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AAbbssttrraacctt  
The present paper concentrates on the theoretical understanding and the numerical computation of photonic 

crystals. It provides an introduction into the basic theory, shows some computation results and their interpreta-
tion by means of a few sample crystals, and proposes some measurement methods to evaluate the predicted be-
haviour. The interested user finds some additional software information, a couple of computation results and 
some images of an earlier made photonic crystal in the annexe. 

In this work, the MIT Photonic-Bands software package was used for all of the numerical computations. The 
software was successfully installed on a personal workstation at home and on a server at the institute. Its capa-
bilities and its functionality were tried out. The program was judged to work reliable. It yields the more accurate 
results the more time was spent for the computation, and it finds repeatedly the same results for the same task 
even on different machines and program versions. Then, the results were read in into MatLab for powerful post-
treatment and graphical representation. For this reason, some self-programmed MatLab functions are also ap-
pended to the annexe. 

A total of three photonic crystal samples were designed by numerical computation and layout. Each sample 
covers a particular function: a) a simple band gap filter, b) a high-Q cavity and c) an integrated wave-guide. It 
was shown that a high dielectric contrast is decisive to design large band gaps that are quite robust against fabri-
cation errors. 

Before spending more time for simulation, this work may be continued by fabrication and measure of the de-
signed photonic crystals. 
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PPrroojjeecctt  bbrriieeff  
The technological advance in the miniaturisation of electronics asks for new materials always more performant 

and therefore pushes the research in this domain. By exploiting the formal analogy between electron and photon, 
researchers succeeded in designing and producing materials with astonishing optical properties: the so-called 
photonic crystals. Indeed, they could form the base of future zero threshold lasers, integrated optical fibres and 
low loss mirrors. This may allow overcoming the need for signal amplification at the end of optical fibres, great 
advance in telecommunications though possible application extend on the entire domain of optoelectronics. 

By numerical simulation, this project aims to compute and model the optical properties of bidimensional pho-
tonic crystals grown on a plane, conductive surface by electron-induced deposition of a gas precursor. These 
crystals may be designed as frequency filters (band gap), wave-guides and so on. They can be deposited with the 
institute’s scanning electron microscope. So, the customer can freely choose the crystal design provided he does 
not ask for feature sizes below 100nm. 

Tasks: 
Simulate the behaviour of some photonic crystals, model the effects and pass the results to Mr Adrian Bach-

mann for the fabrication of some test samples. Finally, it should be possible to verify the model by measuring the 
produced samples. 

Theory: 70% 
Praxis: 30% 

Student: 
Marcel Leutenegger 

marcel.leutenegger@epfl.ch 

Support: 
Ass. Ivo Utke 

ivo.utke@epfl.ch 
021 693 51 81 
BM–4.109 

Prof. Olivier Martin 
olivier.martin@ifh.ee.ethz.ch 
01 632 57 22 
ETZ–H6 

Prof. Patrik Hoffmann 
patrik.hoffmann@epfl.ch 
021 693 60 18 
BM–4.117 

Delays: 
Report 

a hand out until 1700 on 21 June 2002 to Prof. Hoffmann, Prof. Martin and Mr Utke 

Presentation 
15´ presentation followed by 15´ discussion 
begin at 1430 on 26 June 2002 
room BM–5.202 at campus 
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11..  IInnttrroodduuccttiioonn  
The perhaps first photonic crystals are commonly told Bragg reflectors. Although, the theoretical generalisa-

tion to multidimensional structures was done in the 1960’s... the solutions could not be extracted analytically in a 
quite exact manner. Thus, it needed the appearance of powerful personal computers in the 1990’s to make nu-
merical calculation feasible at reasonable costs and computation time. 

Nowadays, photonic crystals are easily designed through numerical simulation, but their realisation and test 
became the critical step. At some exceptions, the experimental work was made in the far infrared or even micro-
wave range at wavelengths above 10µm. In contrast, the crystals made during this project are sensed to work in 
the visible range – in particular at the HeNe laser wavelength of 633nm. In consequence, the feature size is of the 
same scale, thus about 100nm to 500nm. Stepping down the wavelength to less than 1/10th of the usual values 
expects nanotechnology for fabrication, high-resolution microscopy/interferometry during tests, and not at least 
other optical materials transparent for the visible light. On one hand, this complicates work, but on the other 
hand, at least the intensity distribution in the photonic crystals should be directly visible by microscopy. 

What are photonic crystals? 
Generally, people know about the solid-state physics, explaining for example the differences between electric 

isolators (ceramics, diamond...), semiconductors (Si, Ge, GaAs...) and conductors (metals). Most of the electrical 
phenomena deduce from the regular and periodic arrangement of atoms in conjunction with the atom’s chemical 
properties. This defines the electronic band structure of the mentioned materials – all crystalline – and thus their 
electric properties. 

 Analogous, photonic crystals are made of several materials in a regular and periodic arrangement. Whereas the 
electrons in a crystal interact with the Coulomb potential of the atoms, the photons in a photonic crystal ‘feel’ the 
refractive indexes of the materials. This leads to a formally analogue description of the optical behaviour in 
terms of a photonic band structure. Note that the optical properties are controllable by the particular design of a 
photonic crystal, exactly like a semiconductor’s electrical properties are controlled by the atom stochastic and 
their spatial arrangement. 

Project goals 
•  Understanding the concepts, in particular the band structure and the associated analytical and numerical 

models. 
•  Numerical computation of 2D photonic crystals. 
•  Co-operation with Mr Adrian Bachmann for the fabrication of some particular samples and their measure-

ment. 
•  Comparison of the measures and the computed predictions – if possible in a quantitative manner. 

Framework 
•  Initiation of a new research domain at the institute. 
•  Implantation and test of some basic software tools. 
•  Provision of a "photonic crystals shorthand". 

Applications 
•  Low loss mirrors as generalised Bragg reflectors extending the working range for either the incidence angle 

or the wavelength. This may be achieved through bi- or tridimensional photonic crystals.  
•  High Q laser cavities for zero threshold lasers. 
•  Wave-guides for integrated optics allowing very narrow curvatures. 
•  High Q wavelength filters. Could be used in telecommunications to split up a wavelength-multiplexed sig-

nal into its channels. 
•  Interaction of resonant structures with molecules. May be useful for the detection and identification of spu-

rious chemicals or bio molecules present in a liquid. 
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22..  TThheeoorryy  
The interaction of a radiation field with matter is the fundamental phenomena exploited in photonic crystals. It 

allows the designer of the crystal to control its optical properties in an exhaustive range. In fact, it took some 
time until researchers noted that the flow of photons is controllable in a manner similar to the flow of electrons 
in semiconductors. 

Because of the strong analogy between semiconductors and photonic crystals, the reader is expected to have 
just an elementary knowledge of electromagnetism, quantum mechanics, solid-state physics and complex analy-
sis. This chapter gives an introduction in the theory used for the present work. Far from being complete, the in-
terested reader finds detailed information in the literature. 

