically the faulty component from
the process of service delivery; in fact we make the
vulnerability dormant. However, if we isolate a component of
the system, we may need to switch to either a new redundant
component or a spare one. This change in the system implies
reconfiguring the system to have new consistent configuration.
Also we may need to re-initialize the system and apply some
changes in the tables and databases or configuration registry of
the system.

Recovery
Still there is a probability that vulnerabilities were not detected
and adversary used it and performed an attack. What we can
do in case of an attack? In these cases we should have attack
recovery. Depending on the attack, different strategies can be
followed. Attacks on confidentiality may not be recoverable
although they may be prevented in future designs. For attacks
on data integrity, we can for example replace the data from the
backup. The usual mechanism for attacks on availability is
redundancy. For integrity and availability, techniques such as
Rollback, Rollforward and Compensation can be applied.

 Rollback is returning the system back to a saved state that
existed prior to vulnerability detection; that saved state is a
checkpoint. Compensation is replacing the redundant

component to enable vulnerability elimination. Rollforward is
setting the state without detected vulnerability as a new state.

Self-adaptive techniques
Some embedded systems are used in places where they should
adapt themselves to the condition of their working
surroundings. Also if they were attacked they should recover
themselves automatically. In these situations, self-adaptive
security techniques are very valuable. Having the ability to
recover automatically requires provisioning re-configurability
or re-programmability in the system. However existence of
these facilities in the system might be the source of threats to
the system. Self-adaptive techniques are challenging for
security of embedded systems.

 Vulnerability prevention and tolerance aim to make a
system secure so that the system can deliver a trustworthy
service. However, being secure is not enough and in high
secure systems, we need assurance. Vulnerability removal and
forecasting are for assurance. They help to have confidence in
the system by justifying that the functional and the
dependability and security specifications are adequate and that
the system is likely to meet them.

7.3 Vulnerability removal
 Vulnerability removal is performed both during the
development phase and during the operational life of a system,
i.e., the use phase. Vulnerability removal during the
development phase of a system life-cycle consists of three
steps: verification, diagnosis, correction. Verification is the
process of checking whether the system adheres to given
properties. If it does not, the other two steps follow:
diagnosing the vulnerabilities that prevented the verification
conditions from being fulfilled, and then performing the
necessary corrections. After correction, the verification process
should be repeated in order to check that vulnerability removal
had no undesired consequences.

 Verification techniques can be applied statically or
dynamically. Verifying a system without actual execution is
static verification, via static analysis (e.g., inspections or walk-
through), model-checking, and theorem proving. Verifying a
system through exercising it constitutes dynamic verification.
Verifying that the system cannot do more than what is
specified, is especially important with respect to safety and
security.

 Vulnerability removal during the use phase is corrective
or preventive maintenance. Corrective maintenance is aimed at
removing vulnerabilities that have produced one or more
threats and have been reported, while preventive maintenance
is aimed to uncover and remove vulnerabilities before they
might cause errors during normal operation. The latter
vulnerabilities include a) physical faults that have occurred
since the last preventive maintenance actions, and b) design

vulnerabilities that have led to threats in other similar systems.
Corrective maintenance for design vulnerabilities is usually
performed in stages: the vulnerability may be first isolated
(e.g., by a workaround or a patch) before the actual removal is
completed.

7.4 Vulnerability Forecasting
 Vulnerability forecasting is conducted by performing an
evaluation of the system behavior with respect to attack
occurrence. Evaluation has two aspects:

• Qualitative, or ordinal, evaluation, which aims to identify,
classify, rank attacks, or the event combinations that would
lead to system attack.

• Quantitative, or probabilistic, evaluation, which aims to
evaluate likelihood that a fault will exist or measuring the
difficulty of an attack.

Quantitative evaluations are better understood than the
qualitative evaluations. For example, we can evaluate the
amount of effort involved in breaking a cryptosystem.
In security forecast we try to have an answer for questions such
as:
• How to predict security flaws and human misuse?
• How to predict nature of attacks based on system assets and

mission?
• Which parts of system are likely to become under attack?
• How to determine the nature of an attack in its early stages?
• Is it an attack or not? What are its goals? How severe is the

attack?
These are the questions whose answers can help forecast the
security of a system and the measure of assurance that we can
have for it. Security forecasting is an area that needs further
study.

