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Many chemical reactions and biological processes werssiigated by fluorescence corre-

lation spectroscopy¥CS Often, a confocal microscope is used to locally excite aemulke

group containing very few fluorophores. The FCS method gialthigh signal to noise ratio

SNRIf very few - at best one or less - fluorophores are excited. ddeRrCS provides an
elegant method to measure single molecule behaviour aadneders.

This paper describes a new approach to confine the excitiigtursimultaneously in a mul-
titude of light fields. In contrast to the classical approbesed on confocal microscopy an
limited by diffraction, we use a thin metal film containing periodic nanekolThis approach
paves the wave to parallel FCS based on a simple microotystém and promising light

d

confinement beyond the limits of confocal optics. We devetbp computation method and

designed a sample mask by simulation.
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1 INTRODUCTION

1 Introduction

Today, fluorescence correlation spectrosc&@Sis widely used to observe chemical reactions and
detect single molecules. The technology advances towégtisspeed DNA sequencing and real time
investigation of living cells. In this paper, we investigat novel FCS setup to reach these goals.

Chapters 2 and| 3 show the theoretical background; chapimsl & present the preliminary design of
the core part for the FCS setup outlined in chalpter 8.

Challenges:

1. The investigation of living cells asks for FCS at fluorogh@oncentration€ ~ 10uM. For
optical excitation, live cell FCS needssmaller spot volumeVe ~ 2- 10719, This is about three
orders of magnitude smaller than the actual confocal sdabwe.

2. In a FCS experiment, molecules have to drift through thatation spot. The relatively slow
motion imposes an observation timé ~ 10..100ms while maintaining a sampling frequency
f > 20MHz. This means that a confocal microscope is able to capiulOFCS measures
per second. In contrast, tiparallelisation of the FCS processwill be able to speed up DNA
sequencing far beyond the current values.

Trying to answer the mentioned challenges, this paper ptesenovel FCS method. We design and
evaluate a mask of nanoholes in a thin metal film. The maskdklibdy a laser beam and confines it
into a multitude of small light fields. Particular nanohosee believed to approach the characteristics
of a point light source. Note that live cell FCS needs a spdiusr < 60nm. We can control its size
adjusting the dimensions of the nanoholes.

The sample is put in contact with the mask and observed by snebia standard microscope. We

propose to use a novel array deteétew measure the fluorescence light. Only the number of détiecta
nanoholes limits the parallelisation. Nevertheless, wg nt be able to investigate a 'thick’ sample.

1A standard CCD array is not able to provide the necessary lsaipequency. But we may profit from the current
development by the group of Prof. Radivoje Popovic at therbéigstems Laboratory at the EPFL.
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2 THEORY

2 Theory

2.1 The model

Our model describes a metallic layer with slits or squarefi@maller than the wavelength of the
incident light and allowing a periodicity as small as 1...@wlengths. We separate the space in four
different regions, characterised by their material constémespermittivity e and the permeability:.

A linear polarised plane wave incident from regibffree space or dielectric medium) interacts at the
interfacel — I, | — Il with the metallic layer containing openings in a periodiafoguration.
Regionll andlll are on top of regiomV. Regionll is characterised by a metallic material wherdas
contains a transparent optical material.

The plane wave incident from regidrexcites waveguide modes in regitdh. These waveguide modes
propagate in regiohll and couple again to plane waves in regivh

Each linear polarised plane wave can be decomposedransverse electrievave (TE= s-polarised)
and atransverse magnetiwave (TE= p-polarised) as outlined in figures 1(a) and 1(b).
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(a) Transverse electric TE (s-polarisation) (b) Transverse magnetic TM (p-polarisation)

Figure 1: Model outline for s- and p-polarisation.

2.2 Maxwell equations

The electric field@@?m and the magnetic fieldiz(m) are vector functions in position and time and obey
the Maxwell equations

6x§=ﬂ7 (1a) 6x;§=/+aaif (1c)

V-P=p (1b) V-%=0 (1d)

The electromagnetic field-matter interaction involvesdteetric flux densityZ, the current densitﬁ
and the magnetic flux density (or magnetic inductiai?\)

B = o = uA  (2a) 7 =0f (2b) F=eeé =€ (20




2.3 Boundary conditions 2 THEORY

Combining the Maxwell equations (1a) and (1c) and (2a) tesnthe vectorial wave equatic%

= a - 2—)
a;zﬂ:ﬂ( jﬂa@]

ﬁx(ﬁxf):ny

ot ot ot2
0E 8
=u [O’E + GW] (3)

For a plane wavé(yy = E exp{~iwt) we can write4 & = ~iwé and £5& = ~w?&. In addition the

vector relationV x (V x &) = V(V - d) — V243 allows us to write the time independent wave equation as
V (V- E) =V2E = yypo(—iwo — w?e)E
V
=0 if p=0

V2E — w2eouopur (er + Ia)ieo) E=0 (4)

The dielectric constant is complex as we will use metallievai as dielectric materials = € +ie”.
For the light velocity we haveg = (eyio) ™t

2
PE+ L ( +ii)g=o
< weg

2
V2E - %,ur(e’ +ie)E=0
0

2
V2E - %,urglg =0
0

Usingk? = %2 andn? = e we find theHelmholtz equation
0

V2E - K*n’E = 0 (5)
or the scalar wave equation
V2 - K2n%p =0 (6)

2.3 Boundary conditions

At any interface, the electromagnetic field has to fulfil tfeaihdary
conditions that will be derived using the Maxwell equations

Let AV be a finite cylindrical volume element containing the bougda
(see figure 2). Using the Maxwell equation (1b) we can writetfie
electromagnetic field in the volum®V using theGauss law

fff V- Z dxdydz= _@‘-ﬁdsszf pdxdydz  (7)
AV AS AV

’Here, the permittivity: was assumed to be constant )
3The Laplacian is applied to each component of the vegtor Figure 2: The Gauss law.
- Vd = V22 = (V22 ey VB2 0y V285 (xy2))

<L




2.3 Boundary conditions 2 THEORY

If the surfaces\A! andAA!! are sdficiently small, the field adA is constant:Z', 2" This results in
Z' - AAA + Z" /' AA" + wall contribution= fff o dxdydz (8)
AV
The wall contribution vanishes if we shrink the cylinderdteito zero. Any charge inside the volume

elementAV is contained in the surface charge dengityand for the unit vectors pointing outwards
Al = - = /", we find

(7' d+ " dAA = Iimfff p dxdydz
h—0 AV

it (2" -F')aA = ff psdA = pAA
AA
ﬁ'—".(@"_j') = ps

9)

In presence of a layer with surface charge densigythe normal component o to the surface changes
across the interface.

Using analogue the Maxwell equation (1d) tRauss lawfor the magnetic field can be deduced

fff V- % dxdydz= %-RdS=0 (10)
AV AS

Thus no magnetic monopole can exist.
Similar to (8) we find

A1l .(%fy’ll _@’I) ~0 (11)

The normal component of the magnetic field to the surfacensregmus across the surface separating
the materials.

According to figure 3, lehA = O(ABCD) be a rectangular loop cont €, u

taining the boundary. The vectbiis the unit normal vector of the sury D -

face enclosed by th&A. The path elementsiB = 6l' andCD = dl" t gt €
are parallel to the boundary. Using the Maxwell equatior) éhal the L
Stokes theorem we find A B ! r

ff 6x<§-6d3=9§(§-d§:#ff O B4s e
AA C AA ot

Figure 3: The Stokes law.

If the surfaceAA is suficiently small, the electri¢” , A" and the magnetic fieldZ are constant oAA.
The cross contribution as well as the contribution from tlagnetic field vanish if we shrink the height
ohto zero:

Aol + &' 61" + cross contribution= %2 - Bohsl
(A6 + M)l = 0
£=bx A'~!" is the unit tangential vector to the surface. Therefdre —fandf!! =€

6-(ﬁ|_” ><(éa_)ll _é?fl)) =0
A1 x (81 - M) =0 12)




2.4 Surface impedance 2 THEORY

The components of the electric field tangential to the iaterfare continuous across the surface.
Similar we can deduce using the Maxwell equation (1c) anddoaward of the surface current density

s

Y

A6 + 2" 61" + cross contribution =
5,(ﬁ|—u X(%zu _%m))
A1l x(;ﬁ” _j@)

The tangential components of the magnetic field to the exter&re discontinuous across the boundary
surface.

sl + 3 - Bohsl

Ol

|
NN

(13)

Summary:
G\ -9\ = ps © &) ~ &) =0 (12)
B -7, =0 (11) A = A = Js (13)

2.4 Surface impedance

In chapter 2.3 we have shown that tangential componentsddléctric field must be continuous.

The boundary condition (13) is only valid for a perfect cocitu (characterised by infinite conductiv-
ity). The surface currer = it x /2 is the response due to the time varying tangential magnetit fi
(which leads to zero magnetic field inside the perfect cotaitlic The charges of a conductor with a
finite conductivity have finite mobility and therefore thepense is not instantly any more. Hence, the
magnetic field penetrating in the conductor is exponegtiaitenuated on a characteristic length: the
skin depths = +/2/(uwc). Therefore, the tangential magnetic field at the boundémy mon-perfect
conductor has to be continuafiand equation (13) is modified to

=l x (A" - ") =0 (14)
Landau [196 postulated that these parallel fields are ptapal and are related by the “surface impedance”
Z = Juel®if |€E—,’,| > 1.6

E// =ZAX H)// (15)

The equation (15) describes the light - matter interactfoough the physical constants permittivity
€ and the permeabilitye. Consequently, the surface impedance is an adequate eatatisn of the
boundary condition. Therefore we investigate the two paldr cases of a linear polarised plane wave,
the TE (s-polarisation) and the TM (p-polarisation) wave:

Transverse electric waves:

The plane of incidence lies in the (x,z)-plane and the iataxfis in the (x,y)-plane (see figure 1(a)). The
tangential field of the incident wa }/ has only a y—componerﬁ)',. Using (12) and (15) we find

| I _ el I _
E,-E)=E-E/ =0

“4For a detailed discussion of the fields at the surface of awmiod refer [14].
5The impedance of free spacedg= +/uo/e = 376 73Q
5Remember the complex notation of the dielectric constaste’ + ie”




2.4 Surface impedance 2 THEORY

With equations| (15) and (14), we can express the fields in oméyhalf space

E,g - Z2"'fix H}/' = Ejg, - Z'"fix H}/ =0

[ [

= bl 8 ://x - E 2 bl Hl_f/fy -0 16

V&~ X[ Py [= By - “Mx |= (16)
-1 H»Z 0 0

Using the Maxwell equation (1a)

6zy H>I(
OI :—i,ulcu H)',
1 —0E!
HY =Hf = ——2
= 4 *iple oz
1 e 9E
B Ik(),ul\/ﬂ_o 0z
|
__1 195
ikon! Z! 9z
Introducing this expression in (16) leads to
I l
" iz_% = (17)
Y ik z! oz

The equation (17) is the boundary condition at an interfata/éen a 'good’ conductor and a dielectric
TE wave. Only the fields in the dielectric half space have ttaken into account.

Transverse magnetic waves:

For the same plane of incidence and the same boundary as @e@/égure 1(b)), we recognise that
the tangential component of the incident magnetic fi¢ichas only a y—componerh‘ll)',.

Using the equations (12) and (15)
| I _ -l | 1
E) - E) =Z'nix Hyg, - E)

=Z'Hjg-E) =0 (18)
Applying the Maxwell equation (1c)

—oHy I
“ oz | X
0 = —iwey (E” + IL) E!l
aH)I/I €W EYI
oX ‘

1 oH)

I _ =l _ y

R A
_ 1 _VHo My
ik eoe" oz

I
_ 1 dHy

ikon” 0z




2.5 Permittivity 2 THEORY

Introducing this in(18)

1 aHII
ZIH! y 7l _
Y ikon!" 0z 0
and applying the boundary condition (13), it follows
1z oH|
& 9Ty _
Yokl Z! oz 0 (19)

The equation (19) is the boundary condition for a TM wave ahserface separating a good conductor
and a dielectric. Only the fields in the half space of the digle have to be taken into account.

2.5 Permittivity

The permittivity describes the ability of the electrons tflect of their position of rest. This concept
reflects the light-matter interaction which evocates thetation of electrons the permittivity varies
with frequency.

Dielectric constante:

The dielectric constant is the force of 2 electric chargeshafrge 10°C separated by 1m: FL =
f - 108C?m™2. Thereforef = 8,9875- 10°N?. We rewrite the constant factdr= 1/(4re). Thus the
dielectric constant is defined as

€ = 8.854- 10 2A% kg m™3 [Asvim™ (20a)
This is also important for the speed of light

1
Véoro

wherecy = 299792458ms andug = 4r - 10 'kgmA~2s72 is the magnetic permeability of vacuum.
Therefore

1 1A2g?

— = = 8.8542- 10 2AsVIm™ (20b)
Couo  Cgdm - 10-"kgm

€ =

Dispersion:

The refraction index of the medium depends on the frequelRoythe analysis we introduce the sim-

plified model of a dispersing medium due to H. A. Lorentz [4]mdlecule consists of heavy particles

(the atomic nuclei) surrounded by light particles (the &tats). For the sake of simplicity, we exclude

polar molecules, in other words, the centre of gravity ofriegative charges coincides with the centre
of gravity of the positive charges residing in the atomiclaus. Thus, the resulting momentum is zero.

Averaging the total field over a region derives the propsrtiethe material. As the dimension of the
averaging area is larger than the dimension of the molectiies properties can be described by elec-
tric and magnetic dipoles. We write for the polarisatié(a,t) = exéry and for the magnetisation

Mpyy = xHry- Using the material equations (2a) and (2b) allows to write

MKSE Gauss
electric permittivity & =1+x & =1+ 4ny (21a)
magnetic permeability ur=1+y ur =1+ 4ny (21b)

10



2.5 Permittivity 2 THEORY

Further we must distinguish between %ctive@g’ and theobservedr mean fields. The first is the
field acting on the atoms, the second is obtained by averamjiega region containing a great number
of atoms or molecules.

To approximate the dierenced” — & consider a molecule to be in a small sphere which is surralinde
by a homogeneously polarised medium. The molecular streiciutside the sphere is neglected due to
the great number of molecules. The medium is treated asntamis. In determining thefects inside
the sphere, we assume the molecules to be distributed indamamanner and hence not to produce
any resulting field at the central molecule.

We have to describe the potentihlof that sphere. In other words, the discontinuity at the Epak
boundary at which the polarisation changes from the exteontinuous value to the interior value.
Considering the “opposite” situation; the potential of heye filled with particles embedded in vacuum,
®. By superposition of both configurations we have a homogesiggolarised material without any
boundary. Thus

O+d=0
where ® =Py - f VR 1dV
’ (X,’y,’z’)
and R= yJ(x= )2+ (y—y)2+ (z- 2)?
S dv’

therefore O =Py - V|-

((#)) ( f R )

—dg
® = Py - Voo (22)

The potentiakb can be interpreted as the potential of a uniformly chargéespofp = —1Cn3 and
follows the Poisson equati

V2@ = 1Vm2 (23)
The field strengths associated with the potential are

a9 Pdy Py Hdyg

“ax - e P Paxay T Peaxaz (24)
At the centre of the sphere we have by symmetry
Dy 0’0y 5Dy 0
oxdy  0yoz  9zOX
2P 2P 2P
0-Dg _ 0°Dg _ 0°Dg (25)
ox2 ay? 072
so that we find by use of (22), (23), (24) and|(25)
> 1
-V = §I3(m (26)

“In electrodynamics often the Gaussian units are used thstethe MKS (SI) units. The Gaussian units defigeand
1o both equal to unity whereas in the MKS units they are definedutjh the speed of lighty = (eouo0) 2 and hence
€ = 1/4- 107 1c;?A%s*kgtm3 anduo = 47 - 10 'kgmA2s2,

8From the Maxwell equations (1a) and (1b) follows for a stfiéitd the Poisson equatidi?d = p/e.

11



2.5 Permittivity 2 THEORY

The total éfective field is then the sum of all fields acting on the centralatule in the sphere

g_)/

.1
ey = “en + 5Pe (27)

Knowing the dfective field, the displacement of the charge of its equiliforiposition is determined via
the Coulomb law. The electron behaves as if a restoring fardts equilibrium position binds it. In
other words, the electron is bound to the atomic nucleusderaio respect the equilibrium of charge.
The restoring force is

F=—qf

The equation of motion of the electron with the magsand the chargee becomes then

o = eg/
Me— = O = —e6, (28)

-

Assuming a time harmonic incident fieﬁ@t) =&, (?)e‘iwt wherew is the angular frequency, the homo-
geneous solution of (28) is ’ ’

what leads to the stationary solution
P —0 (29)

wherewg is theresonance frequenay theabsorption frequencf‘)’/

wo = y0q/Me (30)

Each electron contributes to the polarisation with the maoma g = —ef. We neglect the contribution
from the atomic nuclei since their masses are heavy in cdsgrawith the mass of the electron. The
total polarisatiorﬁ(m) for N molecules per unit volume having on@extive electron with the resonance
frequencywyg is

Pry = NP
e ész/r"t)
=N— - 31
. (31)
Using the mean polarisability and the consequential density of polarisatid
ﬁ(m) = (YNé?’ (32)

(8
Introducing the #&ective field|(27) and the permittivity (21a) leads to an espien for the mean polar-
isability

3e-1
a=—
Ne+2

9The absorption frequency represents the eigenfrequenelgctirons and ions in a solid

(33)

12



2.5 Permittivity 2 THEORY

The comparison of (31) and (32) leads to the dispersion f@mu
€p-1 1 Né&

== (34)
€ t+2 3 me(wg _ wz)
for a gas n is approximate 1, we then assume2 = 3 and through,) = n2 we write
Né
n(zw) -1= — (35)
me (w - w?)

We seenis an increasing function of the frequency. kot wo N approaches unity with increasiag
(see figure 2.5). The dispersion is then said to be normalhétésonance frequency the permittivity
tends to infinity. The singularity arises only formally as meglected the dampingdtect. The damping
involves momentum transfer between the electron and tliedatibrations, lattice imperfections and
impurities. Therefore we introduce a resisting foy%é. Then equation (28) becomes
8°r or b o

rneﬁ + me)’a + Mewol” = (&)

and its solution is of the form

_e‘”@('r:t)

me(w(z) - a)z) —iyw

r—-’_

Sellmeier’s dispersion formula:

Until now, we assumed the system to have only one resonaaqgedncy. Let us introduce a more
general expression for the dispersion equation (34)

-1 1 1 e f
(@) k Pk
= =Nao==N— = 36
n(zv)+2 3773 me;wﬁ—wz — vg—-v (36)
2
A R - = damped
1"\ — undamped

2 |z
g
o

Y
S

-

Figure 4: Dispersion curves.
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2.5 Permittivity 2 THEORY

Nfy density of electrons corresponding to the resonance frexuex

=N f
wk
VK = —
k= on
w
y=—
2

The absorption is small compared with the resonant frequelmcthe visible range, an electron in a
dielectric does not see significant absorption: the medairansparent.