22..11  BBaassiicc  pprroobblleemm  
In a material with no free electric charges and no electric current, the Maxwell equations for electromag-

netic fields lead to the following Helmholtz wave equations. Particularly, in free space: 

( )( ) ( )trtr E
tc

E ,2

2

2,
1

��

��

∂
∂−=×∇×∇  where 

00

1
µε

=c  is the velocity of light in free space (1) 

( )( ) ( )trtr H
tc

H ,2

2

2,
1

��

��

∂
∂−=×∇×∇   (2) 

If light travels in matter, its electric displacement is multiplied by the relative dielectric constant ( )r�ε . At 
optical frequencies, magnetic materials are rare. So, this work exclusively treats dielectric materials with a 
relative magnetic constant assumed to be ( ) 1=r�µ . Hence, the Helmholtz equations transform to: 

( )
( )( ) ( )trtr

r
E

tc
E ,2

2

2,
11

��

�

��

∂
∂−=×∇×∇

ε
 (3) 

( )
( ) ( )trtr

r
H

tc
H ,2

2

2,
11

��

�

��

∂
∂−=

�
�

�

�

�
�

�

�
×∇×∇

ε
 (4) 

Seeking these equations by 

( ) ( ) ti
rtr eEE ω−= ��

��

,  and ( ) ( ) ti
rtr eHH ω−= ��

��

,  (5) 

leads to the angular frequency ω and the corresponding spatial fields ( )rE �

�

 and ( )rH �

�

[1]. Then, the dispersion 

relation dkvd g ⋅=ω  (where gv  stands for the group respectively energy velocity) can be derived and the 
density of states approximated. 

Note that the angular frequency is a global constant. This means that only elastic scattering is considered [2]. 
The angular frequency is in fact an eigenvalue of the wave equations and its corresponding fields are the re-
lated eigenfunctions. Hence, these eigenfunctions should satisfy the following eigenvalue equations: 

( )
( )( ) ( )rr

r
E

c
E ��

�

��

2

21 ω
ε

=×∇×∇  (6) 

( )
( ) ( )rr

r
H

c
H ��

�

��

2

21 ω
ε

=
�
�

�

�

�
�

�

�
×∇×∇  (7) 

Designing a photonic crystal is equivalent to layout a material with a periodic ( )r�ε  such that the solutions of 

(3) and (4) follow the design specifications. In the case of simple functions like a sinusoidal ( )
1−

r�ε , it is possi-

                                                           
1 The fields are noted as phasors – thus, an electric or magnetic field magnitude and a phase shift are assigned to each posi-

tion. 
2 In fact, inelastic scattering or fluorescence do affect the angular frequency but are not dealed with in this paper. 
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ble to perform an analytical study. For a general ( )r�ε , only an iterative numerical design proofed feasible. 

Hence, for a given periodic ( )r�ε , numerical calculation extracts solutions in a specified frequency range. In 

consequence, ( )r�ε  is adapted and the calculation is relaunched until a suitable behaviour has been achieved. 

22..22  DDeessccrriippttiioonn  ooff  tthhee  ccrryyssttaall  ssttrruuccttuurree  
Given a periodic material, it can be fully qualified by the definition of its base pattern and its periodicity. 

This description will show up very graceful, because it automatically minimises the number of parameters for 
numerical calculation. 

Image 1 shows a bidimensional 
crystal. The crystal structure is 
represented by a set of base vec-
tors and a corresponding pattern. 
The pattern is simply copied at 
each location reachable by an inte-
ger linear combination of the base 
vectors. For any integer k and l, 

Trr
�

��

+=′  with blakT
�

�

�

+=   (8)

points to a translation grid point 
where to copy the pattern to. 

Note that the base vectors and 
the pattern are not unique. The pat-
tern is called unit cell, whereas the 
translation grid is known as the 
crystal lattice. They are primitive, 
if for every point r� and r ′� , from 
where the crystal has the same 
structure, (8) is accomplished. The 
unit cell fills up the entire crystal 
volume by repetition on the lattice. 

a

b

c

d

Image 1: Example of a 2D periodic structure. 
The base pattern is bound on the translation grid spanned 
by the vector pairs a� and b

�

, respectively c� and d
�

. It is re-
peated at each grid point. 

Note that the primitive lattice points and the primitive unit cell volume are invariant to any set of lattice 
vectors one chooses. Image 1 shows two of many possible choices: i) the vector pair ( a� / b

�

) and its unit cell 
attached on the grid points at its lower left corner, and ii) the vector pair ( c� / d

�

) with a unit cell attached 
somewhere in its inner region. 

 
Image 2: Sample 1D crystal 

 
Image 3: Sample 2D crystal 

 
Image 4: Sample 3D crystal 

22..33  RRaaddiiaattiioonn  mmooddeess  ≡≡  eeiiggeennmmooddeess  ooff  tthhee  pphhoottoonniicc  ccrryyssttaall  
The eigenvalue equations (6) and (7) showed that any propagating electromagnetic wave is an eigenmode 

in the photonic crystal. Other modes cannot transverse long distances – indeed, they are evanescent modes [3]. 
                                                           
3 The material is considered to be free of absorption. Also, diffusion is not present – this means that only the variation of 
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As the crystal has a periodic function ( )r�ε , the Bloch’s theorem [4] can be applied to the eigenvalue equations. 

Therefore, ( )rE �

�

 and ( )rH �

�

are characterised by a wave vector k
�

in the first Brillouin zone and a band index n: 

( ) ( ) ( )
rki

rnkrnkr euEE
�

�

�

�

�

��

�� •== ,,  where ( ) ( )rnkTrnk uu �

��

�

�

,, =+  (9) 

( ) ( ) ( )
rki

rnkrnkr evHH
�

�

�

�

�

��

�� •== ,,  where ( ) ( )rnkTrnk vv �

��

�

�

,, =+  (10) 

 for any lattice translationT
�

 

Because of the periodicity of the photonic crystal and the same periodicity of the solutions, it suffices to 
know the fields in one primitive unit cell. The global solution is then given by simple replication over the 
crystal lattice. Because of the fields’ periodicity and continuity, they have to be equal on opposite boundaries 
of the unit cell. 

Think of a wave travelling through the photonic crystal. Intuitively, it does not astonish that the wave’s 
field reproduces the crystal period, such that it behaves in the same manner in each unit cell it encounters. In 
particular, this holds for non-absorbing crystals. But even if the wave is absorbed, it attempts to reproduce the 
crystal period while loosing intensity. 