8 Conclusion
 Security of embedded systems is very important. Strong
security mechanisms prevent damages and economical losses
while also offering new business opportunities. However,
sound security solutions are not attained easily. There are
many challenges that should be defied. Although security
consideration as an afterthought seems to have short-term
incomes and less development difficulties, one simple security
breach in a product could result in deletion from the market. A
sound solution considers the security from the beginning and
analyzes the life-cycle of the system to detect the
vulnerabilities from the birth to the death of system. After
discovering the sources and the reasons of vulnerabilities,
safeguards should be embedded in the design methodology.
Although designers and developers try hard to prevent all
conceivable attacks, since the use environments and behavior
of users cannot be predicted, it is not fully guaranteed that the
system is secure. In addition to prevention techniques,
tolerance techniques applied in the system help to provide
service in presence of failure or attack. Removal and

forecasting techniques help to have assurance in the security of
the system.

9 References

[1] Peter Marwedel, "Embedded System Design", 1st edition,
Kluwer Academic Publishers:Hardbound, pp.1-8, 2003.
[2] Rita C. Summers, "Secure Computing: Threats and
Safeguards", pp. 3-11, McGraw-Hill, 1997.
[3] Paar, C., Weimerskirch, A. "Embedded security in a
pervasive world", Inf. Secur. Tech. Rep. 12,3, pp.155-161. Jan.
2007.
[4] Carey Goldberg, "Heart devices vulnerable to hack attack",
The Boston Globe, March 12, 2008. available online:
http://www.boston.com/news/local/articles/2008/03/12/heart_d
evices_vulnerable_to_hack_attack/
[5] Srivaths Ravi , Paul Kocher , Ruby Lee , Gary McGraw ,
Anand Raghunathan, “Security as a new dimension in
embedded system design”, In Proc. ACM/IEEE Design
Automation Conf., pp. 753-760, June 2004.
[6] Weingart S., “Physical Security Devices for Computer
Subsystems: A Survey of Attacks and Defenses”, Workshop on
Cryptographic Hardware and Embedded Systems, 2000.
[7] J. J. Quisquater, D. Samide, “Side channel cryptanalysis”,
In proceedings of the SECI 2002, pp. 179-184.
[8] Ravi, S., Raghunathan, A., and Chakradhar, S. ,Tamper
Resistance Mechanisms for Secure Embedded Systems”, In
Proceedings of the International Conference of VLSI Design.
pp 605-611, 2004.
[9] Srivaths Ravi, Anand Raghunathan, Paul Kocher, Sunil
Hattangady, "Security in embedded systems: Design
challenges", ACM Transactions on Embedded Computing
Systems (TECS) ,Volume 3 , Issue 3, Pages: 461 - 491, 2004.
[10] David Hwang, Patrick Schaumont, Ingrid Verbauwhede,
Shenglin Yang, "Multilevel Design Validation in a Secure
Embedded System", IEEE Transactions on Computers archive,
Pages: 1380 - 1390, 2006.
[11] Joe Grand, "Practical Secure Hardware Design for
Embedded Systems", Proceedings of the 2004 Embedded
Systems Conference, San Francisco, California.
[12] Eric Uner, “A Framework for Considering Security in
Embedded Systems”, Embedded.com, Sept. 2005.
[13] Wayne Jansen , Serban Gavrila, Vlad Korolev, Thomas
Heute, Clément Séveillac, “A Unified Framework for Mobile
Device Security”, Proceedings of the International Conference
on Security and Management (SAM'04), pp. 9-14, June 2004.
[14] Ingrid Verbauwhede1 and Patrick Schaumont, “Design
methods for Security and Trust”, Design, Automation & Test
in Europe Conference & Exhibition, pp. 1-6, DATE '07, 2007.
[15] Divya Arora, Srivaths Ravi, Anand Raghunathan and
Niraj K. Jha, “Architectural Enhancements for Secure
Embedded Processing”, NATO Workshop on Security and
Embedded Systems, VOL 2, pp. 18-25, August 2005.