We rewrite [(36) as

3Na

=3 Ne 37)

2
n(v) - l

It will be sufficient to take into account a finite number of absorption feegies, therefore we do a
partial decomposition of (37). Hence we search the zerdseofiénominator of (37)

_ Pk
3—Na—3—;V§_V2—O

If vx are the zeros then we find tBelimeier’s dispersion formula

2 Pk
ny—1= (38)

Notes:

Sellmeier’s dispersion formulas is a tool to approximate risfraction index of a material, but it is re-
stricted to a given frequency domain because of the simaliifinos we made. At very long wavelengths
(infra-red) the nuclei can follow the field and their motioawvk to be taken into account. At very short
wavelengths (UV) the mean time between collisions of the &kectron shrinks with their increased
collision rate among themselves due to their increasedygner

A special case represents the metals because of their uht@ectrons in the “electron gas cloud”.
They are moving almost undisturbed through the lattice.thieéwy in contrast to dielectrics the metals
are opaque (in the visible frequency spectrum). The intifield strength shrinks to /& within a
tenth of the wavelength, the so callskin depths. Therefore we introduce another model that is more
suitable to describe an electron in metal.

Permittivity of metals: the Drude model

As mentioned, the valence electrons of a metal are movingstiomimpeded through the lattice. They
are said to bdree electrons In absence of an external electromagnetic field the elestrove in a
random manner. The dampinfext comes from collisions involving momentum transfer heswthe
electron and the lattice vibrations, lattice imperfecsi@md impurities and they are represented via the
damping constant.

If an external electromagnetic field is applied, the elewracquire an additional velocity. Their mo-
tions become more orderly although they collide with theepsally stationary atoms. This more
orderly maotion of the electrons gives rise of a polarisatiothe medium.

The equation of motion for a model electron with chargeand massne is
8°r or 5

T o = e, (39)

14



2.5 Permittivity 2 THEORY

In order to understand the meaning of the damping constan{39), we first consider the case where
no external field is present. The homogeneous solution is

o
o _ g gt
ot 0€

The model electron has an initial velociy and slows down in an exponential way, witras decay
constant. The decay time (or relaxation time} 1/y is typically of the order of 10's.

Assuming the external field to be time harmorﬁ’pt) = é@(’ﬂe‘i“’t, the solution of[(39) becomes the sum
of a decaying motion and a periodic motion

—e

¢ & 40
Me (w2 + iyw) @Y (40)
This periodic motion gives rise to a dipole moment in the rasdi
3 5
=-ef=— & 41
P Me (w2 + iyw) @Y (41)
The total polarisatiorﬁ(ﬁt) for N free electrons per unit volume is similar (31)
&N , ,
Using equation (21a) and the definition of the plasma frequen
N€&
2
= 43
“p= am (43)
we find the complex notation of the frequency dependent pvityi
w2 ya)z
=1-—P 4 P 44
Ew) W? + 92 + w (W2 +92) (44)

Comparing to Sellmeier’s ffusion formula/(38) the permittivity calculated by the Drudedel takes
into account the dampingfect which is represented through the imaginary part okghefunction.

The Langmuir frequencyw at which the sign of the real part of the permittivity changesf partic-
ular interest. This determines the domain of attenua¥idia,,} < 0 and the domain of propagation
Ri€w)) > 0. We determinev through((44)

WL = Wi - Y2 = wp if y < wp (45)

Also we can express the conductivity as a function of the Emdtequencyw. We know the current
density ¢ = —eN%. Applying Ohms Law/((2b) allows to write

Ne&

MG~ i) (46)

O =

Validity of the Drude model:

We will compare the permittivity approximated by use of theule model over a frequency domain
to a reported set of optical properties of Gold and Silvel.[d3e necessary parameters for the Drude
model are reported in table 1. As it can be seen in figure 5 treel fif Drude approximation holds
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2.5 Permittivity 2 THEORY

N [m_3] Wp [rads’ l] Yreported[s_l] Yiitted [S_l]
Gold | 8.7-10°8 | 1.6640- 106 | 1.0417-10** | 6.0- 10"
Silver | 6.9-10°8 | 1.4819- 10 | 3.2258- 103 | 3.6- 104

Table 1: Free electron density at 300K (source [16]), the plasma frequenoy computed using
equation((43) and the damping constant 71 from [23] and fitted by the least square method.

for the visible frequency range. But in the IR domain, the d@runodel fails completely, after all the
imaginary part does not correspond to the values from titesa

It can be said, that the Drude model represents a adequatexapption in the visible spectral range.
But in the IR and UV region, the simple model does not represatisfyingly the physics. In these
cases, only quantum mechanics can provide a passable.theory

Permittivity of gold and silver:
We have seen a model for dielectric and metallic media tonegé their permittivity. As we use reported

1%The fit was done by the least square method. Further, the ofitiie real part for silver has been shifted up by 5 in order
to get the match. For the gold curve, no shift was adequatetomthe curve with the reported values
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Figure 5: Comparison between the Drude model and reportiad da
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Figure 6: Complex representation of the refraction index.
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2.6 Resonance 2 THEORY

values for the calculation we give the plot of the permityivih function of the wavelength for Gold and
Silver in figure 6.

For the interpretation we introduce the complex notatiothefrefraction
n=n+ik (47)

using the complex notation of the permittivity resultingrfr (6)

2 . O
n- = Er + |—
- wep

we can express? andk?

1 2,112
= S\ - — +an (48)
w EO
1 2,2
N e (49)
2 w?€s

It can be seen that the absorption of visible light in Gold Siider grows with increasing wavelength.
As consequence the light does penetrate less deep into tiad rBmes the light then experience an
increased reflectivity?

2.6 Resonance phenomena in the reflection spectrum

Let us take a 3 layer model sketched in figure 15 to answer thesttipn. Assuming a substrate (region
[11) coated with a film of Gold or Silver of height (regionlIl). We illuminate the probe with a unit
amplitude plane wave coming from regidr{air) under diferent angles. As we will show in chapter
the total reflection cdigcient R13 and the total transmission dbeient T 13 can be deduced by the
Fresnel equations 86d and 86¢

B lengeikoﬂzhz

- 1+ R12R2382ik0ﬂ2h2
_ Rup+ Rpge?obeh
1+ RyoRy3e?koseh:

13

13

where

B2 is the propagation constant in region 2

h, is the height of the metallic film

Rj is the reflection coéicients at the interface ij
Tij is the transmission cdgcients at the interface ij

The plots of the reflection spectrum of gold and silver in fegdrshow a astonishing behaviour. At the
incident angleds p a sharp fall of slope appears and the reflected intensitysdimaero whereas the
transmission is enhanced. The explanation of these anamalasorption is given by a phenomenon
calledsurface plasmowor shortSPs
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2.6 Resonance 2 THEORY

2.6.1 Surface plasmon

From the plasma concept follows that longitudinal densitgtfiations, plasma oscillations, will prop-
agate through the volume of the metal.

Atthe interface of a metal film longitudinal electron depditictuations are allowed. These oscillations
appear at a dierent frequency than the plasma frequeagyand are strictly confined to the surface.
The periodic surface charge fluctuation is source of a maopis electric field, schematically repre-
sented in figure 8 and calculated in figure 21. The SP wave vectterived by use of the Maxwell
equations/ (1) and the boundary conditions for an semi fingeahwith the permittivitye, = €, + i€y
adjacent to a dielectric mediuea and leads to the dispersion relation

KSP_ ¢ €1€2 50
X Cc €+ e ( )

As w ande; are realk Pis complex and we may write

w | ae | w,| a€ €
ka:_ 2/+|_3 2/22/2 (51)
cNa+te ¢ \ea+e?2(e)

KSP kS P’

Real metals fulfils the conditions, < 0 andR{e})} < |g)|. Thereforek$” is real and represent the
wave vector of the SP arig ™’ the internal absorption.

As already mentioned, the charge density variations arérawhto the surface. Perpendicular to the
boundary no propagation is allowed and the field decays exg@ily, hencek;; has to be purely

20.00 [nm]— —

46.29 [nm|——
01k 50.00 [nm]---- 4
100.00 [nm
0 | | | | | | | |

38 39 40 41 42 43 44 45 46 47
Osp 0[°]
Figure 7: Reflected intensity at a thin gold film in functiontloé thickness.

Incident light atlg = 617nm,e; = 1.54% (glass),e> = —10.662+ 1.374 (gold), e3 = 1 (air).
Plasmon excitation fonmin = 46.29nm atds p = 43.22°.
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2.6 Resonance 2 THEORY

L
dielectric K
o N e
%)
zZ

Figure 8: Longitudinal fluctuation of the surface chargesitgn
Electromagnetic field of SPs propagating on a smooth surfacéd; andk; represent the incident TM
wave,kSPis the SP wave vector.

imaginary
w
= o (2) 4

using equation (50), we find

(S 2 w €I22
Cc

sp_ W 1 SP_
kzl_C €1+ €, kzz

Through the wave vector we can describe the localisatioheo$tirface plasmon. Thenetration depth
or skin depthis given by

(52)

€1+ €,

1
6SP = 53
267 (53)

and the propagation length on the boundary is given by therptien, the imaginary part o °

N 60

TS
Coupling light to plasmons:

The dispersion relation (51) points out that at the sameaurrgyw for real metals the wave vector of
the SP remains always lager than a wave vector in an adjasgecttiic medium

w 612 w .
— > — /€1 SIN(G;
c €1+Eé C\/_1 ©)
e_I
Ve y|—2= > Va
€1+¢€,
[
>1
KSP > kix (55)

Therefore, on smooth surfaces, SPs are 'non-radiative2y Hne not directly accessible to an incident
plane wave. However, it is possible to increase the incidene vector byAk through a transformation

19



2.6 Resonance 2 THEORY

such that it matches the wave vector of the SP. This appreacdlledmomentum matching

Another important point of the coupling is the state of pisiation of the incident light. The electric field
of the SPs is created by a longitudinal charge density vanian x-direction (see figure!8). Therefore
the electric field component of the incident light has totli¢hie plane of incidencex(z) indicating that
the incident light has to be TM polarised to allow maximal jgimg. Hence SPs are not accessible to
TE polarised light.

Attenuated total reflection ATR method:

The prism coupling use the total internal reflection as fansation to increase the wave vector of the
incident light byAk. Remember the experiment with the 3 layer system in chapéerThe reflection
spectrum showed an astonishing abrupt drop. This 3 layek,star, Glass, Gold is the Kretschmann-
Raether configuration sketched in figure 9. The minimum irrdéflection spectrum of Gold (figure 7)
represents thefiécient excitation of a SP mode at the dielectric air interface

According to figure 9, the projection of the incident waveteeon thex-axis is

ky = \/E_SSin(Hi)kO

Under the condition thag; corresponds to the angle at which occurs the minimum in thecte®n
spectrumk, matches wittk$ P and the SP mode at the air - metal becomes excited.

In the dispersion curve in figure [11, the presence of a digtestedium lowers the slope of the light
line in air, ck. The phase velocity decreases due to the dispersion in ¢fecttic medium. As soon
as the light line overlaps the dispersion relation, light eacite SPs of frequencies below the crossing
point P. That equals the transformation to increase the wave vigtoy Ak.

In other words, the evanescent wave propagates at thetdielemetal interface with a phase velocity
less than the speed of light:

w c
ECRICETD °o

The resonance condition of the SPs follows out of its disperequation|(51)
SP e
=\ (57)
Ky € + €3

€1 €

Kx \ N
W € J \\ €1

€3 9 €3
I
I

Figure 9: Kretschmann-Raether configuration. Figure 10: Otto configuration.

The evanescent wave created at the dieleegric  The evanescent wave created at the dieleegric

metale, interface couples into SP. air ¢; interface couples into SPs on the metal
air interface.

S
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2.6 Resonance 2 THEORY

The light - SP coupling arises if the right hand side of theatigus (56) and (57) are equal

c / €63
. = 58
\es sin @) Eé + €3 (58)

In contrast to the Kretschmann-Raether configuration thte @infiguration (sketched in figure 10)
permits an SP excitation without that the metal film is in eahtvith the prism. It results also another
reflection spectrum. The complete set of reflection and tné&on curves are reported in appendix B.

Both configurations can be used to determine the permyttivitthin conductive films. Therefore is
illuminated under dferent angles in order to find the minimum in the reflection spec that corre-
sponds to the SP momentup” as shown in figure|7. The parameters of the SP excitation araritle
of incident and the film thickness. As it is outlined in the eeflon spectrum, the excitation is very
sensitive to both of those parameters. The corresponding $er the determination of thefunction

is given in appendix A.

The grating coupler:
At a grating the incident light is éiracted according to the grating equation

whereky; = +/eqw/csing; is the projection of the incident wa\ﬁa from medium 1 on the surface of
the grating. The grating momentumKs= 2r/A whereA is the period of the grooves. The reflected
or transmitted diraction orders are described Wan = kn Sin @m). The zero order passes the grating
without refraction following the Snellian law. The gratihgs to be conceived such that th&micted

1.1e+016 T T T T T T T T

1e+016F ok - k- -
ge+o15f T Veek -

8e+015

7e+015

w 6e+015

5e+015

4e+015

3e+015

2e+015

+ 1 | | | | | | | |
2e+015 3e+015 4e+015 5e+015 6e+015 7e+015 8e+015 9e+015 1e+0161

1le+015
c ky

Figure 11: Dispersion relation (DR) of SPs at the gold-giassrface and the light lines in
air and in the dielectric medium. Incidencedat 60°.
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2.6 Resonance 2 THEORY

orders match the SP momentum so that the SP resonance eorfditowing the dispersion equation
(50) will be fulfilled

w | €€ w .
KSP=— 2 = \Jer—sin @) = Aky
C 61+62 C

= k)gi + mK (60)

The reverse process is also possible: SP propagating alooggh surface such as the corrugated
surface of a grating can reduce their wave vectoAky, and decay into a photon.

y 'S

Figure 12: Momentum match on a grating.

The 'non-radiative’ dispersion relation SP, right the tidine +/e;ck and the light line in
medium 1+/e;cksing;. The incident lightky; is transformed into SP by taking ugky. On
the left the reverse process is sketched out: a SP decayivalyi via Aky,. At normal
incidence it is possible that two SP are excited at the sam ti

22



3 SLIT MODEL

3 Slit model

This chapters intends to introduce the slit model that usestirface impedance as boundary condition
essentially due to A. Barbara.

3.1 Application of the surface impedance approximation

We have seen in chapter 2.3 the tangential fields at any bouhdae to be continuous. Further we
outlined in chapter 24 that the surface impedance can Bed@s boundary condition so that the fields
are considered exclusive in one half space. Applying thised®D model sketched in figure 1(b) for an
incident linear polarised TM plane wave. The TM polarisatie preferred because it allows to excite
SPs. We have seen, that the electric component of the indigéhhas to lie in the plane of incidence
for best excitation of the surface charge density fluctustithat are the source of the SP. For the sake
of simplicity, the magnetic component is considered fordakeulations instead of the commonly used
electric component because the magnetic field p-polarigatihas only ong-component.

Field representation:

A Bloch wave is incident on the slits coming from regibrexcites waveguide modes in regioH .
These waveguide modes couple again in a Bloch wave in ré¥fatiter travelling through regiohi| .
The Bloch wave can be represented in a Fourier expansiomig&amodel uses the surface impedance
boundary condition, it does consider only the fields outyihe metal. For the representation of the
waveguide modes, the modal expansion is used. The fields ithitee regions are

Regionl
H((Qz;t) — | gkotrox-Bo2) . Z R, ko0nxt5nd) | griwt (61)
N=—co
where
ko = 27/2
Yo = sin ) = k/ko
Y = SiN@) + 2n01/p = k" ko
Po=1-73 = K},/ko
o= 1-7% = kD /ko
Ry is the reflected amplitude
Regionlll
N me w iKopimz —ikotmZ) mit
Hiery = r;COS[W (x+ E)] (Amghorn? + B ko) @ (62)
where
pim = JKE = (mvr/w)2 = KD /ko
An amplitude of the up propagating wave in the slit
Bm amplitude of the down propagating wave in the slit
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3.1 Surface impedance approximation 3 SLIT MODEL

RegionlV
\Y - - i
H((x,z;)t) — Z Tnelko(VnX Bne(z+h)) g-iwt (63)
N=—c0
where
Pt = \1-73/n3 = kD /ko
nﬁ = V& is the complex dielectric constant in regitvi
Th is the transmitted amplitude

Boundary condition:

The boundary conditions were taken from the work of Wirgiralet[18]. As mentioned, the surface
impedance method serves as boundary condition as simpdificaf the calculation: Only the fields
outlying the metal were matched.

over a period the boundary conditions are

oHY 7 oHY!D . Z
Y tiko=2H| = (— +ik —3H('“>) vV oIX < p/2 64a
[ oz "z T\ Tz T Y ), P (643)
oHy") Z3 i oHy!V) Z3
ingko=H{" - ingko=H{Y) v 2 64b
[ oz +1 4k023 y . ( oz +1 4k023 y o IX < p/ ( )
in the slits
HOl = Ry Vo IX<W2  (64c)
z=0* z=0"
R = H{V) vV oIX<W2  (64d)
z=—ht z=—h-
where
Zi = \Juoui/(€6&) is the surface impedance of medium

Determination of the codficients:

First, the modal expansion is truncated to the zero order.téinder this assumption, all cheients
necessary to determine the field at any point in the spaceecdetermined

280S
(ﬁo+§3/021) (1 B DZ)

Ao=117 DI)(1- D) - e 2%n(1+ D, )(1+ D,) (653)

—280So e—2ik0h(1+ D;)
Bo = . (ﬂ0+23121) . 4_ _ (65b)

(1-D})(1 - D;}) - e2kh(1 + D;)(1 + D)
with

N . Sa
D¥ = (1 + Z3/Zy)l n;w Y (66a)

. S Sa
D4 = (1 + Z3/Zl) \/E_4F nzz_oom (66b)
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3.2 Discussion of the model 3 SLIT MODEL

where

w

I'= is the geometrical factor

p
So = sincfynkow/2) is the overlap function

Reflection and transmission cofficients:
With the codficientsAg and By, the reflection and transmission ¢heient of any order can be deduced

_ Bo—2Z3/Z1 ot
Bo+Z3/Z1 ™ Bm+Zs/Z

Tm=na Smek" [~Aoe (1 - Za/Z1) + Boe"(1 + Z3/21)] (68)

SmlAo(1 + Z3/Z1) — Bo(1 - Z3/Z1)] (67)

_r
Pt + Z3/Z4

3.2 Discussion of the model

The first point to discuss is the transmission spectrum pteden figure 13, the zero order transmit-
tance. The implementation of the equations (67) and (68)sgilie results showed in figure/14. We
recognise also absorption in the reflection spectrum atasimvave numbers, but we have found a more
or less flat curve with very sharp absorptions in contrashéostrong varying transmittance curve of
Barbara. May be our permittivity approached by the Drude ehisda source of error, but we found the
same shape by using values for the dielectric constanttezpor the "Handbook of Optical constants”.

The second point is the definition of the boundary conditiossd in Barbara’s work. Referring on
[18] we were not able to reproduce the equations (64a) artu) (Gherefore we propose the following
boundary conditions.