22..44  EExxppaannssiioonn  ooff  tthhee  eeiiggeennvvaalluuee  eeqquuaattiioonnss  
Because ( )r�ε is periodic and any solution ( ) ( ) ti

rtr eEE ω−= ��

��

,  has the same spatial period, the eigenvalue equa-
tion (6) can be expressed in terms of Fourier series. First, generalise equation (8) to three dimensions: 

�
=

=
3

1i
iialT
�

�

 where ia�  are the lattice vectors and Zli ∈  (11) 

In one dimension, the Fourier series would be expressed in terms of the base spatial frequency
a

b π2=  and 

its harmonics lbG = . In three dimensions, this is rewritten as [5]: 

�
=

=
3

1i
iiblG
��

 where ib
�

are the reciprocal lattice vectors and Zli ∈  (12) 

 such that 
�
�
� =
==•

else0
if2

2
ji

ba ijji
π

πδ
�

�

 (13) 

The dielectric function ( )r�ε and equation (9) are now expanded in Fourier series: 

( ) ( )�
•=

G

rGi
G

r
e

�

�

�

�

�

κ
ε

1  where ( )G
�κ  are the Fourier coefficients of ( )

1−
r�ε  (14) 

( ) ( )�
••=

G

rGi
Gnk

rki
rnk eEeE

�

�

�

��

�

�

�

�

��

,,  with the Fourier coefficients ( )GnkE ��

�

,  (15) 

Because the results are searched in terms of plane waves [see equation (9)], this method is called the 
planewave expansion method. Of course, solutions can be found by other base functions, such as spherical 
waves. Indeed, the spherical wave expansion method has proved its advantages for the numerical calculation 

                                                                                                                                                                                     
the relative electric constant scatters the wave. 

4 The theorem holds for photonic crystals too. It originates from the description of the electron behaviour in the periodic 
electric potential due to the regular arrangement of atoms in crystalline solids. Bloch stated that the eigenfunctions of the 

Schrödinger equation for a periodic potential can be expressed as products of plane waves rkie
�

�

• with corresponding func-
tions ( )rku �

� . These Bloch functions ( )rku �

�  depend on the wave vector k
�

and are periodic in the crystal lattice so that 

( ) ( )rkTrk uu �

��

�

� =+  for any lattice translationT
�

. 
5 See "2.8 Real versus reciprocal lattice" on page 11. 
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of photonic crystals with cylindrical or spherical shapes in ( )r�ε . 

To complete the expansion, equation (6) is finally rewritten as: 

( ) ( )( ) ( )rnk
nk

rnk
r

E
c

E �

�

�

�

�

�

��

,2

2
,

,
1 ω

ε
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•′+
′

• =
�
�

�

�

�
�

�

�
×∇×∇

�
�

�

�

�
�

�

�

G

rGki
Gnk

nk

G

rGki
Gnk

G

rGi
G eE

c
eEe

�

�

��

��

�

�

�

��

��

�

�

�

�

��

,2

2
,

,

ω
κ  

( ) ( ) ( ) ( ) ( )
���

•+

′

•′+
′

• =�
�
�

�
�
� ×∇×∇

G

rGki
Gnk

nk

G

rGki
Gnk

G

rGi
G eE

c
eEe

�

�

��

��

�

�

�

��

��

�

�

�

�

��

,2

2
,

,

ω
κ  

( ) ( ) ( ) ( ) ( ) ( )
���

•+

′

•′+
′

• =�
�
�

�
�
� ×′+×∇

G

rGki
Gnk

nk

G

rGki
Gnk

G

rGi
G eE

c
eEGkie

�

�

��

��

�

�

�

��

��

�

�

�

�

����

,2

2
,

,

ω
κ

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
���

•+

′

•′+
′

• =×′+×′+−
G

rGki
Gnk

nk

G

rGki
Gnk

G

rGi
G eE

c
eEGkGke

�

�

��

��

�

�

�

��

��

�

�

�

�

������

,2

2
,

,

ω
κ  

( )( ) ( ) ( )( ) ( )Gnk
nk

G
GnkGG E

c
EGkGk ��

�

�

����

������

,2

2
,
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ω
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′
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The left hand side of equation (16) is computed up to a sufficiently large number N of G′
�

 and an eigen-
value problem is solved to extract the eigenvalue 2

,nk
�ω . So, the dispersion relation ( )kn

�ω of the photonic crys-

tal is obtained by computation of interesting frequency bands at some k
�

points. 

22..55  PPrrooooff  ooff  BBlloocchh’’ss  tthheeoorreemm  
First, the eigenvalue equation (6) in is rewritten as: 

( )( ) ( ) ( )rrr E
c

E ���

��

εω
2

2
=×∇×∇  (17) 

To pass to the Fourier domain, the dielectric function is expanded in a Fourier series and the electric field’s 
eigenfunction as a Fourier integral: 
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This has to hold for all position vectors r� , so the integrand needs to vanish: 

( )( ) ( ) ( ) 02

2
=+×× � −

G
GkGk A

c
Akk

�

����

����

εω  (19) 

Equation (19) implies, that all Fourier components ( )kA �

�

 not related to the reciprocal lattice vectors are zero. 

This means that the electric field can be expressed in a Fourier series instead of a Fourier integral. Therefore: 

( ) ( ) ( ) ( ) ( )
rki

rk
G

rGi
Gk

rki

G

rGki
Gkrk eueAeeAE

�

�

�

�

�

�

�

��

�

�

�

�

��

��

�

�

�

��� ••−
−

••−
− === ��  (20) 

The electric field is periodic with the same period as the dielectric function. In general, the number of Fou-
rier components is not limited, so that equation (19) expands to an infinite set of eigenvalue equations. 
Hence, the eigenvalues and eigenfunctions are indexed by a subscript n. 

Here, equation (9) has been showed. Of course, equation (10) can be proved in a similar manner. 

22..66  SSccaalliinngg  llaawwss  
There are some useful properties of photonic crystals. Here, it will be shown that a uniform scaling of the 

spatial period, the time or the dielectric function results in a uniform scaling of the crystal’s eigenfrequencies 

nk ,
�ω . 

First, given a uniform scale of the dielectric function: 

( ) ( )rr m ��

� εε =  where 0>ℜ∈m  (21) 

Inserted into equation (17) leads to: 

( ) ( ) ( )rrr E
c

E ���

�

�

�

�
�

�

εω
2

2
=�

�
�

�
�
� ×∇×∇  (22) 

By comparison with equation (17), the results can be derived immediately: 

m
ωω =�  and ( ) ( )rr EE ��

�

�

�

=  (23) 

Second, given a uniform scale of the spatial period and the time. If the scale factor a is the crystal’s lattice 
size, the new variables r

�

� and t
�

are dimensionless: 

a
rr
�

�

� =  and t
a
ct =

�

 where 0>ℜ∈a [m] (24) 

The Helmholtz equation (3) is transformed to: 

( ) ( ) ( )trtr
r

E
t

E �
�
��

�
�

�
�

�

�

�

�

���

,2

2

,
1

∂
∂−=�

�
��

�
� ×∇×∇

ε
 where ∇

�

denotes the differentiation with respect to r
�
�  (25) 

This equation implies that its solutions can be linearly transposed to another crystal differing only in length 
but not in structure. Hence, a specific structure needs to be computed once and holds the solutions for any 

scaled structure. By convention, the computation is done for the normalised k-vectors k
�

�

 and results in the 
normalised eigenfrequencies ω� . They are then scaled to the considered crystal by: 
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k
a

k
�

�� π2=  and ωπω �

a
c2=  where the factor π2 has been inserted by convention [6] (26) 

22..77  NNuummeerriiccaall  ccoommppuuttaattiioonn  
So far, the analytical computation of the dispersion relation in a photonic crystal has been showed. For nu-

merical computation, the equations need to be discretizised. Equation (16) suggests an elegant solution. It re-
lates the Fourier coefficients ( )G

�κ  of the inverse dielectric function ( )
1−

r�ε  (14) to the Fourier coefficients 

( )GnkE ��

�

,  of the eigenfunction ( )rnkE �

�

�

,  (15). First, the volume of the crystal’s unit cell is divided into N volume 

elements. For each element, ( )
1−

r�ε  is determined [7]. Then, the discrete Fourier transform yields the N coeffi-

cients ( )G
�κ . Thus, equation (16) expands into N linear equations at N coefficients each. A complete solution 

would mean to diagonalize a N2 matrix – a time consuming task even for moderate N and just impossible for 
big N! Fortunately, in most cases, a partial solution – say M eigenvalues and eigenfunctions with M << N – is 
sufficient for the analysis or the design of a photonic crystal. A subset of M eigenvalues can be computed 
much faster using a converging iterative eigensolver. 

Note that the solution of equation (9) by use of equation (16) includes spurious zero modes that are not pre-
sent for equation (10). Indeed, equation (10) maintains transversality [8], thus eliminating the zero modes. 
Advantageously, calculation is done for the magnetic field. Hence, the electric field can be derived by pro-
portionality. 

22..88  RReeaall  vveerrssuuss  rreecciipprrooccaall  llaattttiiccee  
To show the expansion of the eigenvalue equations, the reciprocal lattice was mentioned and its lattice vec-

tors were given by equation (12). This section details the meaning of the reciprocal lattice and shows how it 
is linked to the crystal lattice. 

Remind the commonly known Bragg grids.
Indeed, they are 1D photonic crystals. The im-
age 5 shows two examples with equal primitive
lattices but different primitive unit cells. 

Each unit cell reflects part of the incident
light due to the modification of the dielectric
constant. The total reflection is particularly
high at all wavelengths that produce construc-
tive interference between the reflected parts.
On the other hand, the total transmission is par-
ticularly high at all wavelengths that give de-
structive interference between the reflected
parts. 

It may astonish that both Bragg grids reflect
light mainly at the same wavelengths. Indeed,
the unit cell pattern determines essentially the
reflection efficiency for wavelengths around
the ‘exact’ values where they themselves are
determined principally by the lattice size a and 
the volumetric mean ( )r�ε . 

a
�

a
�

a�
 

Image 5:  Two Bragg grids in the core of an optical fi-
bre. In this example, both have the same spa-
tial period a� . Hence, both reflect the red 
light and transmit the blue one. The point 
grid below retains the spatial period but ab-
stracts from the pattern. 

                                                           
6 k

�
�

 and ω�  are normalised to unity. The frequency is given by ω�
a
cf =  and the wavelength in the crystal by 

k
a
�=λ . 

7 This is a critical task! The solution’s accuracy and the eigensolver’s convergence speed are strongly modified by the 
manner of how the inverse dielectric function is attributed to the volume elements. See section 2.3 in "Block-iterative 
frequency-domain methods for Maxwell's equations in a planewave basis" for detailed info. 

8 The magnetic field ( )GnkH ��

�

,  is always perpendicular to the vector Gk
��

+ . See the proof at section 2.1 in "Optical Proper-

ties of Photonic Crystals". 
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Because of its dominant role, the lattice will be adjoined with its reciprocal representation in the k-space. In 
the case of the linear lattice a� , its reciprocal lattice is also linear with the lattice vector: 

aa
a

a
a

a
b

��

��

�

•
== ππ 22  so that π2=• ba

�

�

 (27) 

The crystal lattice is a lattice in real space. Its lattice vectors are in units of length [m]. But the reciprocal 
lattice is a lattice in the k-space with inverse units [m-1]. For example, imagine a plane wave propagating in 
the lattice direction: 

( ) ( )tkri
tr eEE ω−•=

�

�

�

��

0,  where ar
��

and bk
��

 (28) 

( )
�
�

�
�
�

� −
=

tzi
tz eEE

ω
λ
π2

0,
��

  (29) 

The scalar product kr
�

�

•  in the exponential is a product of a position vector r� in the real lattice with a wave 
vector k

�

in the reciprocal lattice. If the wave field is known only at the lattice points, a wave with wavelength 
0λ  cannot be distinguished from any other with wavelength: 

0

0
λ
λλ
+

=
an
an

n  where Zn ∈  (30) 

Inserted into equation (29), it can be seen that the exponential takes the same value on the lattice points 
at maz = with Zm ∈ . In fact, this is just a manifestation of Shannon’s sampling theorem. In k-space, it can 
be written as: 

bnkkn
���

+= 0  where Zn ∈ and 
�
�
�

�

�
�
�

�
+−∈

2
,

20
bbk
��

�

 (31) 

The range of 0k
�

is the so-called first Brillouin zone [9]. In the reciprocal lattice, the first Brillouin zone 0B  
is nothing else than the unit cell that yields: 

min0

0

ofchange  →• ∂
�

B

B

dBkk
��

 where 0B  is the constant volume (32) 

 and 0B∂ the variable shape of the reciprocal unit cell 

The concept of the reciprocal lattice can be applied to any 3D lattice as it was already mentioned in the 
equations (11) and (12). The scalar product of a lattice translation with a reciprocal lattice translation yields: 

���� •=•
�
�

�

�

�
�

�

�
=•

i j
jjii

j
jj

i
ii bmalbmalGT

�

�

�

�

��

 (33) 

Inserting equation (13) leads to: 

( )integer22 ππ ==• �
i

iimlGT
��

 because Zml ii ∈,  (34) 

This implies that plane waves with s'k
�

 differing by G
�

 present the same fields on all lattice points T
�

. In-
deed, equation (31) can be generalised to: 

Gkk
���

+= 0  where 00 Bk ∈
�

 (35) 

Note that the different waves have different energies. Hence, even if they seem to be identical on the lattice 

                                                           
9 Any wave with 

�
�

�

�

�
�

�

�
+−∈

2
,

2
bbk
��

�

 sampled at the lattice points can be entirely reconstructed by interpolation. 
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points, their fields in the interior of the unit cell are well different. Indeed, the concept of the reciprocal lattice 
and the Brillouin zones will be very handy to represent the dispersion relation in a compact manner [10]. 