T

40
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301

zero order transmittance [%)]

1] 1000 2000 35000 4000 5000 €000 700C
201

VWave numbaer (cm-=1

101

Figure 13: Zero order transmittance by [3]. 01000 2000 3000 4000 5000 6000 7000
Measured (dark thin line), calculated using one klem™]

mode (dotted line) and calculated using four _| )

modes (dark strong line) transmission spectrum.F19ure 14: Computation of the total ,reflected and
The setup is given in figufe 1(b). A thin gold film transmitted mtens_lty by th_e Barbara’s modgl. Th.e
of thicknessh = 0.96um with slits at the period parameters are given in figure 13. The dielectric

p = 1.75um and a groove widthv = 0.61um on constant was previously computed by means of
a Si substrate. the Drude model.
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3.2 Discussion of the model 3 SLIT MODEL

The walls in the slit are assumed to have no resistance

111 _
Hyko N 0 0<z<h (69)
Interface | = 11 /1 = II1:
17, My w d
H =0 — <X <= 70a
y(X)z_o_+|k121 0z 0 2 <M= 2 (702)
11
173 aHy(X) w
H! —= =0 <= 70b
¥:(%) =0, ikzZ; 0z 0 X 2 ( )
[ 11 _ w
Hy ol H%@)tﬂ+_-0 X< (70c)
oH! on!Mt
y.(9 ¥ w
L) =0 < — 70d
oz P M= 3 (70d)
z=0_ z=0,
Interface 11l — IV:
11
1 73 OH w
m £3 7 v _ w
R M v iksZs 0z . =0 =3 (713)
v
1725 Myiw w d
H!VY i = —<|IX <= 71
vlen, * kaZe oz » 0 5 <=3 (71b)
1 \Y _ w
Hytl, ‘Fbmzﬁ+—0 X< (71c)
aHIII aHIV
A A w
=0 X < — 71d
0z 0z X< 2 (71d)
z=h_ z=h,

Field representation:

By the boundary conditions and the wave equation the fiel@fimed at any point in space-time. Re-
specting the Flogquet theorem and using the Rayleigh exparisieading to the same fields as in the
Barbara model.

Application of the boundary conditions to the field:

The boundary conditions are applied to the field by projectia a set of base vectors. The scalar
product describes the field component accepted on each &itle interface. Projecting (70a) and

(70b) oneki*
|
fd/Z 1Z3 OH s 74 kg - lfW/Z i +ié oHM
d J_g ()“Zt) ikz, oz o W e |20 P ke Z) Taz

After a few calculations the right hand side becomes

€Mmq (72)
z=0~

(9]

@2 " 1 (92 ik ik
5 f e' oyox(1+ﬁoz3l)) koYX x4+ = 5 f [ Z RyekornX(1 — 50231)) —KoYiXdx  (73)

d/2 d/2

N=—00

d%0(BoZa1+1) 6njRa(BnZa1-1)
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3.2 Discussion of the model 3 SLIT MODEL

and the left hand side

> , 1 (2 —
> Br(€* o 1)z — 1) f sm[— (x + V—V)]e"ko"?”ldx (74)
— W J w2 w 2
m=1
Sjm
Hence, we find a expression for the reflectionfio®nt
YmZ31 + 1 Koymnsh YmZz1—1 d
R = 0= = B(e2kormnsh _ 1 Sim— 75
' ymZa -1 Z m( )71231— 17w (79)

Projecting(70d) on the set of base vectors given by the wastegnode Silﬂ—z (x + "5")]

11
1 fW/Z aH(th) dx — 1 fW/Z aH(th) sin |_ﬂ- (X+ V_V)
WJ we 0z B w 2

—w/2 0z
and after some calculation we find

w2 & Zs1—1 | w
f Z sin [— (x + )] (ez"‘oymmhw 1) YmNa Sin [—ﬂ (x + —)
w/2 o= YmZz1+1 w 2

i Z31-1
By (ez'ktm nehA —1))4 ns

sin il dx  (76)

z=0* z=0"

dx

(77)
1 (w2 I w - 1 (w2 I wy| — -
== sin| = (x + = | |nyBoekoroXdx— = f sin| — (x+ _) s e KovnXg
w IW/Z [W ( 2) 1ho WJiwe W 2 n;)o RefnMy
Soinfo 2 —co SnyiBnM

We get for the amplitude céigcient B

1 1 N
B = — {Sm— > Sannﬂn} (78)
BiZa1-1 ’ ’
(Zkomms B2 Mg he—co

The reflection cofficient difers from the one given by Barbara due to the other interpoetatf the
surface impedance as boundary condition.
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4 BASIC CONCEPTS

4 Basic concepts

This chapter is intended to present all formulas in a comsisvay and to propose a reference for the
following numerical analysis.

First, we introduce the main concepts about reflectionactiftn and diraction of light. Next, we
generalise the concept used for the rigorous analysis. \igh fivith a summary on evanescent waves
and intensity in view of an experimental verification.

4.1 Reflection at and transmission through an interface

Combining the Maxwell equations|(1) and the time indepehdeve equation (6), we derive that the
field vectorsE andH and the wavevectdtform an orthogonal right-hand system. Therefore, a general
plane wave is a linear combination of two orthogonally pskdt components - ansverse electric
(TE = s-polarised) and &ransverse magneti€TM = p-polarised) component. Figure|15 details the
situation for a plane TE wave incident on the interfhce |l. The transverse field vectors reduce to a
single non-null componerk, for a TE wave, respectivelidy for a TM wave.

0 0
E = [ Ey ]eiko(yx+ﬁ2) H = [ Hy ]eiko(yx+ﬁ2) (79)
0 0
where
B =ncosd = +ky/ko
v =nsing = ky/ko
n= e is the complex refraction index
0=<(L, E) is the angle from the surface normal to the propagatiorctime

Shown in figure 15, the tangential componeBjsandHy have to be continuous across the interface as
we have seen in subchapter 2.3.

I _ gl I _ gl
E) = E) Hy = Hy (80a)

Of course, this rule applies also for the tangential comptmef the associated magnetic and electric
field.

Hl = H! El = E} (80b)

Using the Maxwell equation (1a) and (1c), we derbe

Hy = — K08 ERLLCRY
X iwuo y iwege Y

€ B [Ho
=-B.[2E =2 |2H
Ho nVe ~

At the interfacez = 0, the boundary conditions (80) yield for a TE wave

E} = Eo (X" * + Rype*o"¥) = Ey = EqTiogo" (81a)
Hy, = —Ho (Bi€""* — RygB, k7% HY = —HoT1p " (81b)
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4.1 |Interface 4 BASIC CONCEPTS

WhereR;, denotes the reflection cigient at andr';» the transmission cdigcient through the interface
| — Il. Also, Hg = :—‘;Eo = ZalEo, whereZ is the electromagnetic impedance in free space.

Equations[(81) must be fulfilled for any point on the surfatkis means that the phas&gy; X, ikoytXx
andikgyix must be equal. Therefore, if we dét

YO=Yi=Yr =N (82a)
B1=0i =B (82b)
B2 =B (82c)
equations (81) simplify to
1+ R12 = T12

B1(1-Ry2) =BoT12

and we get thé&resnel co@icientsfor a TE wave

B1—B2
Ri2 = Br+ B (83&)
Ro1=-Ri2 (83b)
Ti12=1+Ryp2 (83C)
To1=1-Rypo (83d)

Respectively, for TM waves, equations (82) and (83) remalio?, but equation (83a) transforms to

_ &b —eabe (84)
€1+ €12

Ri2

2Note that the refraction index is containedyimndg.
3Though they apply now to the magnetic field.

K ok A ! Ris
:/ y © V X
y@ | | X A

Ay B, I hy

Y

Tis 1l

Y

z

Figure 15: Reflection at and transmission throughFigure 16: Reflection at and transmission through
an interfacd — Il atz= 0 for a plane TE wave. a layerll betweenz=0 andz=h,. As before,
The interface lies in they-plane, whereaszis xzis the incidence plane and the interfaces are
the incidence plane. parallel to thexy-plane.
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4.2 Layers 4 BASIC CONCEPTS

4.2 Reflection at and transmission through layers

Here, we consider the reflection and transmission of ligtitlent onto a stack of material layers. Figure
'16 outlines the simplest example made of a single layer.

First, we express the transverse electromagnetic lﬂ@,ldvherelj denotes either the electric fieifor
TE or the magnetic fiel¢fl for TM polarisation. The incident wave is set to unit ampliéu Hence, the
field writes as

Uy, = goboxthid) | Ry gekoboria) incident and reflected wave
U = Agelolroxszr) o gygholyor£z2) propagating and withdrawing wave
Uy = Tygekolroxshsiz-he) transmitted wave

Knowing the Fresnel cdicients at the layer interfaces, we obtain

Riz = Ri2+ BaTo1 (85a)
Az =Tio+BoRyy (85b)
B, = ApRyge?of2 (85c)

Ti3 = ApTpgelkopeh (85d)

Combining equation (85b) and (85c), we find

Ap = Tiz2 + AR Ryge? ool
= T12 — AR pRyze?0P2
T12

= - 86a
1+ R12R2362'k°'32h2 ( )
Hence, the other equations yield
T+ -Ry.e2koBzh2
L= 123" (86b)
1+ R12R2362'k0'82h2
T1pTpzekor2n
Ti2 = _ 86¢C
13 1+ R12R23e2'k052h2 ( )
T12To1Rpe? k02
Ris = Rip+ 1212123 —
1+ R12R2382' oB2hp
R R, e2koBzh2
_ R12+ o3 (86d)

1+ RyoRy3e?kaseh:

In the presence of a stack of material layers, we can seagligrdtep through the layers. Beginning
with the last one, we use equations|(86) and add iteratihgyptevious layers.

Example:
- In the presence of three surfaces, we compute thificiemtsRy4, Az, B3 andToq first.
- Then, we us&y,4 andT,4 instead 0fRy3 andTo3 to computeRys, A, B, andTy4.

- Finally, we account for the modified incidence on surféice» |11 and multiply Az and B3 by
Azeikoﬁzhz_
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4.3 Diffraction 4 BASIC CONCEPTS

Caution:

Care must be taken when computing the fields in a layer stazkuse the-coordinate is always
referred to the corresponding surface. If the first surfa@z = 0, the transmitted field writes as

v iK Choh
Uy(x,z>h2+h3) = Tq4€ o(yox+B4(z—hz2—h3))

4.3 Diffraction versus refraction

Subchapter 4/1 showed that the refraction of light
conserves the tangential wavevector components /

at any interface. Review figure 15 where the tan-

gential componerﬁ“ = kx is conserved in all re- 6, ny
gions. Hence, we find a majorftBrence between

refraction and dfraction:
A1

- Atan interface, refraction exclusively mod
ifies the componerh?tL normal to the inter-
face. The modification is proportional to| Y
the change of the refraction index. 7

—

- Diffraction mainly modifies the componer
E// tangential to the interfaceespectively
normal to the propagation direction. As a
side dfect, changingk, influencesk, to | Z
keepk = [k, + K| proportional to the re-
fraction index. We should also note that
diffraction occurs everywhere in space-
gardless of the modification of the refrac-
tion index.

Tx

Figure 17: A plane wave falls under an angle
onto thexy-plane. Its amplitude on theaxis is a
moving sine with period .

As figure 17 shows, an incident plane wave creates a sinudi@thon the surface which is the ampli-
tude and phase of the transverse field compolign(This field depends on the incidence angland
the free space wavelengil.

Uy(xz-0) = Uil

with
. . 2n . L -
ky = ki sing; = mkgsing; = T is the projection ok onto the surface
X
k . 21 A A . . .
E? =Ny sing; = T_XZO = T_(:( whereTy is the spatial period ix (87)

Application of the Gauss theorem:

If we know the wavelength of an electromagnetic wave and #ie iti creates on a closed surface,
we definitively know how it propagates in space. The senseagggation is determined when
we know it at a single point.

We limit on a planez = zy separating the space into two half-spaces. If we know theslgagth of
the wave and its field on the plane, then we know the total fiedthg point in space. The propagation
directiond; is uniquely fixed by equation (87) and its sense is known whefixit for some point.
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4.4 Propagation through apertures 4 BASIC CONCEPTS

A plane wave has infinite lateral extent. However electrametig waves are always of limited in space.
This limitation causes éiraction.

Any signal of finite energy can be presented as well in reattpace domain as in temporal-spatial
frequency domain. By means of the Fourier transformatiancan represent the fields in the frequency
domain as well as in the real space. Hence, we compute thialsgaéctrum of the wave pattern at
Z = 7y and use the inverse Fourier transform to compute the etaefyoetic field at any point in space.

+00 .
Fo) = f U(Kz:zo>e"kxxdx plane wave decomposition (88)

+00
U = f F o gl k@) g three-dimensional reconstruction (89)

(o)

This is theFourier expansiorof the signalU . Uz is a weighted sum of plane waves, where the
weights are the Fourier cfiientsF,. See figure 18 and 19 for an example.

4.4 Propagation through a pierced metal layer

Underlying principle:
Figure 20 outlines the model geometry treated in this syiteihaRegion | adjacent to regiohcontains
the metallic film. Regionill is an aperture through the film to regiovi.

In region|, a plane wavéJ; is incident on the boundary — 11. U; is either TE or TM polarised. A
partU, is reflected back into regionwhereadJ, is transmitted through the film into regidv/. We
model the electromagnetic field in five steps:

60%
80%
100%

Figure 18: Spatial intensity spectrum of the in- Figure 19: Fourier expansion of the spatial spec-
cident, reflected and transmitted light on a 10nmtrum shown at the left. The transmitted intensity
thick metal sheet with no impedance. The aperhas been doubled for better contrast.

ture is um wide and 100m long (not shown).

The plane wave arrives ét = 20° in TM polari-

sation. Its wavelength ig; = 633nm.

Note that the incident and the direct reflected

wave are at 0.7% of their nominal values.
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4.4 Propagation through apertures 4 BASIC CONCEPTS

1. Find the fieldU for a metal film without any aperture.

2. Determine the waveguide modes inside the aperture. Ebradgenmode, compute the reflection
and transmission through the aperture.

3. Expand the incident wave into a linear combination oféheigenmodes.

4. At the interfaced — 111 andlll — 1V, determine the dierencesAU, and AU, between the
effective amplitudes and the fields obtained in step 1.

5. ExpandAUr andAU, into plane waves and propagate them in the regicsdIV.

Caution:

For the following discussion, we replatkby its scalar formJ.

Mathematical formulation:

1. The solution in region, Il andlV is given in subchapter 4.2 by equations (86). Therefore, we
start with the ansatz

U Uity + Ur(p) = Upgholrmsm) (ghofz 1. Rygrikonz) (90a)

I —
c(xy,z<0) —

for the incident and reflected wave,
Ulsyzetoum = Ya + Un(py = Uoe 019 (et 4 Boelafe?) (90b)
for the forward and backward propagating wave, and

U = Uyp = Uoeiko(yxXﬂ’yY)Tzeikoﬁzt(z—h) (90c)

\Y4
c(xy,z-h)
for the transmitted wave.
2. The propagation in regionl is described by theigenmodes k) eofm?,
U(')'(fy’ze[o’h]) = Upp + Unn) YV (xY) € [aperture]
= Uo ) Unnixy) (Am€*oP? + Brrgmofs?) (91)
m

> X
! i h Figure 20: Reflection at and transmission through
* a metal film of thicknes&. The film has a single
| | aperture ak € [-%, J].
v |
w
| |
l Uy
z
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4.4 Propagation through apertures 4 BASIC CONCEPTS

In equation|(91), every eigenmotlkyxy) is scaled by its cd@icient Ay, and By,

We first determine the eigenmodes and then the Fresnéiaests Ry, Am, Bm and T, for a
plane wave at the interfacés— |11 andlll — 1V. The Fresnel cd&cients are computed again

by equations (86).

3. Next, we decompose the incident field in eigenmode caritdbs within the aperture. Matching
the amplitude of the incident wave to aperture modes is aimidl a Fourier series expansion of
a periodic signal. Or, to be exact, the Fourier series expamaust take into account the signal
period Ty by containing the harmonics of the ground frequefigy T(;l.

Although the eigenmode8mxy) need not be harmonics &fjxy.-0), the amplitude closely
matches to a linear combination of a large number of modeausecwe need not represent it
over a large region.

Uikyz-0 = Uo ) CalUmxyy ¥ (x.Y) € [aperture] (92)
m

with the coupling cogicients

1
Ch="—"—" Uixy.z=0) - U’ \ydxd 93
™ (aperturelJq fj;perture 0c2-0) " Fimty) X (53)

4. Based on the coupling cfieientsC,, we calculate theffective fieldsat the interfaces. Hence,
Y (X Y) € [aperture]

Ubyzmoy = Uo ) Cin(1 + Re)Unngy) field at the interface — 111 (94a)
m

= Uj(xy,z=0) + Uo Z CmRmUm(xy)
m

Ubteyzzty = Yo D ConTUrmy) field at the interfacell — IV (94b)
m

and we obtain theerturbations(or difference fields

AUr(xy.2=0) = Ugtyz-0) ~ Yeiyiz=0) at the interfacd — 111 (95a)

AUrxyz=h) = Uy ooy = U at the interfacell — 1V (95b)

c(xy,z=h)

5. Finally, we have to propagate the perturbations intooregand|V. Applying the Fourier trans-
formation, we get their spatial spectra.

Ff()’rx’)’ry) = f:[&z AUr(X,y,Z:O)e_ikO(yrxX-H/ryy)d Xdy

= f f AUr(xy’zzo)e_iko(yrxX+7ryy)dXdy (96a)
aperture
Ftoway) = f j; pertureAUt(x,y,z:h)e_ik"(”xx”‘yy)dXdy (96b)

The expansion into regiohyields

U)'/(X’y’Z <0) = eriko(yxx+yy)/) (eikoﬁlz n Rze—ikoﬁlz)

’ ffRz Fr(erofry)eikO(erX+yryy_ﬁ1(m’yry)z)d)’rdery (97a)
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4.5 Evanescent waves 4 BASIC CONCEPTS

The propagation in regiolV is described in an analogue manner.

U%,y,bh) = UgTekoroxyyy+fa(z-h)

’ ffm Fi(ynpy) €00 7Y Pi0om @ Mty iy (97b)

4.5 Evanescent waves

The results in subchapter 4.4 are a little mooenplexthan it seems at first glance. The wavevedtor
may have complex components correspondingdarmapingor anamplificationof the field.

For the investigated setups, amplification cannot occualee they are built of purely passive optical
elements. Hence, the imaginary part of the wavevector sporeds to damping in that direction. This
damping is related to the directional ¢beients of the wavevector. Indeed, we have

Vx
K = ko[ Yy ] where k? = k3n? = k3¢ (98a)
B

With the projection factors

a=vi+vy+5 and Bi=x+a-y2-v} (98b)

Obviously, whenevey?2 + y§ exceeds, the propagation constaigs, is complex. For the sign, we
always takes positive and fix the sign in the corresponding equations épggate in the correct sense.
As we fix the sign of the real part, we fix it again for the imaginpart to guarantee damping instead
of amplification.

- When a wave can not pass through a dielectric interfaces tiotally reflected. However, its
field enters in the second medium decaying exponentiallia imitreasing distance to the inter-
face. Hence, we have avanescent wava the second medium with an imaginary propagation
constanigBz. In this case, the field is damped in the second mediunmbuabsorbed.

Figure 21: A plane TM HeNe beam is incident
through a BK7 glass prism & = 44.5° onto a
515nm thick gold film. Although the transmis-
sion is zero due to total reflection at the opposite
gold-air interface, the reflectance is zero too. The
beam excites a surface plasmon at the gold-air in-
terface that dissipates the energy in the film and
boosts the electric field to.23 times the incident
amplitude.

Straight lines indicate the interfaces. The shading
and dotted lines show the instantaneous electric
potential. Solid lines are electric field lines and
the vectors point in the direction of the electric
field.