Given the lattice vectors, the reciprocal lattice vectors derive from equation (13). For example, the vector 

1b
�

 stays perpendicular to the vectors 2a�  and 3a� . Hence it has to be parallel to 32 aa ��

× . Its projection on 

1a� has to be π2 , thus ( ) π2321 =×• aaCa ���

. Solving for C yields: 

0

21

213

21
3

0

13

132

13
2

0

32

321

32
1

22

22

22

V
aa

aaa
aab

V
aa

aaa
aa

b

V
aa

aaa
aa

b

��

���

��

�

��

���

��

�

��

���

��

�

×=
×•

×=

×
=

×•
×

=

×
=

×•
×

=

ππ

ππ

ππ

 where 0V  is the volume of the unit cell (36) 

Often, the constant π2 is omitted. So, be careful when interpreting the reciprocal lattice! 
For 2D lattices, a third lattice vector 

13 aa ��

⊥ and 2a�  is introduced to apply 
the equations (36). The third recipro-
cal lattice vector 3b

�

 is then parallel to 

3a�  although meaningless. 

Image 6 shows a simple 2D rectan-
gular lattice. Note that the first Brioul-
lin zone 0B  is the surface around the 
lattice origin. It extends just to the 
first of the perpendicular bisectors that 
are drawn between the lattice origin 
and its neighbouring lattice points. 
This is the geometrical equivalent of 
condition (32). 

1a
�

2a
�

x

y z3a
�

0V

 

x

y

2b
�

1b
�

0B

 
Image 6: Square lattice with lattice size a and its reciprocal lat-

tice – also square with lattice size b. One of the unit 
cells and the first Brioullin zone are greyed. 

22..99  PPoollaarriissaattiioonn  
In 1D photonic crystals, the crystal structure is strictly equivalent for both the electric and magnetic field. 

Hence, the solutions do not depend on polarisation. 
In 2D photonic crystals, the dielectric constant varies in a plane. Now, the crystal structure differs for 

waves with different polarisation. Nevertheless, all solutions can be obtained from a superposition of two 
particular linear polarisations: a transverse electric (TE ≡ electric field in–plane) and a transverse magnetic 
(TM ≡ magnetic field in–plane) wave. Indeed, the electric field of the TM wave is always parallel to the 
structure variations. Hence, it has to be continuous across the material boundaries. On the other hand, the 
electric field of the TE wave is only partially parallel to the structure variations. Hence, its perpendicular part 
need not be continuous across boundaries. 

In 3D photonic crystals, results depend on polarisation. Here, the polarisation is considered to be random, 
thus only yielding solutions for any polarisation. 

22..1100  DDeennssiittyy  ooff  ssttaatteess  
The density of states can be readily computed out of the total number of modes up to a specified quantum 

energy. In free space, the total number of modes up to an energy of 0ω�  in the volume 0V  is given by: 

( ) ( ) ( ) 32

3
00

3
0

3
0

3
0

33
4

2
2

2
2

0

0 c
V

c
VkdVN

ck π
ωωπ

ππ ω
ω =�

�

�
�
�

�== �
<

�

 (37) 

where two orthogonal linear polarisations (independent) were considered. 
                                                           
10 See "3.1 Band diagrams" on page 15. 

http://dict.leo.org/?search=perpendicular&p=/fp..
http://dict.leo.org/?search=bisector&p=/fp..
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The density of states is then: 

( ) 32

2
00

0
0 c

VND
π
ω

ω ωω
ω =

∂
∂=

=
 in volume 0V  (3D) (38) 

 2
00

c
S
π
ω=  on surface 0S  (2D) (39) 

 
c
L
π

02=  on distance 0L  (1D) (40) 

In the general case of photonic crystals, constant quantum energy does not describe a circular/spherical sur-
face in the reciprocal space. Thus, the total number of modes and the density of states are more difficult to 
compute. Nevertheless, the density of states can be approximated if the speed of light c is replaced by the 
mean group velocity gv  for waves of the energy 0ω� . 
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33..  PPhhoottoonniicc  bbaanndd  ssttrruuccttuurreess  
This chapter deals with the representation of the dispersion relation by so called band diagrams. It should help 

to understand how to read out the characteristics of a photonic crystal – for example band gaps, group velocity or 
an approximation of the density of states. 

33..11  BBaanndd  ddiiaaggrraammss  
Remind the dispersion relation dkcd ⋅=ω in free 

space. It could be represented by a straight line in a
ω-k-diagram like in graph 1. Now, introduce a peri-
odic change of the dielectric constant in the x-
direction. The modified dispersion relation

dkvd g ⋅=ω  could be represented in the same dia-
gram. This works fine for 1D problems. But, in the
case of 2D or 3D crystals, how to represent the dis-
persion relation for different directions in the same
graph? 

Section 2.4 showed that the dispersion relation
splits up in frequency sub-bands ( )kn

�ω . And section 

2.8 introduced the first Brioullin zone assigned to
the reciprocal lattice. 

ω

k

slope = c

0
0

aπ2 aπ3aπ

gv=slope

1

2

3

4

Graph 1: Dispersion relation in free space and for 
a 1D photonic crystal (Bragg reflector).

Hence, the spatial frequencies kak ∆+=π2 in the second and 
kak ∆−= π33  in the third Brioullin zone correspond to kak ∆−=π1 in 

the first Brioullin zone! This is equivalent to fold graph 1 at the Brioullin 
zone boundaries. The result is the so-called band diagram showed in graph 2. 
By convention, for integer n, the spatial frequencies ank π2⋅= are told the 
gamma point Γ and the X point stands for ( ) ank π25.0 ⋅+= . The dashed 
lines indicate the band structure of a homogeneous material, whereas the
thick lines show the first four bands of a sample Bragg reflector. 

Caution: 
Be careful when read out k-values, because the k-axis is not necessarily 

scaled uniformly! In this paper, the scaling is always the geometrical path 
length appearing in the reciprocal lattice. 

ω

k
Γ

0
1

2

3

4

X  
Graph 2:  Band diagram 

33..22  IInntteerrpprreettaattiioonn  
Look at the examples in graph 2 and image 8. A band diagram directly shows a part of the dispersion rela-

tion of a photonic crystal. Image 8 shows the relation of ( )k
�ω  on the boundary of the irreducible Brillouin 

zone. If a plane wave with frequency ω is incident on the crystal in one of the presented directions, the band 
diagram informs about its spatial wave vector k

�

. If the frequency ω falls in an ´empty´ range in its direction 
– a so called partial band gap – the crystal does not accept a propagating wave of that frequency and direc-
tion. Indeed, the crystal would add an imaginary contribution to ω, thus forcing the wave to be evanescent. 