T TN AR
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4.6 Electromagnetic intensity 4 BASIC CONCEPTS

- Every metal has a dielectric constaptwith negative real part. In the case of a good conductor,
we haveR (¢n) < —1. Hence, a metal always damps electromagnetic waves.

- If a wave is propagating along the interface anevanescent in both mediasit is a surface
wavetightly bound to the interface by its nature. In the case deedtric-metal or an intermetal
interface, surface waves are caldface plasmonand can achieve extremely high field ampli-
tudes. The term 'plasmon’ stands for tballective oscillationof the electron gaz in the metal.
See figures |8 and 21 for an illustration.

4.6 Electromagnetic intensity

ThePoynting vectorﬁ(m corresponds to the energy flux.
Sen = ben X Ay

The instantaneous intensity is given by its absolute vﬁ?@gﬂ whereas the time-averaged intensity is

0= [S0| = [(Feo)| = 3REnxHiy (99a)
_ %x( \/E E - Eg?)) (99b)
- %x(\/g Her - ”E%) (990)
where
€ = & & is the complex dielectric constant
U= Uopy ur is the complex permeabili

The instantaneous intensity of visible light can not be mezs$ due to the light frequency of about
500THz. In contrast, the time-averaged intensity is eagilyessible by many detector types.

- The time-averaged power flowing throughaeais given by

S - A
@ N
Parea = ff I —2— gxdy
area area (o) S(F)

where
ﬁ(r) is the unit normal vector area

When a plane wave with wavevecﬂ?)passes through a plaaeea the power flow simplifies to

-

Parea = I(area) k area= I(area) cos (<(R), ﬁ))(area)

- The imaginary part in equations (99a) describe the mechbwvibrations of charges - for example
oscillating electrons in a metal. Hence, tiq@parent intensitys

1 . .
Iy = 55(?) x Hipy = ey + 1l
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4.6 Electromagnetic intensity 4 BASIC CONCEPTS

where

I,y is the radiative power density passing by the p@int
Imr) counts for the mechanical energy stored at the oint

Note that the mechanical energy is bound to its location aed dot contribute to the transported
energy. In general, intensity stays for the radiative poshegrsity only.
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5 METALLIC SLITS

5 Numerical model- metallic slit

This chapter details our rigorous computation of the eteatignetic field through a metallic slit. The
geometry was already outlined in figure 20, but the incidgriaee is now fixed parallel to thex-plane.

5.1 Ansatz for the electromagnetic field

The incident plane wave may have any polarisation. HowevegGan always decompose it into its TE
and TM parts. Hence, the computation is restricted toBjpeomponent of the electric field for TE
polarisation, respectivelidy of the magnetic fieldd for TM polarisation.

Regionl:
U)II(KZ) = Ug (Uiixz + Urx2)
_ Uq (eik0(70X+,312) + RygHo00812) | f R dat X—BrZ)dyr) (100)
where
Uix2) is the incident plane wave
Ur(x2) counts for the reflection
Yo = Ny Sing; = kix/ko
B1= e —73 = kiz/ko
Br = \/61_%2 = kiz/ko
€ = ni is the complex dielectric constant in regibn
R, is the reflection ca@icient at the metal filntl
—+00 .
Fr(’)/r) = f AUr(X’Z=O)e_Ik0erdX (101)

are the plane wave expansion flagents of the perturbation

Regionll: Metal film

U)III(x,Z) =Uo (U p(x2) + Uw(x,z))

— UO(Azeiko(yoHBzZ) + Bzeiko(yox—ﬁzz)) (102)
where
Upx2) is the forward propagating wave
Uw(x2) is the backward propagating wave
B2 = €273 = ka/ko
€& = ng is the complex dielectric constant in regitin
Ao is the internal transmission c@eient inl|
B, is the internal reflection cdigcient inl|
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5.1 Field representation 5 METALLICSLITS

Regionlll: Slit

For simplicity, the vertical walls of the slit are assumechtive no impedance. Therefore, the slit is
considered as a hollow, ideally metallic waveguide. Itagxeerse eigenmodes must not have an electric
field E; on the walls. Hence

. w
Ullty = Elty = Emsin(mZ (x+3)) v men (1032)

for TE polarisation as in figure 22 and

w
Uni = Hi = Hmcos(mvzv (x + E)) vV meNg (103b)
for TM polarisation. The modal expansion yields
+00
. Vs w . B
E)III(I)QZ) = Eq Z Cmiym) sm(mv—v (X + E)) (Ag(),m)elkoﬂmz + B3ym)€ 'koﬁmz) (104a)
m=1
respectively
+o00 - W ) )
H)I,I(!(’Z) = HO Z Cm()’m) COS(mV—V (X + E)) (A3(ym)e|k0ﬁmz + BS(Ym)e—”(OﬂmZ) (104b)
m=0
where
mr
™= = kmx/Ko (105a)
Bm = €3 — ¥ = kmz/ko (105b)
€ =3 is the complex dielectric constant in the $lit
Az is the internal transmission c@eient inlll
Bs is the internal reflection cdiécient inll|
4 3 2 1=m Ui(X,Z:O) | Um(x)
Kix
7] %
Il
ya .

Figure 22: Electric field of the four lowest TE Figure 23: FieldUjx -0y of the incident wave

modes in a hollow, ideally metallic slit. Modes entering in the aperture. The motkyy) illus-

are standing waves, where the mode nuntber trates the eigenmodm = 3. Whereas the mode

yields the phase increase2. field does not move, the incident field laterally
shifts with a speed that is proportionalkg. The
coupling codficientCy, describes the overlap be-
tween the incident field and te" mode.
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5.2 Evaluation 5 METALLIC SLITS

2 (w2 . Vi3 w
Criym) = W Iw/z Ei(x2-0) sm(mv—v (x+ E))dx (106a)
respectively
2 —6m) +W/2 g w
C = Hi(x 2= cos(m— (x —))dx 106b
mom) =~ j: vyp Tez-0) X+ 3 (106Db)

are the coupling cdg&cients from the incident wave to the slit modes

See figure 23 for an illustration.

RegionlV:
U%(,z) = Up (Ui(x2)
= Up (Tzeiko(yox+ﬁ42) + f+oo Ft(%)eiko(%ﬂﬁtz)dyt) (107)
where
Uix2) stands for the transmitted waves
Ba = ‘/64—’)/8 = Kkaz/ko
Bt = \/64_%2 = Kez/ko
€ = nﬁ is the complex dielectric constant in regitvi
To is the transmission cdigcient through the metal filril
+00 .
Fiog = f AUaty € 7*dx (108)

are the plane wave expansion fiagents of the perturbation

5.2 Discretisation and numerical evaluation
We are going to present the numerical analysis for the TErigakion. The results for the TM polari-
sation can be derived in an analogue manner.

Regionlll: Slit

We start computing the coupling daeientsC,, from the incident wave to the slit modes. Based on
figure[23, we discretise the slit segment [-%, 7] into 2N segmentsAx. The integral in equation

(106a) is Hence
N
2 . bg W
Crniym) = w n:Z_N Ei(naxz=0) Sln(mv—v (nAx + E))Ax

TakingAx = 55, we obtain

N
1 ; T wW
C == g ghkoyonAx s'n(m— (nA —)) 109
mM(ym) N ot I W X+ 2 ( )
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5.2 Evaluation 5 METALLIC SLITS

We consider only the fird¥l slit modes. To get the cfiécientsC; to Cy with good accuracy, we set
N(my = 5M to ensure at least 20 sampling points for the eigenmodes.
Introducing equations (105),

Bim = \e1 - Y and Bam = +Jea —v&

in equationsg%), we compute the reflection and transmissigficients through the slit by means of

equations| (86}°. We determine thefective fields
M
E&X,zzo) =Eo Z CmEmx (1 + Ry) at the interface — 111
ml\jl
Etzty = E0 > CnErmgo T at the interfacell — IV
m=1

and get the perturbations

AEr(xz=0) = Elyypq) — B0 7 in region| (110a)
AEt(cz=n) = Ey, ) — EoTo€7 in regionIV (110Db)

Figure 24 shows the typicalfiiérences between the incident field and its modal expansion.

Now, we computed the complete solution in the metallicl$lit Next, we propagate the perturbations
into regionl andIV.

Regionl and IV:

Introducing a spatial incremenix and a frequential incrementy in equation[(96a), we get the discrete
spectrum

Fri) = AX )" ABr(xzzg)e *o (111)
S

15The eigenmodes are a superposition of plane waves in régiodlV with y1, = yam = +ym. S0, we compute the Fresnel
codiicientsRy3, T13, Ras andTs4 as for plane waves.

‘R(‘Ey)

Figure 24: This example illustrates a plane wave
incident undem; = 48 onto a freely suspended
gold film. The wavelength igp = 633nm and the
slit width isw = 800nm.

The thick dashed lines shol and the thin solid
lines its modal expansioitg Z,'\T’Ll CmEm com-
puted withM = 26 slit modes. Note the good
accuracy except near the walls of the slit due to
the assumption of ideally conductive walls.
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5.3 Slitarray 5 METALLIC SLITS

where
vr = Ay Y rezZ A |yl< %{ are the sampled spatial frequencies (112a)
X = SAX Y s€eZ A X< v§v are the sampled positions in the slit (112b)
The plane wave expansian (100) rewrites as
E}xzc0) = B0 00X (kP12 1. Ryerikobiz) Z Fr(y,)@l00rAid) (113)
T

In an analogue manner, applying equation (96b) and (10%)s/tbe result for regiomV .

Discussion:

- Equation[(111) is nothing else than the discrete FourgrsiormatiorDFT of the perturbation
in regionl. Or, as a major dierence to the continuous Fourier transformation, the DFTéha
periodic spectrum and its inverse transformation createpaiodic signal. Indeed, the spatial
(frequential) sampling forces the spectrum (signal) to éxéggdlic where

2n Ao : :
= = is the spectral period 114a
oA~ Ax p p (114a)
and
21 A : . .
- T _ L is the spatial period. (114b)
koAy Ay
Therefore, we limit computation to the first period
r .
lyr| < > in spectrum
and
T .
IX < 5 in space

and get the full spectrum respectively field by simple rejoeti Whereas the full spectrum has
no particular intereq{f’, the spatial period significantly changes the field charesties. Hence,
we always get a periodic field when using a numerical planeavepansiorin regionl andlV.

- We could evaluate (111) for many to get a pseudo-continuous spectrum and a very large field
periodT. Unfortunately, the computation time increases with thmber of considered spatial
frequencies. Subchapter 5.6 estimates the calculatianbimmeans of an example.

Next, we modify the metal filml and introduce a periodic array of slits instead of the single
one we just calculated. The following subchapter 5.3 oeslithe appropriate modifications to
evaluate an array of slits. Subchapter 5.5 gives hints aboaasonable accuracy-performance
trade-df.

5.3 Evaluation of a periodic slit array

In the metal filmll, we introduce a periodic array of slits, whepas the distance between the centres
of two neighbouring slitd?.

16The higher orders are present because of aliasing. Reviann®h’s sampling theorem for further information.
17See figure 20.
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5.4 Rayleigh expansion 5 METALLICSLITS

Regionlll: Slits

The eigenmodes of the slits are conserved according toieqadfL03). HereU)%) is the field in all

slits ande('X) in a single slit as in (104). In principle, we can simply rejpd ”X) VIX < ¥ at every

positionx, = np. Taking into account the spatial phase shift = koyoxs per slit position, we get for
the slit array

+00

m_ I ik
Uyey = 2 Utsnpe ™ (115)
N=—co

Regionl and IV:
We use again the discrete Fourier transfarm (111). Inggttia spatial periogh = T in equation[(114b),
the frequential increment

p
is now fixed by the sample geometry. Nevertheless, the sagiplepAx remains a free parameter. To
take advantage of the discrete fast Fourier transform@ieRT, 2' sampling points a period must be
chosent8 - wherel € N.

Ay (116)

Discussion:

- We passed from a single slit to a periodic array of slits ke tadvantage of the DFT. The spectral
incrementAy guarantees a phase incremagly = 27 over the periodp of the slit array. Ev-
ery sampling frequency of the discrete spectrum is an integétiple of Ay and gives rise to
A¢r = 2rrr per period. Therefore, we carffectively limit the plane wave reconstruction on a
period p and repeat the result to get the field at any point in regiand|V.

- But what is about the phase incremex = kyyop imposed by the incident plane wave? In
general A¢; ¢ {A¢:} and the reconstructed field i®t periodic onp. Do we need to rebuild the
concept from the start accounting for this very likely cadf; but we have to modify the plane
wave expansion method instead!

5.4 Rayleigh plane wave expansion

We computed the eigenmodes in regibhand expressed' as linear combination of them. In analogy,
we determine the 'correct’ eigenmodes in regloand IV and expres§)! andU' in terms of these
modes.

The eigenmodes in regidnandIV are all plane waves with fierent propagation directiod€. The
discrete Fourier transformation selects a particular efubfplane waves given by equation (116) and
(112a). We have to modify this subset to account for the amtighlane wavéJ); and do not change the
sampling step\y. However, we shift the sampling frequencies by an arbitkeatye. Therefore, we
select

Ao r Ao
=vy9+TrAy =yg+r— Y reZ A < == — 117a
Yr =70 Y=yo+r el 5 = 2Ax ( )
and similar
Ao r Ao
=y +tAy =yg +t— Y teZ A <= =— 117b
Ye=y0+ Ay =0+t il 5 = SAx ( )

8More sampling points give access to higher frequencies dsawe seen in equation (114a).
9Review figure 17.

43



5.4 Rayleigh expansion

5 METALLIC SLITS

to conserve the phase incremeg; € {A¢,} andA¢; € {A¢:}. This modified Fourier expansion is called

Rayleigh expansian

Discussion:

- Remind that the Fraunhoferftfiaction formula and the Fourier transformation are veryilgim
The Fraunhofer formula describes théfidiction pattern in the very far field behind an object. In
the case of a periodic object, only particular waves couatelio the far field dfraction pattern
because most of the waves mutually erase each other by desrinterference. The waves we
just selected are such particular waves as illustrated imefig5.

- Note that equations (117) analytically describe Eveald @s&hereshown in figure 26. We applied

the Ewald sphere by means of equations (98) to our

up

20The concept of the Ewald sphere is widely applied in crystatiphy to describe firaction experiments.

Y1 Yo

‘ R

Figure 25: Rayleigh expansion and far field pat-Figure 26: Ewald sphere illustrating the Rayleigh
tern. The incident wave imposes a phase shiftliffraction at a periodic object in they-plane.
Ag; = kgyop between successive slits. This phaseThe object has a periodpk in x-direction

shift creates the plane wave propagatingyat

The slit periodp fixes Ay such that the next plane

wave propagates af.

and py in y-direction represented as grating
Ky = %éx and K, = %—P’y’éy. The object modi-
fies the tangential wavevector component where
Koy — kiy = mKy + nK, is always the sum of in-
teger multiples of the grating vectok andK,.
Propagating waves have the same wavelength and
their wavevectorst?0 finish on the surface of the
Ewald sphere defined by. But evanescent waves
have always wavevectors parallel to tkeeplane

andk, > k.
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5.5 Performance tradefo 5 METALLIC SLITS

5.5 Accuracy of numerical results

This subchapter outlines three major parameters fixing tleeiracy and performance of numerical
analysis:

1. The numbeM of eigenmodes in the apertLEé

2. The number of plane waves in the Rayleigh expansion.

3. The number of necessary sampling points to calculateeh fi
1. Eigenmodes:
The number of eigenmodéd in the slits is determined by

- setting a criterion on the fierence of the incident field and its modal expansion. For @&m
settingM to fulfil

(1ui - Vo Zi )
(Uil

allows an accurate analysis in all regions.

< Pyt = maximum relative intensity mismatch (118)

- setting a transmission criterion. Choosikgto achievevn > M

ICn Tl

W < Pmod = contribution to the transmitted intensity of thd mode (119)
m

whereT, is the zero-order transmission with

_ | 0 for TM polarisation
| 1 for TE polarisation

This criterion allows an accurate analysis of the tranguittield in regionlV. Introducing
ICnl < 1 and|Ty| < |g*0fnh| = eR(kofnh) \ye get an explicit formula.

log (Pmod Trl?) 3
T 2keh < 3(Bwm) where Bm = e -7 (120a)

If region 11 is free space or a dielectric, we get

I(Bu) = Y2 — €3 where M = vav > Ve (120b)

[2. Plane waves:

Here, we set a criterion on the sampling points to comput@éntirbations. This is equivalent to set a
limit Tmax

- The most rigorous criterion fulfils Heisenberg’s uncertgirelation

AW Atz where W = the photon energy

2'Remind that the aperture is described as a hollow, metaflieguide.
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5.6 Example 5 METALLIC SLITS

which sets a lower limit for the accuracy of energy and timesoees. Introducing

AX
AW = iw = fikc and At = -
we get theoptical criterion
Ay - AX < 1_1 and finall AX < (121)
7R ko Y ~ nkoAy

because the frequential sampling is fixed by the periog of the slit array.

- Besides the optical criterion just outlined, we may choasether sampling stepx@ and ex-
plicitly limit the field reconstruction alty;|, ly:| < I'max FOr example, if we are not interested in
the surface field up td from the interfaces, setting

I 2
l—‘maxz E+(@)

assures that the field of the omitted surface waves fallsoe™ of their maximal values at the
interface. For examplé,= 2 limits the intensity error fojz — zZgyrfacd > d to less than 2%.

3. Sampling points:

Note that the reconstruction of the fields in regloand|V is the slowest task. This is especially true
when we are going to compute the three-dimensional field plaieved in chapter|6.

Hence, we should carefully choose the area (volume) wherareénterested in. But we may also
select some particular points and accommodate the sangﬂnh@.

5.6 Calculation example

We assume a gold film with thickness= 150nm. The slits have a widtlw = 200nm and they are
repeated ap = 900nm. Regiorl is a BK7 glas@ whereas water fills regiolVvV and the slitdIl. A
HeNe laser beamif = 633nm) is incident af; = 0° under TE polarisation. At this wavelength, we
havee; = 2.296,e, » —9.386+ 1.147 andes = ¢4 = 1.774.

We compute the electromagnetic field in all regions over twdqals p along thex-axis and 18um
along thez-axis in total.

1. We use the criterion (118) and obtain f; = 1% the number of TE modedd = 51.

2. Applying the optical criterion witlhy = 0.7033,n; = 1.515 andhy = 1.332, we getAx; < 95nm
andAxs < 108nm. To resolve alM slit modes, we choos&x; = AXs = Ax = 0.4nm according
to equation|(109). Now[max = 10> 522 = 6.7 better matches the optical criterion. Maybe, the

~ 95nm
near field will be inaccurate up to abatjf-») ~ = 20nm from the gold film|.

|

kormax
3. We choose a 309 300 point grid to obtain a uniform resolution of 6nm for thddignage.

The calculation on a 2GHz PentiuM machine with MatLab ® took 3seconds. Fdiax = ﬁ—‘;( ~ 1600,

it took 35seconds. The overall intensityfférence is M11%. In the near field up to 20nm, the mean
difference is 015%. See figure 27 for an illustration of the result.

2\We advise to take the same in equations (109) and (110).

ZAs a consequence of our field representation in subchagdtews.get the field accurately at any sampling point. Hence,
we can arbitrarily choose a sampling grid without any caistrother than pure imaging considerations.