First, consider a propagating wave. The slope dkdω at the wave’s ( )( )kk �

�

ω/  point gives the wave’s group 

and energy velocity gv  in the crystal [11]. Whereas the group velocity is well defined, the phase velocity is 
not because of the difficulty to follow the propagation of a specified wave front (constant phase). As an ex-
ample, look at the first band in image 8. For small k

�

 around Γ, the group velocity is nearly constant in all di-
rections. But as k

�

approaches M or X, the wave significantly slows down. Surprisingly, it stops propagating 

                                                           
11 See section 2.5 in "Optical Properties of Photonic Crystals" for details on the relation of the phase, the group and the en-

ergy velocity in a photonic crystal. 
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at the M and X points [12]. Such "zero velocity" points are called band edges. The light they capture is said to 
be frozen. 

Second, consider an evanescent wave. In the crystal, this wave cannot travel through long distances. Hence, 
it will be reflected rather than transmitted. The effect is very similar to the total internal reflection in dielec-
tric wave-guides [13]. Frequency ranges where particular high reflection occurs are called band gaps. If the 
gap is present for any direction, it is a full band gap (like the light red zones in image 8), otherwise a partial 
one (light blue zone). Band gaps are always limited by band edges. 

Besides, analysis shows that the wave penetrates the deeper into 
the crystal the more its frequency approaches a band edge. 

How can we figure out the capacity of the crystal to transmit re-
spectively reflect light? Look at graph 3. This is just another repre-
sentation of the dispersion relation in image 8. The relationship of 
temporal and spatial frequency has been dropped in favour of a 
summary count of accepted modes – so called states. 

The full band gaps are of course the zones with no states at all. 
On the other hand, the extremely flat bands at 9.0≈f show up in 
an increased state count. The state count is approximately propor-
tional to the density of states and the crystals capacity of transmit-
ting light, where the dispersion relation shows at which velocity 
transmission occurs. 

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

states [counts]

f [
c/

a]

 
Graph 3: Modes of the example in 

image 8. 

33..33  SSqquuaarree  llaattttiiccee  
This lattice is highly symmetric be-

cause it is invariant to: 
- rotations of integer multiples of 

90° around the origin 
- reflections at the x,y = 0,±0.5a 

and x = ±y axes 
- point reflection at the origin 

Because of symmetry, the first Bri-
oullin zone can be reduced to an even 
smaller zone. If the dispersion relation 
has been computed for the irreducible 
Brioullin zone rB , then it can be ex-
panded by symmetry on the entire first 
Brioullin zone. 

x

y

0V
1a
�

2a
�

 

x

y

2b
�

1b
�

0B

 
Image 7: Square lattice with lattice size a and its reciprocal lat-

tice – also square with lattice size b. One of the unit 
cells and the first Brioullin zone are greyed. 

                                                           
12 In praxis, quantum mechanics inhibits exact knowledge of ω and k

�

. Hence, the wave is always propagating even in a 
perfect crystal. If some absorption is present, it will advantageously weaken the bands definition (smear them out). 

13 Must not be confused! Total internal reflection occurs at the boundary from a 'denser' to a 'lighter' dielectric material. In 
contrast, the mean dielectric constant of a photonic crystal is generally higher than the one of the surrounding optical me-
dium. 
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For example, the square lattice made 
of cylindrical rods keeps the lattice 
symmetry. Hence, the k-points X and 
Y are equivalent and need not to be 
computed separately. 

Special points 

The gamma point 0: =Γ Γk
�

 de-
notes always the origin of the recipro-
cal lattice. 

 

ΥΧΜ

Υ

Χ

±=Μ

±=Υ

±=Χ

kkk

bk

bk

���

�

�

�

�

:
2

:

2
:

2

1

 

2b
�

1b
�

0B

rB

Γ Χ

ΜΥ

 

f [
c/

a]

M G X M
0.0

0.2

0.4

0.6

0.8

1.0

 
Image 8: a) First Brioullin zone with the irreducible Brioullin 

zone rB  darkened 

b) TM band structure of a photonic crystal with a cy-
lindrical rod of infinite height on every lattice point 
[14]. The rods have a radius ar 3.0=  and a dielectric 
constant 9=rε . They are set in air with 1=rε . 

The first two complete band gaps are marked in light 
red, a partial band gap in light blue. Note the particu-
larly flat bands at 9.0≈f . 

33..44  TTrriiaanngguullaarr  llaattttiiccee  
This lattice is also highly symmetric 

because it is invariant to: 
- rotations of integer multiples of 

60° around the origin 
- reflections at the x,y = 0 axes 

and their replica rotated at ±30° 
around the origin 

- point reflection at the origin 

Because of symmetry, the first Bri-
oullin zone can be reduced to a very 
small zone. If the dispersion relation 
has been computed for the irreducible 
Brioullin zone rB , then it can be ex-
panded by symmetry on the entire first 
Brioullin zone. 

x

y

0V

1a
�

2a
�

 

x

y

2b
�

1b
�

0B

 
Image 9: Triangular (hexagonal) lattice with lattice size a and 

its reciprocal lattice – also triangular with lattice size 
b. One of the unit cells and the first Brioullin zone are 
greyed. 

                                                           
14 See image 7. 



Computation of custom made photonic crystals  Lausanne, June 25, 2002 
Leutenegger Marcel 
 

 18 

For example, the triangular lattice 
made of cylindrical rods keeps the lat-
tice symmetry. 

Special points 

The gamma point 0: =Γ Γk
�

 de-
notes always the origin of the recipro-
cal lattice. 
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2

,
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3
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0.0
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0.4

0.6

0.8
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Image 10: a) First Brioullin zone with the irreducible Brioullin 

zone rB  darkened 

b) TM band structure of a photonic crystal with a cy-
lindrical rod of infinite height on every lattice point 
[15]. The rods have a radius ar 3.0=  and a dielectric 
constant 9=rε . They are set in air with 1=rε . 

The first three complete band gaps are marked in light 
red, a partial band gap in light blue. 

                                                           
15 See image 9. 
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44..  EExxaammpplleess  ooff  ccoommppuutteedd  pphhoottoonniicc  ccrryyssttaallss  
This section presents some calculation results and their interpretation. Remind the goal behind these computa-

tions: predict the behaviour of some sample 2D photonic crystals designed for use at the HeNe laser wavelength. 
The sample structures had been restricted to square and triangular lattices – for computational ease [16] as well as 
to stay comparable with other works. A couple of graphs can be consulted in the annexe. 

44..11  SSqquuaarree  llaattttiiccee  wwiitthh  ssiimmppllee  uunniitt  cceellll  
The following results were computed for square lattices with size a and a 

single cylindrical rod in each unit cell. The rod is parallel to 21 aa ��

× , has a 
radius r and is made of a dielectric non-absorbing material with dielectric 
constant 0εεε r= . The unit cell is filled up with air. 

Graph 4 shows the band gaps in function of the ar  ratio for a high ε-
contrast of 11. Note the presence of several transverse magnetic (TM) band 
gap regions, whereas the transverse electric (TE) band gaps are nearly ab-
sent. In the 20th lowest bands, there is no full polarisation independent band
gap. 