24For example a standard microscopy cover slip i @hick.
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5.7 Characteristics of the numerical model

+ Our numerical model is straight forward in the sense that éxplicit. It does not contain any
implicit equation that needs an iterative humerical retsmtu The calculation is fast even for
a high number of aperture modest the exception of the plane wave expansion. Unfortunately
the plane wave expansion is slow due to the huge number ofrpeetl operations. It cannot
become much faster because it is definitively not complekity slows down.

If we could define the spatial spectrum of the fields in regioand IV instead of the fields
themselves, we could suppress the plane wave expansion, flileadesign process would get the
potential for automatisation instead of the actual try-amr procedure.

- The major weakness is the fact that we do not modeltmuok-coupling through the metal film
Il. Light that has passed through the apertures into rel§yiomever propagates back through the
metal film. This consideration does not apply to the progagawvaves, but every surface wave
may propagate back into region- namely if it is a surface plasmon.

- We modelled the apertures as hollow, ideally metallic wganges neglecting theesistive loss
on the vertical walls. This is a minor weakness because itbeasolved without significantly
increasing the complexity of the calculation. Instead &f iteal waveguide modes, we should
consider the real eigenmodes that extend laterally intimndg).

Figure 27: The computed intensity
distribution in thexzplane of the out-
lined example.

The transmitted intensity in region
IV was normalised to the intensity in
region| for better contrast and that
the gold film was manually outlined
after calculation.
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6 METALLIC HOLES

6 Numerical model- metallic holes

The previous chapter 5 was just preliminary work - now, weguigg to investigate the behaviour of
nanoholes. Hence, we expand our geometry and the computatthod to the third dimension.

6.1 Geometry of an array of rectangular holes

Shown in figure 28, we investigate a metallic layer with ragtaar holes smaller than the wavelength
Ao and allowing a periogh = Ag 25 Again, we separate the space in foufelient regions characterised
by their permittivitye. A linearly polarised plane wave is incident in regibanto the metal film| and
the nanoholesl| .

6.2 Ansatz for the electromagnetic field

In this subchapter, we consider only plane TE waves becagseniodal expansion in the holéd is
simpler and very similar to the modal expansion we have setarda We focus on the most important
eqguations.

The computation is based on the dominant compoEgmif the electric field. Nevertheless, as a result
of diffraction along the-axis, the residual componertss andE;, must be taken into account in region
| andlV.

Regionl:
E}F’) — EO epko()’ox+,312) + Rzelko(yox—ﬁlz) + EO f‘[Rz Fr(ym,yry)ér(yrx,yry)ékO(erX+yryy_ﬁrz)d'yrxd')’ry (122)
0
where

Br = Ve — 7r2x - 7r2y (123a)
Fr(?’rx’)’ry) = sz AEl’y(xsy,z=0)e_ik0(yrxX+yryy)d Xdy (123b)

are the plane wave expansion flagents of the perturbation
Gr(mmy) are the geometrical projection dieients (123c)

25The nanoholes are considered as independent, hollowlyideatallic waveguides. In reality, the metallic walls besn
the holes should not be thinner than about 100nm.

W.
. Figure 28: Investigated geometry.

X
,0'/4' ;4 The metal layer is h thick
Py i | 1 and contains rectangular holes
/ : Wy X Wy in size. The holes are
W 7 A, X repeated in a rectangular array
with periods py along thex-axis
h | ”W and py along they-axis. The

p

IV/ structure is lit by a plane wave
incident in thexzplane under an
y angleg;.

z
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6.2 Field representation 6 METALLIC HOLES

Regionll: Metal film
The result is equal to equatidn (102). Therefore

0
E’E% = Eo| ApgkotoxBed | B,gko(yox-522) (124)
0

Regionlll: Holes

The holes are modelled as hollow, ideally metallic wavegsidOn the walls, the electric fiel, = 0,
this means that the resistance is identically to zero.

We rewrite equations (6.19) and (6.20)/in [21] as

Wy : W
s (x-+ %)sinfn -+ W
Emn(xy) = Emn +YmxSin(Koymx(x + %)) cos(koyny (Y + ) | ¥ X< - A <= (125
0
where
Emn are the amplitudes of the eigenmodses ) in the holes
Yx= = kn/ko ¥ melNg A m#n=0 (126a)
WyKo
nr
Yny Wka kmy/kO 0 ( )

The incident waveE; has noE, field. Hence, we simplify equation (125) by settingy = 0 and
Ym = Ymx and obtain

0
: W. W,
Emxy) = Em sm(koym(x+ %)) VoIX < 7’( AN oYE< 7y (127)
0
The modal expansion
0
E}% =Eg Z;o:ol Crmiym) sin(mwlx (X + %)) (A3(7m)6'k°BmZ + Bg(),m)e_'ko'gmz) (128)
0

is identical to equation (104a) where the notation was ediin equations (105) and the coupling
codficientsCy, in equation[(106a).

RegionlV:
E% = Eo Toghobo b | 4 Eo f j}; ) Ft(%x,yty)Gt(ytxmy)elko(%Xxﬂtyywlz)d)’txd)’ty (129)
0
where

Bi= \Jea—v -7 (130a)
Fiomam) = f fR OBty zme 00 dxdy (130b)

are the plane wave expansion flagents of the perturbation

C?t(m%y) are the geometrical projection déeients (130c¢)
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6.3 Evaluation 6 METALLIC HOLES

6.3 Evaluation modifications

This subchapter analytically presents the expansionsftreming the two-dimensional evaluation into
the desired three-dimensional analysis. Note that the ricatevaluation detailed in subchapters 5.2
and 5.3 and the outlined hints in subchapter 5.5 still hold.

Diffraction:

As a result of the bidirectional periodicity in the~plane, we have to account forfiifaction at the
entire xy-plane. Nevertheless, this task is considerably simplifiade note that diraction along
x is independent from €iraction alongy. Hence, we separate the from the y-direction and the
perturbationAE; xy ,-0) yields

0

y—n
AE[’(X’y’Z:O) = AET(X,Z=O) Z reCt( ™ F&) (131)

0 nez Yy

where
Wy
rect(l)z{ LY M<3 (132)
Wy 0 else

So, we can still apply the results shown in subchapter 5.3gatdout we have to include thefects of
diffraction alongy.

Because the incidence is parallel to &Bplan@, the Fourier expansion and the Rayleigh expansion
are identical along. The partial expansion céiicients along are samples of the spectrum of equation
(132). Hence

Wy . Wy
Fryom) = Esmc UE (133)

Combined with equation (111), the expansionfiio@nts write as

Fr(?’rx,)’ry) = FrX(?’rx) : Fry()’ry)

. W, W,
= AXZ AEry(KyZO’ZZO)e_IkoerX . —ySInC(U—y) (134)
5 Py Py

wherey;y is given in equation (117a), the sampling poirtis equation/(112b) and

—uﬂ Y uezZ A | |<E (135)
Yry = kopy Yry 2

Of course, the expansion dfieientsFy,, ,,) are expressed analogously.

Projection codficients:

The Rayleigh expansion now contains plane waves propagatidiferent angles to thezplane. A

plane wave parallel to thezplane can perfectly match the perturbaﬂ@n but this does not hold in
general. As figure 29 shows, we have to find the best match batte perturbatiome'r and the

plane wave’s field vectdt L k.. Here, best match means that the projectionBf onto E achieves its
maximum. Obviously, the geometrical angle= <(AE;, E) has to be least.

26This means thag,o = 0 whereag, # 0.
2Wwithout explicit notation, we already used this fact exaesg in chaptef 5.
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Inspecting figure 29, we note thaE;, E andk; are coplanar. To find
the direction ofE, we first compute the unit vectar L AE;, k;

AE xk _AE K

a= — = X
AE, x k| AE ki

to get the unit vectob // E L & K

k T|AE Tk

kxd Kk [AE kr)
— = — X X —
k| &

E is now the projection oAE, ontob _ o
Figure 29: Projection of the

E = |AE, | cos k(AE,. E))B = (AE, - B)B difference fi(EIdAE)r to get
the fieldE L k.

Remind thatAE, has only a non-nul-codficient. Hence

E = AEry . byB = AEry . G—)r()’rx,)’ry) (1363.)
where
= 0 =
B ul] 1 |x K (136b)
ko) &

Applying equations (98) and keeping only the geometricwdion@, we get

. Yrx Yrx
kr = kO% Yry | = ko Yry
Br R \/%Z(nl) — Y — 7r2y
ki = koR(ny)
and get
R2ny) -3, 2
- _ % _
Cromm) = Ramy) (") ~ 72y (137)

¥R \/ R2(n1) — v& — ¥Ry

Note that(?r(myfy:o) is effectively the unit vectog, as used in chapter 5.

28Here, K. accounts only for the propagation direction and excludgsaanplitude &ect. Indeed, we must not consider
damping to get the geometric projection/t; . By definition, yr andy,, are always real in this paper.
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6.4 Calculation example

We keep all parameters of the example given in subchapteld.@btain a square array of square holes,
the periods are set tp, = py = p = 900nm and the hole dimensions avg = wy, = w = 200nm. The
field image has a size @ x py x 1.8um along thex-, y- andz-axis and is sampled at 160100x 200
grid points. Hence, we obtain a uniform image resolution mh9 Again, we compute foM = 51
aperture modes\x = 0.4nm sampling step anidynax = 10 frequency limit. Now, the calculation on a
2GHz PentiumlV machine with MatLab ® took 13minutes and yield 54MBytes of data. Figure 30
illustrates the result.

The number of field points was multiplied by about 21 and thealmer of difraction orders by about
I'maxbecause of the secondidaction direction. Sa, was estimated to 2110- 3seconds: 11minutes.
Similar, we estimate ~ 14days fol'max ~ 1600. Here, it is definitively not worth to wait 2weeks on a
slightly 'better’ result.

Figure 30: The computed intensity
distribution in thexzplane and the
yz-plane.

The transmitted intensity in region
IV was normalised to the intensity in
regionl for better contrast.




7 CALCULATIONS

7 Computation example

This section present the performance of the actual MatLgleimentation outlined in appendix C. We
will show how to use the dlierent modules for computation and data representation.

7.1 Surface plasmons at slit edges

We are going to set up a gold malkon a BK7 glass prismh. The mask contains an array of slits
[l that will be backlit by a HeNe laser at TM polarisation. Inwief the target application FCS, we
assume water in regiolV .

1. We define the paramefer structure.

r.i=75.23; % incidence angle
r.1=633e-9; % wavelength [m]
r.h=47e-9; % dimensions [m]
r.wx=250e-9;

r.px=432e-9;

r.wy=250e-9; % for 3D functions
r.py=432e-9;

r.el=2.2955; % BK7 glass
r.e2=-9.3863+1.14701i; % gold film
r.e3=2.2955; % BK7 glass
r.e4=1.7737; % water

We choosed the film thicknedsand the incidence angkg to excite surface plasmons at the
gold-water interfacél — V.

2. We compute the field over two perio@g for 600x 600 points. The function applies the default
parametei nax = 10.

s=slitFieldTM(r,600,600,2);

We get the message "Total relative intensity mism@gh= 0.12%" and the field is displayed
after a couple of seconds. The intensity in regiomas boosted to the level of the surface plas-
mons in regionlV. Here, we would like to see the intensity enhancement amctaanother
display.

Figure 31: Intensity through the slit mask. Figure 32: Magnetic field componehk, through
the slit mask.
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display3D(s);

Now, we click twice on "Field” to see how the electromagndiiad propagates through the
structure. A click on "Phase” switches to the (wrapped) phdisplay.

3. Atthe moment, the surface plasmons move to the right. E&,ve should better get a standing
wave. Hence, we will add a wave incident-a such that it has a phase shifp ~ = over the
apertures. This should suppres most of the residual trasgmithrough the slits and boost the
contrast in regioV. We could recalculate the field but we prefer to flip it along xkaxis and
add it manually.

t=s; % new container

f=double(t.Hy); % add with phase shift
t.Hy=single(f+exp(0.5i*t.k0*t.g0*t.px)*£f(t.W(1):-1:1,:,:));
f=double(t.Ex);
t.Ex=single(f+exp(0.5i*t.k0*t.g0*t.px)*£(t.W(1):-1:1,:,:));
f=double(t.Ez);

t.Ez=single(f+exp(0.5i*t.k0*t.g0*t.px) *£(t.W(1):-1:1,:,:));
t=magneticIntensity(t); % recompute the

display3D(t);

Now, we get a promising set of light lines along traxis. If we review the field, we note that it
is now a standing wave on both faces of the metal film.

=101 x|
Hz T _j_[ r_tJ

Field | |ntenzity | Phaze |

Y= O

Figure 33: 3D display controls.

Figure 34: Phase of the magnetic field componenEigure 35: Intensity through the slit mask under
Hy through the slit mask. symetric illumination.
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7.2 Light fields through holes

4. We will reuse the previous geometry settifig= 0 and launch a calculation in 3D for metallic
holes. Here, we will focus on a singlg-period that we will sample at 100 100x 200 points.
Because we switch to TE polarisation, we manually increasenumber of considered hole
modes but truncate the plane wave expansidhimg = 10 as before.

r.i=0;
u=holeFieldTE(holeTransmissionTE(r,80),[],[100 100 200],10);

We get the message "Total relative intensity mismagh= 0.79%" indicating the error of the
eigenmode expansion over the holes. After about 2minutescam now browse through the
tridimensional field aky-, xz andyzslices.

Figure 36: Intensity through the hole mask.
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8 APPLICATIONS

8 Applications for FCS

This chapter presents two applications for fluorescence- autd cross-correlation spectroscopy. In
general, FCS is made by means of a confocal microscope ingpéyserial scanning to gather informa-
tion from a manifold of &; y; 2)-positions in the sample. As detailed in the introductigrwé follow
two main objectives.

1. Speed up FCS through parallelisation of the detectioplagxed in subchapter 8.1.

2. Reduce the volume of the excitation spots to enable FC&ioig Icells - illustrated in the sub-
chapters 8.2 and 8.3.

8.1 Setup for parallel FCS

Figure 37 outlines a setup for parallel FCS. Here,
parallel FCS means that the intensity is detected
by a sensitive array detectdf rather than an Array detector
avalanche diode.

A plane collimated laser beam backlights the
sample that is imaged by a standard microscape
onto two FCS array detectors. The left deteg-
tor receives only the background Iiﬂwhereas
the upper detector only gets the fluorescence
The background has the same wavelengttas
the incident laser beam whereas the fluorescenceg
contains longer wavelength. Hence, with a

Tube lens

Dichroic mirror

dichroic mirror, the background is separated from ICS objective
the fluorescence and directed to its array detector.

Sample
The setup relies on a particular sample that cre-| Laser Mirror

ates itself a multitude of confined light fields re
placing the single spot of a confocal microscop
The spots should have a volurde< A3 and they
should be resolved individually by the array de-
tectors.

®

Figure 37: Proposed setup for parallel FCS.

Advantages:

- The setup is robust because it needs no particular adjostniéerefore, cross-correlation at
several wavelengths sets no particular problem due to thd §got positions.

- The fluorescence is detected at several thousand indivighads. This allows to get simultane-
ously the auto- and cross-correlation for each individyat ©r to compute the spatial cross-
correlation over several spots.

- The left detector gets the background and resolves the figlls as long as the sample is in
focus. This detector controls the sample position and ges/a real time position reference to
the second array detector.

29As for example the latest development by the group of ProfdiRge Popovic at the Microsystems Laboratory at the
EPFL.
30The transmitted excitation light.
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- The setup may be considerable smaller than a standardaadmficroscope because we do not
need a voluminous scanning stage.

Disadvantages:
- The sample has to confine the incident light into individsahall light fields.

- The fluorophores are excited near the sample surface. Téamsrthat our approach is limited to
two dimensions and that quenching may become a problem.

8.2 Fluorescence correlation spectroscopy

Figure[ 38 shows the intensity profile created by
the underlying sample. Centred on a hole, the in-
tensity profile is drawn for the first quadrant gf
a xy-period. The intensity is outlined by shading
and isolines at/Imax= €2 wherene N. The
isolines are solid fon < 4, dashed for x n< 8
and dotted otherwise. Hence, the last solid isoline
indicates thd /I max = €2 surface.

The sample is d = 150nm thick gold mask of
square holes withvy, = wy = 200nm in a square
array of px = py = 940nm. The gold mask is de
posited on top of a 170n thick BK7 cover slip.

Its holes are filled with BK7 glass to inhibit con
tamination by fluorophores. In this example, |a
HeNe laser beam is incident @t= 0° under TE 800 -
polarisation. The mask transmits a fraction of the
incoming energy to create individual bright spots
at the top of the holes.

o 600

A drop of an aqueous fluorophore solution is put
on the mask. The fluorophores are excitedat
and emit alls > Ae. 3

400 "
Results:
The spots have al Imax = €2 surface similar to RN
a semi-ellipsoid with half-axes 200 - T
ry ~ 70nm ry ~ 190nm r, ~ 120nm ‘

100 200
: 30 400

Hence, the spot volume is y [nm] 400 X [nm]

VeHeNg ~ 2.5- 10718 (138)

Figure 38: Intensity fone = 633nm

Assuming an average of; =2 fluorophores
floating simultaneously in the same spdt,allows FCS up to a fluorophore concentration

"~ V.- 6.02- 1023mol ™!

Cs that is Cf(HeNe) = 13/.[M (139)

The polarisatiorE // y-axis shows up imy > ry. Even forwy — 0, ry > 120nm. For square holes, we
obtainedry ~ ry + 120nm.
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8.3 Fluorescence cross-correlation spectroscopy

We reuse the sample of the previous subchapter
8.2. For cross-correlation spectroscopy, we com-
bine an Argon lasena, = 488nm with the HeNe z [nm] ‘ \
laserdpene = 633nn‘@to get a simultaneous ex{ y / = - =

citation atAde = {Aar, AHend. Figure! 39 depicts 1400 — |
the intensity profile at the Argon wavelength.

Results:

Again, the spots have allmax= €2 surface
similar to a semi-ellipsoid. But the half-axis
alongzis significantly longer.

ry ~ 90nm ry ~ 180nm r; ~ 250nm
The spot volume increases to
Vean ~ 6.4- 10718 (140)

and, atN¢ =2, the fluorophore concentration
drops to

Ci(an ~ 0.52uM (141)

Comparison:

P. Schwille [2] worked with a confocal micro-
scope by Carl Zeiss. She used an apochrome
ICS objective 40x1.2 for the excitation &k, and 100
Anene as well as for the fluorescent light. With
a standard FCS test sample, she measured |the
transversal radii of the confocal spots

200
300
y [nm] 400 400 [nm]

Figure 39: Intensity fone = 488nm
rqar) =~ 180nm  and  ryqeng = 250nm

From table 1 in [13], we approximate the axial radii as

088l
2 n- vnZ - NA2

Hence, we deduce the confocal spot volumes

where N = +/en,o

Ve(an ~ 5.8 107 and VgHeng ~ 1.5-107% (142)
and get foN¢ = 2 the fluorophore concentrations

Ctan = 57nM respectively Ct(Heng = 23nM (143)

31This is a standard excitation for many confocal microscdge€arl Zeiss for example.
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9 CONCLUSIONS

Discussion:

1. AtAar, we are able to handle a fluorophor
concentratiorCs that is about an order of
magnitude higher than with standard cor
focal FCS. AtApene We gain about two
orders of magnitude.

The confocal spot size has a lower bour
imposed by diraction. Therefore, it grows
for increasing wavelengths. In contras
the spot size behind our hole mask ten
to shrink for longer wavelengths. While
diffraction is a problem in confocal mi+
croscopy, we use it to keep the light field
very small. The more the light filfacts in
regionlV, the smaller ig, whereagy and
ry grow slightly.