The lowest TM band gap region is spanned by the 1st and 2nd tm bands. It 
has its largest relative range for ar 2.0≈ . Remind the method of comput-
ing the photonic bands: it has been showed that the 1−

rε  function is sampled

0V

1a
�

2a
�

r

Image 11: Square lattice 

f [
c/

a]

r [a]
0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 
Graph 4: Gap map for 11=rε . TE band 

gaps in red and TM band gaps 
in blue. 

and that the fast Fourier transform is taken. The extent of
the lowest band gap depends mainly on the first Fourier coef-
ficients representing the mean value and the main frequency.
Indeed, for ar 2.0≈ , the main frequency coefficient is near 
its maximum to give rise to the first band gap’s largest ex-
tent. The mean value determines mainly the mean band gap

frequency. Hence, for increasing ar , 1−
rε decreases and the 

band frequencies do follow this decrease. Just remind that on

a global view, the mean value 
2

nr =ε is given by the mean 
refractive index n. 

Take a look at graph 5 now. A 1D photonic crystal has al-
ways full TE/TM band gaps for every thickness ratio be-
tween air and high ε regions! Well, the TE and TM modes
cannot be distinguished in one dimension – they are both 
parallel to any modification of the dielectric constant. But, in
contrast to the 2D crystal, the 1D crystal has a lot of large
band gaps covering in total more frequencies than the propa-
gating modes! 

Why is the performance of the 2D crystal so 'bad'? Indeed,
a wave travelling in the 1D crystal feels a unidirectional ret-
roaction – coming from the partial reflections at the layer
boundaries. In contrast, a wave propagating in the 2D crystal 
feels a bundle of weak reflections in all directions – scattered 
at the boundaries of the cylindrical rods. So, the retroaction
takes place for an entire range of periods a to a2  (x/y axis 
to the diagonal). This smooth retroaction narrows the full
band gaps because a wave can 'choose' among different
propagation directions to find a propagating mode. Hence,
full 2D band gaps are only formed at high ε-contrasts enforc-
ing the partial reflections! 

f [
c/

a]

r [a]
0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 
Graph 5: Gap map for 11=rε  and a 1D 

photonic crystal (linear lattice). 
TE/TM band gaps in green. 

                                                           
16 Because of the small and simple unit cell. 
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44..22  TTrriiaanngguullaarr  llaattttiiccee  wwiitthh  ssiimmppllee  uunniitt  cceellll  
The previous section showed that a square lattice does not offer a large TE band gap for the materials that 

Mr Bachmann could use to build up the photonic crystal samples. Therefore, the lattice structure is changed. 
Because the hexagonal lattice offers an even higher symmetry than the square one, the full TE band gaps 
were expected to be larger and more abundant. 

The following results were computed for hexagonal lattices with size a
and a single cylindrical rod in each unit cell. The rod is parallel to 21 aa ��

× , 
has a radius r and is made of a dielectric non-absorbing material with di-
electric constant 0εεε r= . The unit cell is filled up with air. 

Graph 6 shows the gap map. Note the greater number of band gaps and
the more regular arrangement of the gap regions. In the 20th lowest bands, 
there is a full polarisation independent band gap region at ar 35.0≈ and 

acf 8.0≈ . As expected, some larger TE band gap regions are present. An
interesting TE region is found at ar 16.0≈ and acf ≈ . 
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r

Image 12: Triangular lattice

Note that the bands are present at lower frequencies in the
triangular lattice than the square lattice. This is due to the
more compact hexagonal arrangement of rods – leading to an 
increased rε  – hence, lower frequency. 

Note also, that the nearly absence of large TE gaps is due to
boundary conditions. Whereas the TM polarisation has its
electric field E

�

 parallel to the z-axis and thus parallel to all
material boundaries, the TE polarisation has E

�

 in the xy-
plane, hence, in an arbitrary orientation to the material
boundaries. From Maxwell’s equations, it is deduced that the
electric displacement D

�

 component perpendicular to a mate-
rial boundary has to be continuous, whereas the parallel
component is discontinuous in general. The results is that in a
2D photonic crystal, the frequency range for propagating TM
modes is more constraint than the TE range. 
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Graph 6: Gap map for 11=rε . TE band 

gaps in red and TM band gaps 
in blue. 

44..33  PPhhoottoonniicc  ccrryyssttaall  ssaammpplleess  
Graph 6 showed the largest TE gap at ar 18.0=  for a hexagonal structure of cylindrical rods with 11=rε . 

This section details this particular configuration. 

Band gap sample: wavelength filter 

f [
c/

a]

K G M K
0.0

0.2

0.4

0.6

0.8

1.0

1.2

  
Graph 7: TE band structure for the 8th 

lowest photonic bands 
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Graph 8: Approximate density of TE states 

(arbitrary scale in [s]) 

The crystal presents a gap from band 4 to band 5 with a mid-frequency acf 92.05,4 =  and a relative extent 

5,4f 5,4f
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%3.95,4 =g . Observe the high density of states for bands with a very low group velocity. These spikes could 
be particularly interesting for a low threshold laser, because of the strong electron–photon interaction (ab-
sorption, spontaneous and stimulated emission) due to the long presence of the photons. 

For fabrication of the band gap sample, the HeNe laser wavelength needs to match 5,4f . Hence, the lattice 
constant is nm58092.0 == HeNea λ  and the cylindrical rods have a radius of nm10518.0 == ar . 

Point defect sample: high Q cavity 
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Graph 9: TE band structure for the 200th 

lowest photonic bands 
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Graph 10: Approximate density of TE states 

(arbitrary scale in [s]) 
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Graph 11:  TE band structure around the 

two point defect bands 
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Image 13: Hexagonal 5x5 supercell with 

no central rod (point defect) 

Image 13 shows the enlarged unit cell of the triangular lattice. The unit cell pattern is an exact copy of the 
band gap sample, but it lacks a single rod in the center. By the choice of a 5x5 supercell, the point defects are 
expected to be uncoupled, whereas the computational effort remains feasible [17]. Unfortunately, because of 
the 5x5 supercell, the 8 modes of the band gap sample are folded 25 times over and give rise to 200 modes in 
the same frequency range. It is possible to concentrate only on the defect modes and their neighbours to re-
duce computation time. Furthermore, if the defect modes are completely uncoupled, their group velocity is 
exactly zero – this means that the defect band is completely flat. Therefore, computation of just one k-point 
suffices in principle. 

Graph 11 shows the frequency range around both defect modes at acf point 91.0≈ . Indeed, the residual 
group velocity indicates a (very) weak coupling between the defect modes bound to neighbouring crystal de-
fects. The energy of the defect mode remains mainly in the interior of its crystal defect. This is due to the 
heavy reflection of its wavelength, so that the photons cannot escape. 

The defect modes can be considered as standing waves. For very low absorption, they create cavities with 
an extremely high quality factor – useful for telecom lasers or chronometers. 

                                                           
17 The grid was set to a relatively small number N=128x128x1. But computation of 16 k-point took two days anyway. 

pointfpointf
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Line defect sample: wave guide 
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Graph 13: Approximate density of TE states 

(arbitrary scale in counts) 
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Graph 12: TE band structure around the 

line defect modes. The K' and 
M' points are k-points out of 
the line defect direction. 

Image 14 shows the modified 5x5 supercell. Please
note that the cylindrical rods have a relative dielectric
constant 10r =ε  rather than 11. This type of photonic 
crystal can be used as wave-guide for integrated opti-
cal devices, because it supports very small curvature
radii to change the wave-guide direction [18]. 
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Image 14: Hexagonal 5x5 supercell with 

no central rods (line defect) 

44..44  AAbbssoorrppttiioonn  &&  lliimmiitteedd  ssiizzee  
If the dielectric material presents some ab-

sorption, this will reduce the strength of the
retroaction due to the reduced mean lifetime of
a photon. A similar effect can be expected for
photonic crystals with limited size – for exam-
ple a ten unit cells in each dimension instead of
an infinity number. 

The effect of weakened retroaction will be 
particular high for photonic crystals with al-
ready few retroaction (low ε-contrast). Then, it
will smear out the photonic band frequencies,
inducing a general decrease of band gap width.
Smaller gaps may disappear completely. 
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Graph 14: Band diagram for a 1D photonic crystal. At 
the left without and at the right with heavy 
absorption. 

                                                           
18 See papers on "http://www.pbglink.com/". 
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55..  LLaayyoouutt  ooff  pphhoottoonniicc  ccrryyssttaall  ssaammpplleess  
Mr Adrian Bachmann used an electron beam to deposit tips from an evaporated precursor. The deposition can 

be done on a conductive surface. Therefore, the glass substrate was previously covered by a thin ITO layer. The 
control system driving the electron beam presented a random lateral shift. This induced geometric aberrations 
and imposed an upper limit of deposition time. Hence, the photonic crystal had to be limited to less than a hun-
dred tips. 

The crystal is made of nearly cylindrical 
tips arranged regularly on the ITO surface. 
The tip head is of rather ellipsoidal shape, 
whereas its bottom is similar to an expand-
ing cone. The tips were grown at about 

m5.132 µλλ ≈�  height, so that the eva-
nescent field is mainly located in their cy-
lindrical range. Because of the surfacial 
location, the tips can be considered as cy-
lindrical rods of infinite height for the eva-
nescent wave. Hence, the photonic crystal 
is considered to be essentially bidimen-
sional. 

A HeNe laser beam internally reflected 
just below the photonic crystal creates the 
evanescent field. The wavelength is 

nm633=λ . 

 
Image 15: Global design of the photonic crystal samples 

It should be feasible to measure either the scattering 
(in transmission or reflection) or the phase shift in-
duced by the total internal reflection (shearing inter-
ferometry with the help of the ITO layer). 

55..11  FFaabbrriiccaattiioonn  
Mr Bachmann used TEOS [19] as precursor, which has a com-

plex refraction index 024.0426.3~ iiknn +=+= at the HeNe 
laser wavelength. Fortunately, absorption is very low because 
the imaginary part is less than a percent of the real part of the re-
fraction index. Hence, the computation for the sample crystals 
was made at 8.11~11 2 =≈= nrε

[20]. 

As mentioned above, because of random microscope shift dur-
ing deposition, the number of rods per photonic crystal had to be 
limited. Image 16 shows a 9x5 hexagonal rod array with at 
maximum 41 tips. The crystal would cover a surface of about 
3.6x6.0µm2. By leaving out some marked tips, the layout can be 
easily modified to form the point and line defect sample instead 
of the simple band gap structure. 

 
Image 16: Layout of the samples. 

Point defect without the 
white rod, line defect with-
out the light grey rods too. 

66..  PPrrooppoosseedd  mmeeaassuurreemmeenntt  mmeetthhooddss  
It was previewed to evaluate the following methods experimentally. This part of the work was dropped because 

of the lack of a working photonic crystal sample. Nevertheless, some particular methods and the expected results 
are presented below. 

                                                           
19 Tetraethyl orthosilicate C8H2O–O4Si to form SiOx by electron induced vapour deposition. 
20 The measured value may have some undefined biased error – this means that the true value cannot exceed 11.8. 
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66..11  TTrraannssmmiissssiioonn  mmooddee  ddaarrkk  ffiieelldd  mmiiccrroossccooppyy  
This idea has its reason in an earlier 

work [21], where a point defect in a 
photonic crystal had been imaged by re-
flection dark field microscopy. 

It should be feasible to work in trans-
mission mode. The effect of the pho-
tonic crystal defect may be a colour 
shift at the defect and an intensity 
change in scattered light. 

 
Image 17: Dark field microscopy to detect point defect. 

66..22  SSuurrffaaccee  ssccaatttteerriinngg  ooff  aa  HHeeNNee  llaasseerr  bbaacckklliigghhtt  
Based on the experimental setup showed in image 15, the idea was to collect the scattered light over the 

photonic crystal and to determine the positions where particular high scattering occurs. If the laser beam cre-
ates an evanescent wave just on the left half of the crystal, scattering was expected to be mainly at the left if 
the wave falls in a band gap of the crystal. On the other hand, if the wave propagates in the crystal, scattering 
should manifest rather on the right half. 

Either, the wave cannot really penetrate into the crystal (scattering at the left) or it propagates just to the 
right boundary and needs to leave the surface because the wave-guide stops (scattering at the right). Indeed, 
if the crystal accepts the wave, it may just not scatter at all – this would be the case if the presence of the 
crystal does not modify significantly the total internal reflection. 

66..33  BBaacckk  ssccaatttteerriinngg  aanndd  iinntteerrffeerreennccee  ooff  aa  HHeeNNee  llaasseerr  bbaacckklliigghhtt  
Image 18 shows the setup for a shear-

ing interferometry measure. It is ex-
pected, that the acceptance of a mode by 
the photonic crystal expands its trajec-
tory and enhances the Goos-Hänchen 
shift. 

The experimental work should figure 
out if the idea is correct and to which 
extent the phase shift informs about the 
characteristics of the crystal’s band 
structure. 

 
Image 18: Shearing interferometry by the ITO layer 

 

                                                           
21 See annexe for a copy of the article "7x7 pattern with 600nm dot-to-dot distance Au-C pillars". 
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77..  SSuummmmaarryy  
The functionality of the MPB package was tested and found quite powerful. The program was successfully in-

stalled on a personal workstation at home and on a server at school. 
Some examples of photonic crystals were designed, but unfortunately, not yet produced and measured. So, the 

computational error was evaluated by convergence of the computation results. Indeed, with a planewave basis set 
of about 16 to 32 coefficients in each crystal dimension, the calculation error was estimated to remain below 5%. 

In future, this work may be continued by: 
- fabrication of the designed samples 
- comparison of computed and measured behaviour 
- try out of some other calculation software to quantitatively embed absorption, size limits, measurement 

methods and so on. 
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