. As figure 40 shows, the smaller spot at t
than 98% in the larger spot at the Argon
elegant method for fluorescence cross-co

9 Conclusions

D

t 200
’

1S 150l
200

n

z[nm]

250 ~

-200

-100
-100

X [nm]
y [nm] foml

200 200

Figure 40: | /Imax = €2 intensity surface afla,
andAyene

he HeNe laser waytleyene iS contained to more
laser wavelenigth Hence, our setup provides an

rrelation spsctpy.

By means of rigorous wave coupling, we elaborated an expliginerical model for the electromag-

netic field through an array of subwavelength apertures. mbeéel characteristics were outlined and

some example calculations were given in view

fabrication, we are not jet able to present experimentalli®i this paper. Hence, the experimental

of the targptiegtion. Due to delays in the sample

verification remains in the pipeline and will be launched whie first sample is available.

On the theoretical part, we will generalise our nu

I andlll . Especially, we will accommodate the model for circulardsohnd step into the calculation of

rough interfaces — Il andll — 1V.

5

9

mericalrapch to handle any configuration in regions
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A DIELECTRIC CONSTANT OF METALS

A Determination of the relative dielectric constant of metds

E. Kretschmann described in 1970 in his thesis [24] a new oteth measure the optical constants
of metals. His method relies on the anomalous low reflectiathia metal layers in a Kretschmann-
Raether configuratic@. Due to an excitation of surface plasmons, the incidentmlaagnetic energy
is dissipated in the metal film instead of being reflected.

Conditions:

1. At a metal-dielectric interface, surface plasmons essy if the dielectric constant, of the
metal ande; of the dielectric fulfil the conditions

s)%62 < —%63 and 562 < |%€3| (144)

assuring that the surface wave fEegtively a plasmon and that the absorption is low enough for
resonance.

2. The thickness$, of the metal film should be such that the reflectance dropsstotiean 50% at
the resonance (see chapter 2.6). In the visible range fangea gold and silver films should
have about 40nm to 60nm.

In general, a thickness between one and two skin-depthdcshe@ppropriate for a first measure.
If necessary, a second measure should be made on a samptetteatmatches the resonance
condition. This makes the determination more robust agaieasurement errors.

Setup and measure:

A plane TM wave excites surface waves on a thin metal &@mThe metal film is evaporated on the
flat of a BK7 glass cylindeg;. As figure 41 shows, the wave is incident through the senindgl on
the glass-metal interface. The incidence amlis greater than the critical ang#g for total internal
reflection at the opposite metal-air interface. Hence, tie@lent wave is either reflected or absorbed,
but it cannot transit into the aig.

For correct measures, we need a well-collimated bgam
incident on the glass-metal interface. Here, we work with
collimated HeNe laser beamy = 633nm). We correct for
the cylindrical air-glass interface by means of a divergent
cylindrical lens. The reflected light is projected onto atphq
diode to measure its intensity.

A goniometer assures a 1:1 correspondence bet#eamd
0o. It is used to turn the HeNe laser and the photo diode

aroundzthe semi-cylinder while measuriéige [41.5°, 80°] Figure 41: Kretschmann setup
and|Ry|c = I;/l;.

6o diode

e, hy

€3

Sensitivity and accuracy:

We have already seen that the excitation of surface plasisamsy sensitive ol andh,. Hence, the
distinction of two diferent metals mainly depends on the accuracy of the methadn #re measured
reflection|Ry|?, we get the parametets andhy by fitting |Re|? to the Fresnel cdBcient Ry, h,.a)l°-
We use a least square algorithm to find the best fit. Therefore

2 232
' R '
error = Z (|R9(9|m)|2 _! 13(62’h2’9'm)|2] -0 (145)
|R9(9if)| |R13(€2,h2,9if)|

m

32Review figures 9 and 21.
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A DIELECTRIC CONSTANT OF METALS

where

IRt 12 = [Ryg)|* > 0.8 max|Ry[? and = minimal até;s

dRy[?
do;

As proposed by E. Kretschmann, we fit the ratiBg?/|R¢|? instead of the cd@cients|Ry|%. This
eliminates any linear scali@ on |Ry|? and we can directly replace it by.

Next, we discuss the influence of random noise and some sg8teenrors on the fitted parametess
andh, at the example of a gold film. Figure 142 shows the parametetshanFresnel cagcient|Ry3)°.

- Figurel 43 outlines the parameter extraction if 78 valuesiwemed for the least square fit. The
reference anglés ~ 60° and the extractee, andh, differ by about 6% from the exact values.
Figure 44 shows the results for a fit on 39 valueddiffers by about @% andh;, by 0.9%.

- Figurel 45 outlines the influence of 5% random noise on thegagdin values. Random noise is
due to detector noise, intensity fluctuations of the HeNerlas roughness at the interfaces. The
standard deviations are about 3% &mrnd 5% forh, .

If |Ry|? is measured with less than 1% of relative error and the imcideangleg; at +0.03, Re is
easily determined to about 1% wheré&s andh;, are given to about 3%.

33A very likely systematic error. For example, every air-glagerface reflects about 4% of the incident light.
34Refer to appendix A for other random or systematic errors.

IRyaf? IRo/Rs[?
1.01 1.2¢
1.01
0.8r
0.8r
0.6F €= 2296
€ = -9.386+ 1.147 € = —9.387+ 1.087
es= 1000 o8r hy = 59.668nm
0.4F hp = 60.000nm
0.4r
0.2r
0.2r
ool ‘ ‘ ‘ ‘ ‘ ‘ ‘ ool ‘ ‘ ‘ ‘ ‘ ‘ ‘
45 50 55 60 65 70 75 80 @ [°] 45 50 55 60 65 70 75 80 @ [°]
Figure 42: Fresnel cdigcient of reflection Figure 43: 05° sampling in [415°, 80.0°]
IRo/Rs[? IRo/R[?
12r 121

1.0+ 10k

0.8+ 0.8-

_ € = —9.430+ 1.103 = (0.067 + 0.294)
€2 =-9.419+ 1091 0.6 hy = 58020nmz+ 2.914nm

0.6

hz = 59.484nm (mean o from 10 samples)
0.4r 0.4F
0.2r 0.2
0025 50 5 50 & 70 75 80 ¢ [°] s 50 55 50 65 70 75 0 g [°]
Figure 44: 10° sampling in [415°, 79.5°] Figure 45: Random reflection errotg 2 = 0.05
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IRy /Ry [?

1.2

1.0

0.8

0.6

0.4

0.2

0.0

e = —-9.409+ 0.847
hy = 56.439nm

i j
45 50 55 60 65 70 75 80 ¢, [°]

Figure 46: 10° sampling in [420°, 80.0°]

IRy/R¢[?

12

1.0

0.8

0.6

e =-9.149+0.770

h, = 56.564nm

0.4r

0.2r
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45 50 55 60 65 70 75 80 @ [°]
Figure 48: Angle @setAg; = 0.1°
IRo/R[?
1.2r

1.0

0.8

0.6

0.4

0.2

0.0

e = —9.461+ 0.996
h, = 54.469nm

i
45 50 55 60 65 70 75

80 g [’]

Figure 50: ReflectionfsetA|Ry> = 0.1

IRy/R¢[?
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1.0

0.8
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0.6 hp = 59.809nm= 0.994nm
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0.0 i i i i i i i i
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Figure 47: Random angle erroy, = 0.05°
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0.8
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e = -9.607+ 0.865
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0.4f
0.2
0045 50 55 60 o5 70 75 80 ¢ [°]
Figure 49: Angle scal&g; = 5%(@; — 45°)
IRo/R¢[?
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0.4
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igure 51: Reflectance scadRy|*> = —10%Ry/?
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B ATR

B Reflection and Transmission Spectrum oATR devices

B.1 Kretschmann-Raether configuration
Gold

1 p— T 20 T T
L 20.00 (nm

09— N J 181 46.29 [nm
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7 16 100.00

0.8

nm
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Osp 0[°] Osp 0[]

(a) Reflection (b) Transmission

Figure 52: Reflected and transmitted intensity at a thin §btdin function of the thickness.
Incident light atlg = 617nm,e; = 1.542 (glass),e; = —10.662+ 1.374 (gold), e = 1 (air). Plasmon
excitation forhpin = 46.29nm atdsp = 43.22°.

Silver

140

T T
20.00 [nm
40.00 [nm
53.15 [nm
100.00 [nm

20.00 -
o 40.00 leiiii .|
53.15 [nm |
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Osp 0[] Osp T
(#) Reflection (b) Transmission

Figure 53: Reflected and transmitted intensity at a thiresifim in function of the thicknesk.
Incident light atly = 617nm,e; = 1.54% (glass),e; = —17.236+ 0.499 (silver), e3 = 1 (air). Plasmon
excitation forhpj, = 53.15nm atdsp = 42.03°.
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B.2 Otto configuration B ATR

B.2 Otto configuration
Gold

Osp 6[°]

(a) Reflection (b) Transmission

Figure 54: Reflected and transmitted intensity at a thin §btdin function of the thickness.
Incident light atlg = 617nm,e; = 1.542 (glass),e; = —10.662+ 1.374 (gold), e3 = 1 (air). Plasmon
excitation forhpin = 516nm atsp = 42.8°

Silver

140 T T

1500 [nm] - - - -

(a) Reflection (b) Transmission

Figure 55: Reflected and transmitted intensity at a thiresifdm in function of the thicknesk.
Incident light atlp = 617nm,e; = 1.54? (glass),e; = —17.236+ 0.498 (silver), e3 = 1 (air). Plasmon
excitation forhyin = 950nm agp = 41.9°.
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C IMPLEMENTATION

C MatLab scripts

Astructurekeeps the model parameters and the evaluation resulthérgdthus, a numerical evalua-
tion is done in three to five steps.

1. Define all input parameters in a netvucture
2. Pass thetructureto the desiredransmissiorfunction.

3. Pass the result to the correspondiietd function and define the drawing region and sampling. If
the previous step was skipped, fiedd function automatically executes it with default parameter

4. Inspect the final result with théisplay3Dfunction.

5. If desired, post-treat the result to figure out additianfdrmation.

The input parameters are defined in atructurecontaining the following fields:
.i Incidence angl@; [°], where 0 = z—axis and 90 = x—axis
.I Wavelengthig in free space [m]
.h Thickness of the metal film [m]
wx/y  Width wy andwy, of the apertures [m]
.pxly Periodpx and py of the aperture array [m]

.el..4 Relative dielectric constanrts, in regionl to 1V

C.1 2D computation of metallic slits

Our current implementation evaluates an array of metditie & TM andor TE polarisation. Only the
MatLab scripts for the TM polarisation are printed.

2D/slitFieldTM.m
Electromagnetic field through an array of slits in a metattayee figure 1(b) for an outline of the model geometry.
The incident plane wave has an intensity of .

in: r [Structure
Image width in pixelg256}
Image height in pixel$256}

Compute up tiky| = P - ko {all}

w
h

N Number of periods drawfi}

P

O Chooses th€Rayleigh’} or 'Fourier’ plane wave expansion method

out: r [Structurecompleted with
I Intensity [W/m?]
P Used limit forky
.S Drawing dimensions [m]
W Image dimensions [pixel]
.X/y/z Coordinates of the computed points [m]
.Ex/z Electric field [V/m]

.Hy Magnetic field [A/m]
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C.1 Metallic slits

C

IMPLEMENTATION

function r=slitFieldTM(r, w, h, N, P, 0)

if “nargin | isempty(r) | “isstruct(r)
help slitFieldTM
return;

end;

if nargin < 2 | isempty(w)
w=256;

end;

if nargin < 3 | isempty(h)
h=256;

end;

if nargin < 4 | isempty(N)
N=1;

end;

if nargin < 5
P=[];

end;

if nargin < 6
0="7;

end;

switch lower(0)

case 'fourier’
0=1;

otherwise
0=0;

end;

resetStatus;

if “isfield(r,’A3’)
r=slitTransmissionTM(r);

end;

p=N*r.px/(w-1);

x=((L:w)-w/2)*p;

z=((1:h)-0.3*h)*p+r.h/2;

ki=i*r.kO;

%

%Field allocations

.I=zeros(h,w);
=abs(P) ;

.S=[1 0 h/w]*N*r.px;
w 1 h];

RRRRRRAR AR R R R

%Regions and slit positions
%

% Metal layer at z(a)...z(b)
% Holes at x(c)

% Local x d

% Hole phasors e

%

a=find(z >= 0);

a=a(l);

b=find(z <= r.h);
b=b(length(b));

c=[1;

e=[];
for j=-ceil(N):ceil(N)
t=find(abs(x+j*r.px) < r.wx/2);
c=[c t];
d=[d x(t)+r.wx/2+j*r.px];
e=[e repmat(exp(-j*ki*r.g0*r.px),size(t))];

end;

%

%Region 1: Input

%

% Hy = exp(i*k0*(g0*x + bl*z)) + R2¥exp(i*k0*(g®*x - bl*z))
% + sum(Fn*exp (i*k0*(gn*x - bn*z)))

% Ex = b*sqrt(ud/e0)/er*Hy

% Ez = -g*sqrt(ud/e0)/er*Hy

%

s=exp(ki*r.g0*x);
nl=sqrt(r.el);
if 0
[gn,Fn]=fourierCtm(1l+r.R2,r.g0®, (1+r.R3).*r.Cm,r.g3,r.k0,r.wx,r.px,real(nl)*r.P);
u=exp(ki*gn’*(x+r.wx/2));
else
[gn,Fn]=rayleighCtm(1+r.R2,r.g0®, (1+r.R3).*r.Cm,r.g3,r.k0,r.wx,r.px,real(nl)*r.P);
u=exp(ki*gn’*x);
end;
bn=zSpeed(r.el,gn);
r.I(l:a-1,:)=1;
for j=1:a-1
1=ki*z(j)*conj(r.bl);
t=r.R2%*exp(conj(1));
l=exp(1);
v=exp(-ki*z(j)*bn);

r.Hy(j, )=Q+t)*s + (Fn.*Vv)*u;
r.Ex(j,)=(r.b1*(1-t)*s - (Fn.

r.Ez(§, )=(-T.g0*(L+t)*s - (Fn.*gn.*v)*w)/r.el;
updateStatus(j/h);
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C.1 Metallic slits C IMPLEMENTATION

end;

%

%Region 2: Layer

%

% Hy = A2%exp(i*k0*(g0*x + b2*z)) + B2*exp(i*k0*(g0*x - b2*z))

%

%Region 3: Slits

%

% Hy = sum((A3*exp(i*k0*b3*z) + B3*exp(-i*k0*b3*z))*cos(k®*g3*x));

%

n2=sqrt(r.e2);

n3=sqrt(r.e3);

r.I(a:b,:)=nl/n2;

r.I(a:b,c)=nl/n3;

u=exp(ki*r.g3’*d);

for j=a:b
t=exp(ki*z(j)*r.b2);
r.Hy(j,:)=(r.A2*t+r.B2/t)*s;
r.Ex(j,:)=r.b2*(r.A2*t-r.B2/t) /r.e2*s;
r.Ez(j,:)=-r.g0%*(r.A2*t+r.B2/t) /r.e2*s;
t=exp(ki*z(j)*r.b3);
v=(r.A3.*t+r.B3./t).*r.Cnm;
r.Hy(j,c)=v¥*real(w).*e;

r.Ex(j,c)= r.A3.*t-r.B3./t).*r.Cm)*real(u).*e)/r.e3;
r.Ez(j,c)= imag(u).*e)*(-i/r.e3);
updateStatus(j/h);

end;

%

%Region 4: Output

%

% Hy = T2*exp(i*k0*(g0*x + b4*z))

% + sum(Fn*exp (i*k0*(gn*x + bn*(z-h))))

%

nd=sqrt(r.e4);

if 0
[gn,Fn]=fourierCtm(r.T2,r.g0,r.T3.*r.Cm,r.g3,r.k0,r.wx,r.px,real(n4) *r.P);
u=exp(ki*gn’*(x+r.wx/2));

else
[gn,Fn]=rayleighCtm(r.T2,r.g0,r.T3.*r.Cm,r.g3,r.k0,r.wx,r.px,real(m4)*r.P);
u=exp(ki*gn’*x);

end;

bn=zSpeed(r.e4,gn);

r.I(1+b:h,:)=nl/n4;

for j=1+b:h
t=exp(ki*(z(j)-r.h)*r.bd);
v=exp(ki*(z(j)-r.h)*bn);
r.Hy(j,:)=r.T2*t*s + (Fn.*v)*u;
r.Ex(j,:)=(r.b4*r.T2*%
r.Ez(j,:)=(-r.g0*r.T2
updateStatus(j/h);

end;

%

%Intensity & normalization for 1W/m"2 input

%

*s - (Fn.*gn.*v)*u)/r.e4;

1/2*real (H*conj (H) *sqrt(u®/ed*er))
Hi(I = 1W/m"2)

%I =
% s =
%
€0=8.85418782e-12; % [As/Vm]

u®=1.25663706e-6; % [Vs/Am]

t=[2 3 1];

s=sqrt(2*nl*sqrt(ed/ufd));
r.I=permute(single(real(r.I.*r.Hy.*conj(r.Hy))),t);
r.Hy=permute(single(r.Hy*s),t);
s=sqrt(2*nl*sqrt(ud/e0));
r.Ex=permute(single(r.Ex*s),t);
r.Ez=permute(single(r.Ez*s),t);
eval(’display3D(matchIntensity(r))’, ’return’);
delete(updateStatus(1));

2D/slitTransmissionTM.m

Fresnel cofficients and coupling ctcients for a plane TM wave incident onto an array of slits. f8gee 1(b) for an outline of the
model geometry.
in: r [Structure
P Compute up ttky| = P - ko {10}

out: r [Structurecompleted with
.kO Wavevectokg in free space [ratin]
.90 yo = ky/ko of the incident wave
.93 ym = kx/ko of the TM slit modes
.b1..4 Propagation constais 4 = kz/ko
.Cm Coupling cofficientsCy, to the slit modes
.R2/3 Reflection cofficientsRat thel — Il — IV andl — Il — IV layers
.A2/3 CodficientsAin regionll andlll of the forward propagating wave
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.B2/3 CodficientsB in regionll andlll of the backward propagating wave
.T2/3 Transmission cdicientsT through thel — Il — IV andl — |l — IV layers

function r=slitTransmissionTM(r, P)
if nargin < 2 | isempty(P)

P=10;
else

P=max(1,P);
end;
%
% Wavevector and propagation constants
%
s=r.l/r.wx/2;
kO=2*pi/r.1;
g0=real(sqrt(r.el)*sin(r.i*pi/180));
g3=s*(0:ceil(P/s));
bl=zSpeed(r.el,r.g®);
b2=zSpeed(r.e2,r.g0);
b3=zSpeed(r.e3,r.g3);
b4=zSpeed(r.e4,r.gd);

Fresnel reflection and transmission through the metal layer

MR R RARRARR

i

,T,A,B]=layerRTtm(r.el,r.e2,r.e4,r.g0,r.k0,r.h);
R2=R;
T2=T;
A2=A;
B2=B;

Coupling coefficients to the slit modes
Cm=slitCtm(r.g®,r.g3,r.k0,r.wx);

Fresnel reflection and transmission through the slit

i

,B]=layerRTtm(r.el,r.e3,r.e4,r.g3,r.k0,r.h);

HR R R AR AR

Lo

2D/private/fourierCtm.m
Fourier expansion cdicientsF, of the diference field\Hy at the slit boundary.

in: CO Codticient in regionl or IV at the metal layer
g0 vyo = ky/ko of the incident wave
Cm Coupling co#ficientsCp, to the slit modes
gm ym = k¢/ko of the TM slit modes
kO Wavevectolk in free space [ratn]
wx  Width wy of the slits [m]
px Periodpy of the slit array [m]
P Compute up ttky| = P - ko {all}

out: gn yn = ky/ko of the difracted waves
Fn Fourier cofficientsF,

function [gn,Fn]=fourierCtm(C®,g®,Cm,gm,k0,wx,px,P)
t=max (100, 10*1length(gm));
t=2"ceil(log2 (px/wx*t));
s=floor(t*wx/2/px);
x=px/t*(-s:s);
f=Cm*cos (k@*gm’ * (x+wx/2))-CO*exp (i*k0*g0*x) ;
gn=[-t/2:t/2-11*2*pi/px/k0;
Fn=fftshift(fft(f,t)/t);
if length(P)
t=find(abs(gn) < P);
gn=gn(t);
Fn=Fn(t);
end;

2D/private/rayleighCtm.m
Rayleigh expansion cfiicientsF, of the diference field\Hy at the slit boundary.

in: CO Codficient in regionl or IV at the metal layer
g0 yo = kx/ko of the incident wave
Cm Coupling co#ficientsCy, to the slit modes
gm ym = ky/ko of the TM slit modes
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kO Wavevectolk in free space [ratmn]
wx  Width wy of the slits [m]
px Periodpy of the slit array [m]

P Compute up ttks| = P ko {all}

out: gn yn = ky/ko of the difracted waves
Fn Rayleigh cofiicientsFp

function [gn,Fn]=rayleighCtm(CO,g0,Cm,gm,k0,wx,px,P)

%

%Field difference

%

% dF = perturbation

%

t=max (50, 5%length(gm));
s=wx/t/2;

P
dF=Cm*cos (k®*gm’ * (x+wx/2))-CO*exp (1*k0*g0*x) ;
%
%Avoid aliasing (Shannon)
%
P=min([P pi/k0/s1);
%

%Rayleigh expansion

%

% gn = g0 + n*px/1 for all |gn| < P

%

s=2*pi/k0/px;
gn=g0+(-floor ((P+g0)/s) : floor((P-g®)/s))*s;
Fn=dF*exp(-1i*k0*x’*gn)/t;

2D/private/slitCtm.m
Coupling codicientsCp, representing a plane TM wave as a series of cosine TM slit mmode

in: g0 yo = kx/ko of the incident wave
gm ym = k/ko of the TM slit modes
kO Wavevectolk in free space [ratn]
wx  Width wy of the slits [m]

out: Cm Coupling cofficientsCy, to the slit modes

%Reconstruction formula: f=Cm*cos(k®*gm’*(x+wx/2))
%

function Cm=slitCtm(g®,gm,k®,wx)

t=max (50, 5*length(gm));

s=wx/2/t;

x=(-t:t)*s;

f=exp(1*k0*g0*x);

Cm=f*cos (kO* (x’+wx/2) *gm) /t;

m(1)=Cm(1)/2;

%

%Total relative intensity mismatch Ptot

%

d=f-Cm*cos (k®@*gm’ * (x+wx/2)) ;

fprintf(’Total relative intensity mismatch Ptot = %g%%\n’,100*(d*d’)/(£f*£f’));

2D/private/zSpeed.m

Propagation constagtwith positive imaginary part.

in: e Relative dielectric constaat
g v =ke/ko
out: b B=k/ko

function b=zSpeed(e,g)
b=sqrt(e-g."2);
b=complex(real(b),abs(imag(b)));

C.2 3D computation of metallic holes

Currently, the implementation evaluates an array of nmiethaflles at TE polarisation only.
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3D/holeFieldTE.m
Electromagnetic field through an array of slits in a metagtaee figure 28 for an outline of the model geometry.
The incident plane wave has an intensity of .

in: r [Structure

Drawing dimensions [m{ px, py, h + 340]}

Image dimensions [pixel[100, 100, 100}

Compute up tiky| = P - ko {all}

Chooses th¢Rayleigh'’} or 'Fourier’ plane wave expansion method

O v s on

out: r [Structurecompleted with
.1 Intensity [W/m?]
P Used limit forky
.S Drawing dimensions [m]
.W Image dimensions [pixel]
.X/y/z Coordinates of the computed points [m]
.Exly/z Electric field [V/m]
.Hx/y/z Magnetic field [A/m] (not yet implemented)

function r=holeFieldTE(r, s, w, P, 0)

if "nargin | isempty(r) | “isstruct(r)
help holeFieldTE
return;

end;

if nargin < 2 | length(s) "= 3
s=[r.px r.py r.h+3*r.1];

end;

if nargin < 3 | length(w) "= 3
w=[100 100 100];

else
w=ceil(w);

end;

if nargin < 4 | length(P) "= 1
P=[1;

end;

if nargin < 5
0=""3

end;

switch lower(0)

case 'fourier’
0=1;

otherwise
0=0;

end;

resetStatus;

if “isfield(r,’A3’)
r=holeTransmissionTE(r,P);

end;

ki=i*r.ko;

t=s./w;

%

%Field allocations

%

x=((L:w(1))-(1+w (1)) /2)*t(1);

y=((1:w(2))-(1+w(2))/2)*t(2);

z=((1:w(3))-w(3)/3)*t(3) + r.h/2;

I=zeros(w);

P=abs(P);

S=s;

W=w;

X=X;

Y=y;

z=z;

Ex=r.I;

Ey=r.I;

Ez=r.I;

Regions and hole positions

RRRARARARARAARARRRRR

% Metal layer at z(a)...z(b)
% Holes at x(c) X y(d)
% Hole phasors e

% Local x f

%

a=find(z >= 0);

a=a(l);

b=find(z <= r.h);
b=b(length(b));
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n=ceil(s(1)/r.px);
for j=-n:n
t=find(abs(x-j*r.px) < r.wx/2);
c=[c t];
e=[e repmat(exp(j*ki*r.g0*r.px),size(t))];
f=[f x(t)+r.wx/2-j*r.px];
end;
n=ceil(s(2)/r.py);
for j=-n:n
t=find(abs(y-j*r.py) < r.wy/2);
d=[d t1;
end;
%
%Region 1: Input
%
% Ex = sum(bx*Fn*exp(i*k0*(gx*x + gy*y - bn*z)))

% Ey = exp(i*k0*(g0*x + bl*z)) + R2¥exp(i*k0*(g®*x - bl*z))
% + sum(by*Fn*exp(i*k0*(gx*x + gy*y - bn*z)))

% Ez = sum(bz*Fn*exp(i*k0*(gx*x + gy*y - bn*z)))

%

s=exp(ki*x’*r.g0);

nl=sqrt(r.el);

if 0
[gx,gy,Fn]=fourierCte(1l+r.R2,r.g®, (1+r.R3).*r.Cm,r.g3,r.k0,r.wx,r.wy,r.px,r.py,real(nl)*r.P);
u=exp(ki*(x+r.wx/2)’*gx’);

else
[gx,gy,Fn]l=rayleighCte(l+r.R2,r.g0, (1+r.R3).*r.Cm,r.g3,r.k0O,r.wx,r.wy,r.px,r.py,real(nl)*r.P);
u=exp(ki*x’*gx’);

end;

[bx,by,bz]=projectEy(gx,gy,r.el);
bn=zSpeed(r.el,gx,gy);

Fx=Fn.*bx;

Fy=Fn.
Fz=Fn.*bz;

i*z(j)*conj(r.bl);

t=s*(exp(t)+r.R2*exp(conj(t)));

v=exp(-ki*z(j)*bn);

for i=1:length(y)
p=exp(ki*y(i)*gy).*v;
r.Ex(:,1i,j)=u*(Fx. H

r.Ey(:,i,j)=t + u*(Fy.*p);
r.Ez(:,i,j)=u*(Fz.*p);
end;
updateStatus(j/w(3));
end;
%
%Region 2: Layer
%
% Ex =0
% Ey = A2*exp(i*k0*(g0*x + b2*z)) + B2*exp(i*k0*(g0*x - b2*z))
% Ez = 0
%
%Region 3: Holes
%
% Ex = 0
% Ey = A3*exp(i*k0*(g3*x + b3*z)) + B3*exp(i*k0*(g3*x - b3*z))
% Ez = 0
%

n2=sqrt(r.e2);
n3=sqrt(r.e3);
r.I(:,:,a:b)=n2/nl;
r.I(c,d,a:b)=n3/nl;
u=exp(ki*r.g3’*£f);

:,j)=repmat(s*(r.A2*t+r.B2/t),size(y));
t=exp(ki*z(j)*r.b3);
r.Ey(c,d,j)=repmat ((((r.A3.*t+r.B3./t).*r.Cm)*imag(u) .*e).’,size(d));
updateStatus(j/w(3));
end;
%
%Region 4:  Output
%
% Ex = sum(bx*Fn*exp(i*
% Ey = T2*exp(i*k®*(g
% + sum(by*Fn*exp (

0%(gx*x + gy*y + bn*(z-h))))
X + bd*z))

(gx*x + gy*y + bn*(z-h))))

% Ez = sum(bz*Fn*exp(i (gx*x + gy*y + bn*(z-h))))
%

nd=sqrt(r.ed);

if o

[gx,gy,Fn]=fourierCte(r.T2,r.g0,r.T3.*r.Cm,r.g3,r.k0,r.wx,r.wy,r.px,r.py,real (n4)*r.P);
u=exp(ki*(x+r.wx/2)’*gx’);

else
[gx,gy,Fn]=rayleighCte(r.T2,r.g0,r.T3.%*r.Cm,r.g3,r.k0,r.wx,r.wy,r.px,r.py,real(n4) *r.P);
u=exp(ki*x’*gx’);

end;

[bx,by,bz]=projectEy(gx,gy,r.e4);

bn=zSpeed(r.e4,gx,gy);

Fx=Fn.*bx;

Fy=Fn.*by;

Fz=Fn.*bz;

r.I(:,:,1+b:w(3))=n4/nl;

for j=1+b:w(3)
t=r.T2%*exp(ki*(z(j)-r.h)*r.bd)*s;
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v=exp (ki*(z(j)-r.h)*bn);

for i=1:length(y)
p=exp(ki*y(i)*gy).*v;
r.Ex(:,1i,j)=u*(Fx.*p);
r.Ey(:,i,j)=t + u*(Fy.*p);
r.Ez(:,i,j)=u*(Fz.*p);

end;
updateStatus(j/w(3));
end;
%
%Intensity & normalization for 1W/m"2 input
%
% I = 1/2%(E*E’)*sqrt(e®/ud)*real(sqrt(er))
% s = Ei(I = 1W/m"2)
%

e0=8.85418782e-12; % [As/Vm]

u0=1.25663706e-6; % [Vs/Am]

s=sqrt(2/nl*sqrt(ud/ed));
r.I=single(real(r.I.*(r.Ex.*conj(r.Ex)+r.Ey.*conj(r.Ey)+r.Ez.*conj(r.Ez))));
r.Ex=single(r.Ex*s);

r.Ey=single(r.Ey*s);

r.Ez=single(r.Ez*s);

eval(’display3D(matchIntensity(r))’, ’return’);

delete(updateStatus(1));

3D/holeTransmissionTE.m

Fresnel cofficients and coupling cdicients for a plane TE wave incident onto an array of holes.fi§eeg 28 for an outline of the
model geometry.

in: r [Structure
P Compute up ttky| = P - ko {10}

out: r [Structurecompleted with
.kO Wavevectokg in free space [ratin]
.0 yo = ky/ko of the incident wave
.83 ¥mx = kx/ko of the TE hole modes
.b1..4 Propagation constaris 4 = k,/ko
.Cm Coupling cofficientsCy, to the hole modes
.R2/3 Reflection cofficientsRat thel — Il — IV andl — Il — IV layers
.A2/3 CodficientsAin regionll andlll of the forward propagating wave
.B2/3 CodficientsB in regionll andlll of the backward propagating wave
.T2/3 Transmission cdicientsT through thel — Il — IV andl — |II — IV layers

function r=holeTransmissionTE(r, P)
if nargin < 2 | isempty(P)

P=10;
else

P=max(1,P);
end;
%
%Wavevector and propagation constants
%
s=r.l/r.wx/2;
r.k0=2*pi/r.1;
r.g0=sqrt(r.el)*sin(r.i*pi/180);
r.g3=s*(1l:ceil(P/s));
r.bl=zSpeed(r.el,r.g0);
r.b2=zSpeed(r.e2,r.g0);
r.b3=zSpeed(r.e3,r.g3);
r.b4=zSpeed(r.e4,r.g0);

%Fresnel reflection and transmission through the metal layer
%

[R,T,A,B]=layerRTte(r.el,r.e2,r.e4,r.g0,r.k0,r.h);

r.R2=R;

.T2=T;

LA2=A;

.B2=B;

RhHHRHA

%Coupling coefficients to the TE hole modes

r.Cm=holeCte(r.g0®,r.g3,r.k0,r.wx);

%

%Fresnel reflection and transmission through the hole
%

[R,T,A,B]=layerRTte(r.el,r.e3,r.e4,r.g3,r.k0,r.h);
r.R3=R;

.T3=T;
.A3=A;
.B3=B;

R R R
IR0
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C

IMPLEMENTATION

3D/private/fourierCte.m

Fourier expansion cdiécientsF, of the diference fieldAE, at the hole boundary.

in: (e0]
g0

Cm

gm

kO

WX/y

pXfy
[=

out: axy
Fn

Codficient in regionl or IV at the metal layer
yo = kx/ko of the incident wave

Coupling co#ficientsCy, to the hole modes
vm = kx/ko Of the TE hole modes
Wavevectoky in free space [ratin]

Width wy andwy, of the holes [m]

Periodpx and py of the hole array [m]
Compute up tiky| = P - ko {all}

vx = Kx/ko andyy = ky /Ko of the difracted waves

Fourier cofficientsFp,

function [gx,gy,Fn]=fourierCte(C0,g0,Cm,gm,k0,wx,wy,px,py,P)
t=max (100, 10*1ength(gm));

t=2"ceil(log2 (px/wx*t));

s=floor(t*wx/2/px);

x=px/t*(-s:s);

f=Cm*sin(k®*gm’ * (x+wx/2))-CO*exp(i*k0*gd*x) ;
n=(-t/2:t/2-1);

gx=n*2%pi/px/k0;

Fx=fftshift(fft(f,t)/t);

gy=n*2*pi/py/k0;

Fy=wy/py*sinc(wy/py*n);

if length(P)

t=find(abs(gx) < P);

gx=gx(t);
Fx=Fx(t);

t=find(abs(gy) < P);

gy=gy (t);
Fy=Fy(t);
end;
gx=gx’;
Fn=Fx.’ *Fy;
t=size(gx);

gx=repmat(gx,size(gy));
gy=repmat(gy,t);

if length(P)

t=find(gx."2+gy."2 < P"2);

gx=gx(t);

gy=gy (t);

Fn=Fn(t);
else

g9x=gx(:);

gy=0y(:);

Fn=Fn(:);
end;

3D/private/holeCte.m

Coupling codicientsC, representing a plane TE wave as a series of sine TE hole modes.

in: g0
gm

kO

WX

out: Cm

o = ky/ko of the incident wave
vm = kx/ko Of the TE hole modes
Wavevectoky in free space [ratin]
Width wy of the holes [m]

Coupling cofficientsCy, to the hole modes

%Reconstruction formula: f=Cm*sin(k®*gm’*(x+wx/2))

%

function Cm=holeCte(g0,gm,k0,wx)
t=max (50, 5%length(gm));

s=wx/2/t;
x=(-t:t)*s;

f=exp(i*k0*g0*x) ;
Cm=f*sin(kO* (x’+wx/2) *gm) /t;

%

%Total relative intensity mismatch Ptot

%

d=f-Cm*sin(k0*

gm’*(x+wx/2));

fprintf(’Total relative intensity mismatch Ptot = %g%%\n’,100*(d*d’)/(£f*£f’));
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3D/private/projectEy.m

Projection cofficients ofE, to E 1 K.

in: gxly vx = kx/ko andyy = ky/ko
e Relative dielectric constaat

bx
out:  bx/y/z Projection cofficientsG = by
b,
function [bx,by,bz]=projectEy(gx,gy,e)
%
%Surface plasmons have imaginary betas
%

bn=real(sqrt(real(sqrt(e)) 2-gx."2-gy."2));
%

%Normalize the truncated k-vectors
%
t=sqrt(gx. 2+gy. " 2+bn."2);
gx=gx./t;

gy=gy./t;

bn=bn./t;

%

%Projection coefficients
%

by=bn. "2+gx."2;
bx=-gx.*gy.*by;
bz=-bn.*gy.*by;

by=by. *by;

3D/private/rayleighCte.m
Rayleigh expansion ciicientsF, of the ditference fieldAE, at the hole boundary.

in: CO Codficient in regionl or IV at the metal layer
g0 vyo = ky/ko of the incident wave
Cm Coupling cofficientsCp, to the hole modes
gm ym = ky/ko of the TE hole modes
kO Wavevectolk in free space [ratn]
wx/y Width wy andwy of the holes [m]
px/y Periodpx and py of the hole array [m]
P Compute up ttk| = P- ko {all}

out: gXy vx = kx/Ko andyy = ky/ko of the difracted waves
Fn Rayleigh cofiicientsFp

function [gx,gy,Fn]=rayleighCte(C0,g0,Cm,gm,k0,wx,wy,px,py,P)
%

%Along the x axis

%

t=max (50, 5*length(gm));
s=wx/t/2;

x=s*(-t:t);

t=2%t*px/wx;
dF=Cm*sin(k®*gm’* (x+wx/2))-CO0*exp (i*k0*gd*x) ;
%

%Avoid aliasing (Shannon)
%

P=min([P pi/k0/s]);

%

%Rayleigh expansion

% gx = g0 + n*px/1 for all |gx| < P
%

s=2%*pi/k0/px;
gx=g0+(-floor ((P+g®)/s) : floor ((P-g®)/s))*s;
Fx=dF*exp(-i*k0*x’*gx)/t;

%

%Along the y axis

%

s=2*pi/k0/py;

t=floor(P/s);

gy=(-t:t)*s;
Fy=wy/py*sinc(wy/py*(-t:t));

%

%Combine the results

%

gx=gx’;

Fn=Fx.’ *Fy;

t=size(gx);

gx=repmat (gx,size(gy));
gy=repmat(gy,t);
t=find(gx."2+gy."2 < P"2);
gx=gx (1) ;

gy=gy(t);

Fn=Fn(t);
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C.3 Fresnel caéicients C IMPLEMENTATION

3D/private/zSpeed.m

Propagation constaptwith positive imaginary part.

in: e Relative dielectric constaat
gxy ¥x = kx/ko andyy = ky/ko
out: b B=k/ko

function b=zSpeed(e,gx,gy)
if nargin < 3
gy=0;
end;
b=sqrt(e-gx."2-gy."2);
b=complex(real(b),abs(imag(b)));

C.3 Fresnel cofficients at interfaces and layers

Reflection and transmission d&eients at an interface and at a material layer.

All/layerRTte.m
Fresnel reflection and transmission fim@ents for a plane TE wave traveling through a material layer

in: el..3 Relative dielectric constaniss before, in and behind the layer.
g vy = kx/ko of the incident wave
kO Wavevectolk in free space [ratn]
h2 Thickness, of the layer [m]

out: R13 Reflection caécientR3 at the layer
T13 Transmission cdicient T13 through the layer
A2 CodficientsA; of the forward propagating wave in the layer
B2 CodficientsB; of the backward propagating wave in the layer

function [R13,T13,A2,B2]=layerRTte(el,e2,e3,g,k0,h2)
[R12,T12]=surfaceRTte(el,e2,q);
[R23,T23]=surfaceRTte(e2,e3,9);

a=exp (i*k®*h2*sqrt(e2-g."2));

b=1+R12.%R23.%a."2;

A2=T12./b;

B2=R23.*A2.%a."2;

R13=(R12+R23.%*a."2)./b;

T13=T23.%*A2.*a;

All /layerRTtm.m

Fresnel reflection and transmission fimgents for a plane TM wave traveling through a material laygedlayerRTtéfor a list of
parameters and results.

function [R13,T13,A2,B2]=layerRTtm(el,e2,e3,g,k0,h2)
[R12,T12]=surfaceRTtm(el,e2,g);
[R23,T23]=surfaceRTtm(e2,e3,9);

a=exp (i*k®*h2*sqrt(e2-g."2));

b=1+R12.%R23.%a."2;

A2=T12./b;

B2=R23.%A2.%a."2;

R13=(R12+R23.%*a."2)./b;

T13=T23.*A2.*a;

All /private/surfaceRTte.m
Fresnel reflection and transmission fimgents for a plane TE wave at an interface.

in: el/2 Relative dielectric constants before ands, after the interface.
g vy = kx/ko of the incident wave

out: R12 Reflection caicient Ry, at the interface
T12 Transmission cdicient T1 through the interface

function [R12,T12]=surfaceRTte(el,e2,g)
a=sqrt(el-g."2);

b=sqrt(e2-g."2);

n=find(a-b "= a+b);

R12=ones(size(a));
R12(n)=(a(n)-b(n))./(am)+b(n));
T12=R12+1;
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All /private/surfaceRTtm.m

Fresnel reflection and transmission fiiméents for a plane TM wave at an interface. SeefaceRTtgor a list of parameters and
results.

function [R12,T12]=surfaceRTtm(el,e2,g)
a=e2*sqrt(el-g."2);

b=el*sqrt(e2-g."2);

n=find(a-b "= a+b);

R12=ones(size(a));
R12(n)=(a(n)-b(n))./(am)+b(n));
T12=R12+1;

C.4 Progress information display

Status bar showing the evaluation progress.

All /createStatus.m
Creates andr activates the status window.
out: f The status’ window handle

function f=createStatus
f=findobj(get(®,’ ’Children’),’flat’, ’Tag’, 'holeStatus’);
if isempty(f) | “ishandle(f)
r.t=cputime;
s=[256 64];
t=get (0, 'ScreenSize’);
f=figure(’Colormap’,[® O 0;1 ® ;1 1 1],’CloseRequestFcn’,’’, ’DoubleBuffer’,’on’, ’MenuBar’,’'none’,’Name’,’Field computation’, ...
’IntegerHandle’,’off’,’NumberTitle’,’off’, Resize’,’off’,’Position’, [floor((t(3:4)-s)/2) s],’Tag’, ’holeStatus’,’ToolBar’, ’none’);
a=axes(’'Parent’,f,’Position’, [0 O 1 1],’'Visible’,’off’,’XLim’,[0® 256], 'YLim’,[® 64],’'ZLim’,[-1 11);
%
%Horizontal bar
%
surface([4 252],[38 60],-ones(2),3*ones(2),’CDataMapping’,’direct’,’EdgeColor’, 'none’);
r.bar=surface([4 4],[38 60],zeros(2),2*ones(2),’CDataMapping’,’direct’, ’EdgeColor’, ’none’);
line([4 4 4 252;4 252 252 252],[38 38 60 38;60 38 60 60],ones(2,4),’Color’,[0 0 01);
%
%Description texts
%
.FontWeight="bold’;
.Parent=a;
.Units="pixels’;
.VerticalAlignment='middle’;
text(136,49,1,’%’,0);
text (16,20, 'Elapsed time:’,0);
text (200,20, *hours’,0);
%
%Information texts
%
o.HorizontalAlignment="right’;
r.ran=text(136,49,1,’0",0);
r.hms=text(198,20,’0:00:00’,0);
set(f, ’UserData’,r);
else
figure(f);
end;
drawnow;

o
o
o
o

All [resetStatus.m
Resets the status bar to zero.

function resetStatus

f=createStatus;

r=get(f, ’UserData’);

r.t=cputime;

set(f,’CloseRequestFcn’,’’, UserData’,r);
updateStatus(0);

All JupdateStatus.m
Updates the status bar.
in: p Relative progess [0, 1]

out: f The status’ window handle
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function f=updateStatus(p)
f=createStatus;
ifp>=1

set(f,’CloseRequestFcn’, ’delete(gcbo)’);
end;
r=get(f, ’UserData’);
t=floor(cputime-r.t+0.5);
s=mod(t,60);
h=floor(t/60);
m=mod (h, 60) ;
h=floor(h/60);
o="String’;
p=max(®,min(1,p));
set(r.bar,’XData’,[4 4+248*p]);
set(r.ran,o,sprintf(’%u’, floor(p*100+0.5)));
set(r.hms,o,sprintf(’%u:%02u:%02u’, [h;m;s]1));
drawnow;

C.5 Graphical user interface

A graphical user interface to explore the evaluation resultisplays the intensity profile, the electro-
magnetic field and its phase at arbitrasy xzandyzcross-sections.

All/display3D.m
Starts exploring the electromagnetic field through an aofayetallic apertures.

in: r [Structure
F Field to display first’'Ey’ | 'Hy’ }

function display3D(r, F)
if nargin < 2 | isempty(F) | "isfield(r,F)
F=[1;
s={'Ey’,’Hy’,’Ex’,’Hx’,’Ez’,’Hz’}
for j=1:length(s)
if isfield(r,s{j})
F=s{j};
break;
end;
end;
end;
if isempty(F) | “isfield(r,F)
disp([’There is no ’ F ’ field to display.’]);
return;
end;
r.F=F;
%
%Reduce memory consumption
%
s={"I’,’Ex’,’Ey’,’Ez’,’Hx’,’Hy’, ’Hz’};
for n=1:1length(s)
if isfield(r,s{n})
setfield(r,s{n},single(getfield(r,s{n})));
end;
end;
%
%Display an xz, xy or yz section.
%
t=find(r.w > 1);
r.V=[t(1) t(length(t))];
%
%Display a centered section
%
t=r.w;
t(r.=1;
r.U=ceil(prod(t)/2);
%
%Precompute maximal intensity and field strength
%
r.M=double(max (max(max(r.I))));
if isinf(r.M)

r.M=1;
end;
r.N=max(real(sqrt([r.el r.e2 r.e3 r.e4])));
%
%Creates the display and its controls window.
%

h=createDisplay3D(r);

s=get (0, ’ScreenSize’);
set(h,’Position’,[(s(3:4)-r.W(r.V))/2 r.W(r.N1);
updateControls3D(h);

updateDisplay3D(h);
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All /feventControls3D.m
Callback function dispatcher for the 3D display controls.
in: n Callback function to execute

function eventControls3D(n)

if nargin
feval(n,gchbo);

else
[0, f1=gcbo;
h=get (£, ’UserData’);
r=get(h, 'UserData’);
feval(get(o,’Tag’),f,h,0,r);
updateDisplay3D(h);

end;

%

%Request to close the figure

%

function Close(f)
delete(findobj(get(®,’Children’),’flat’, ’Tag’, 'holeDisplay3D’));
delete(f);

%
%Change of the field component
%
function List(f,h,o0,r)
s=get(o,’String’);
r.F=s{get(o, ’Value’)};
switch get(get(h,’CurrentAxes’),’Tag’)
case {’Field’,’Start’}

set(h, 'Name’,['Field ’ r.F]);
case ’Phase’

set(h, 'Name’, ['Phase ’ r.F]);
end;
set(h, ’UserData’,r);

%
%Change of the view axes
%
function View(f,h,o0,r)
s=get(o,’String’);
switch s{get(o,’Value’)}
case ’'xy’

r.v=[1 2];
case ’'xz’

r.V=[1 3];
case 'yz’

r.V=[2 3];
end;
r.U=ceil(r.W(6-sum(r.V))/2);
set(h, 'UserData’,r);
updateSlider(f,r);
updateAxes(h,r);

%

%Change of the view position
%

function Slider(f,h,o0,r)
s={’x",’y’,’2’};
s=s{6-sum(r.V)};
p=getfield(r,s);
u=get (o, 'Value’);
t=abs(p-u);

r.U=find(t == min(t));
set(o,’Value’,p(r.U));
set(h, 'UserData’,r);
updateText(f,s,p(r.U));

%

%Displays an electromagnetic field component

%

function Field(f,h,o,r)

set(h,’Name’,[’Field ’ r.F]);

a=get(h, ’CurrentAxes’);

s="Field’;

if strcmp(get(a,’'Tag’),s)
s="Start’;

end;

set(a,’Tag’,s);

%

%Displays the field intensity

%

function Intensity(f,h,o,r)
set(h,’Name’,’Intensity’);

set(get(h, ’CurrentAxes’), ’Tag’, ’Intensity’);

%

%Displays the phase of a field component
%

function Phase(f,h,o,r)
set(h,’Name’,[’Phase ’ r.F]);

set(get(h, 'CurrentAxes’), ’Tag’, 'Phase’);
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All /eventDisplay3D.m
Callback function dispatcher for a 3D display figure.

in: n Callback function to execute
h Display handle if manually called

function eventDisplay3D(n, h)
if nargin < 2
h=gcbo;
end;
feval(n,h);

%

%Request to activate the figure.
%

function Activate(h)
updateControls3D(h);

%

%Request to close the figure.
%

function Close(h)

delete(h);

updateControls3D;

%
%Notification that the figure has been resized.
%
function Resize(h)
r=get(h, ’UserData’);
p=get(h,’Position’);
p(3:4)=max(r.W(r.v),p(3:4));
t=r.S(r.V);
s=t./p(3:4);
if s(1) < s(2)
p(3)=p(H*t(1)/t(2);
else
p(4)=p(3)*t(2)/t(1);
end;
set(h, ’Position’,p);

All /private/createControls3D.m
Creates andr activates the 3D display controls window.
out: f The controls’ window handle

function f=createControls3D
f=findobj(get(®,’Children’),’flat’,’Tag’, 'holeControls3D’);
if isempty(f) | “ishandle(f)
r="TooltipString’;
p="Position’;
s='String’;
y="Style’;
t="Tag’;
b=get (0, ’'ScreenSize’);
f=figure(’CloseRequestFcn’,’eventControls3D(’’Close’’)’, MenuBar’, 'none’,’Name’, 'Display controls’,’IntegerHandle’,’off’
’NumberTitle’,’ ’off’,’Resize’,’off’,p,[50 b(4)-146 200 96],t, holeControls3D’,’ToolBar’, 'none’);
o.Parent=f;
uicontrol(o,p,[72 64 120 24],s,’ ’,t,’Text’,y, text’);
o0.Callback=’eventControls3D’;
o.Enable="off’;
uicontrol(o,p,[8 64 56 24],s,{’ ’},t,’List’,r,’Selects the electromagnetic field component’,y,’popupmenu’);
uicontrol(o,p,[8 40 56 24],s,{’xy’,’xz’,’yz’},t, View’,r,’Selects the view axes’,y, popupmenu’,’Value’,2);
uicontrol(o,p,[72 40 120 24],t,’'Slider’,r,’Selects the section position’,y,’slider’);
uicontrol(o,p,[8 8 56 24],s,’Field’,t,’Field’,r,’Displays the electromagnetic field’);
uicontrol(o,p,[72 8 56 24],s, ’Intensity’,t,’Intensity’,r,’Displays the intensity’);
uicontrol(o,p,[136 8 56 24],s,’Phase’,t, ’Phase’,r, ’Displays the phase’);
else
figure(f);
end;

All /private/createDisplay3D.m

Creates a 3D display window.

in: r [Structure
out: h The displays’ window handle

function h=createDisplay3D(r)

o.NextPlot="replacechildren’;

h=figure(’CloseRequestFcn’,’eventDisplay3D(’’Close’’)’, ’Colormap’,[], 'DoubleBuffer’,’on’,’HandleVisibility’,’callback’,
’IntegerHandle’,’off’,’MenuBar’, 'none’,’Name’,’Intensity’,o, NumberTitle’,’off’,’ResizeFcn’,’eventDisplay3D(’’Resize’’)’,
’Tag’, ’holeDisplay3D’,’ToolBar’, 'none’,’UserData’,r,’WindowButtonDownFcn’,’eventDisplay3D(’’Activate’’)’);

axes(’Parent’,h,o0, ’DataAspectRatio’,[1 1 1],’Position’,[® ® 1 1],’Tag’,’Intensity’,’Visible’,’off’);

eventDisplay3D(’Resize’,h);

updateAxes(h,r);
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All/private/getControl.m
Fetches the handle of a specific user control.

in: f Handle of the figure window
t Tag of the control looked for

out: o Handle of the specified control

function o=getControl(f,t)
o=findobj(get(f,’Children’),’flat’,’Tag’,t);

All /private/updateAxes.m
Updates the axes limits.

in: h Handle of the 3D display window
r [Structure

function updateAxes(h,r)

s={’x",’y’,’2’};

x=getfield(r,s{r.Vv(1)});

y=getfield(r,s{r.v(2)});

set(get(h, ’CurrentAxes’), ’XLim’, [x(1) x(length(x))],’YLim’,[y(1) y(length(y))1);

All /private/updateControls3D.m
Updates the 3D display controls to reflect the active figure.
in: h The window handle that is active
out: f The controls’ window handle

function f=updateControls3D(h)
f=createControls3D;
s="holeDisplay3D’;
u=’'UserData’;
t="Tag’;
if nargin & ishandle(h) & strcmp(get(h,t),s)
set(f,u,h);
else
h=get(f,u);
if isempty(h) | “ishandle(h)
h=findobj(get(®,’Children’),’ flat’,t,s);
if isempty(h)
delete(f);
return;
end;
h=h(1);
set(f,u,h);
end;
end;
%
%Enable the controls
%
set(findobj(get(f,’Children’),’ flat’, ’Enable’,’off’), Enable’,’on’);
a=get(f,’CurrentAxes’);
r=get(h, ’UserData’);
%
%Update the field components list
%
i=01;
s=fieldnames(r);
for n=1:length(s)
switch s{n}
case {’Ex’,’Ey’,’Ez’,’Hx’,’Hy’, ’Hz’}
j=[3 nl;
end;
end;
s=s(j);
for n=1:length(s)
if strcmp(s{n},r.F)
j=n;
break;
end;
end;
set(getControl(f,’List’),’String’,s, ’Value’,j);
%
%Update the axes view list
%
j=1;
switch sum(find(r.W > 1))
case 3
s={"xy’};
case 4
s={"xz’};

83



C.5 User interface

C

IMPLEMENTATION

case 5
s={"yz’'};
case 6
s={"xy’,’'xz’,’'yz’};
j=sum(r.V)-2;
otherwise
s=" 73
end;
set(getControl(f,’View’),’String’,s, ’Value’,j);
%
%Update the slider and its text
%
updateSlider(f,r);

All /private/updateDisplay3D.m

Updates a 3D display window.

in: h Handle of the 3D display window

function updateDisplay3D(h)
a=get (h, 'CurrentAxes’);
feval(get(a,’Tag’),h,a,get(h, 'UserData’));

%

%Extracts a section of the electormagnetic field
%

function [x,y,F]=getSection(r,f)
s={'x",’y’,’z’};

x=getfield(r,s{r.Vv(1)});
y=getfield(r,s{r.V(2)});

F=zeros(r.W(r.V));

switch sum(r.V)

case 3
F(C:,)=£f(C:,:,r.U);
case 4
F(:,:)=£f(C:,r.U,:);
case 5
F(:,:)=f(r.U,:,:);
end;

y=fliplr(y);
F=double(F.’);

%
%Displays the electromagnetic field strength
%
function Field(h,a,r)
if “isfield(r,’wt’)

r.wt=0;

set(h, 'UserData’,r);
end;
t=zeros(256,3);
t(1:128,3)=(255:-2:1)"/255;
t(129:256,1)=(1:2:255)"/255;
set(h,’Colormap’,t);
Frame(a,r);

%
%Animates the electromagnetic field
%
function Startc(h,a,r)
s=cputime;
for 1=1:72
s=s+0.2;
r.wt=r.wt+pi/18i;
set(h, ’UserData’,r);
Frame(a,r);
drawnow;
if cputime < s
pause(s-cputime);
end;

if “ishandle(h) | “strcmp(get(a,’Tag’),’Start’)

return;
end;
r=get(h, 'UserData’);
end;
set(a,’Tag’, Field’);

%
%Displays the field component
%
function Frame(a,r)
[x,y,F]=getSection(r,getfield(r,r.F));
e0=8.85418782e-12; % [As/Vm]
u®=1.25663706e-6; % [Vs/Am]
if r.F(1) == "E’
t=127.5/sqrt(2*r.M*sqrt (ud/e®) /r.N);
else
t=127.5/sqrt(2*r.M*sqrt(e®/uld));
end;

image(x,y,uint8(127.5+real (t*exp(r.wt)*F)), 'Parent’,a);

%
%Displays the electromagnetic field intensity
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%

function Intensity(h,a,r)
[x,y,I]=getSection(r,r.I);

set(h, ’Colormap’,repmat((0:255)’/255,1,3));
image(x,y,uint8(I*255/r.M), Parent’,a);

%

%Displays the electromagnetic field phase
%

function Phase(h,a,r)
[x,y,F]=getSection(r,getfield(r,r.F));
set(h, ’Colormap’,repmat((0:255)’/255,1,3));
image(x,y,uint8((angle(F)+pi)*127.5/pi), Parent’,a);

All /private/updateSlider.m
Updates the slider and its corresponding text.

in: f Handle of the 3D display controls’ window

r [Structure

function updateSlider(f,r)

s={’x",’y’,’z’};

s=s{6-sum(r.V)};

t=getfield(r,s);

set(getControl(f,’Slider’), ’Min’,t(1)-1le-15, 'Max’,t(length(t))+1e-15, 'SliderStep’,[1 10]/r.W(6-sum(r.V)),’'Value’,t(r.U));
updateText(f,s,t(r.U0));

All /private/updateText.m
Updates the position text in the 3D display controls.

in: f Handle of the 3D display controls’ window
s Coordinate axis string
p Position

function updateText(f,s,p)
set(getControl(f, ’Text’),’String’,[s ’ = ' sprintf(’%12.4g’,p) 'm’1);

C.6 Extraction of the relative dielectric constant of metas

In chapter A, we resumed the determination of the dielectiitstant of metals. To extract the dielectric
constant and the thickness of the metal film, we use them asneders and fit the measured to the
theoretical reflectance. The best fit is considered as thst $emare dference between the measured
and the computed reflectance. Its parameter values yieldi¢htectric constant and the film thickness
looked for.

Here, we use the Fresnel reflection fiméent at a thin metal layer as computed in subchapter 4.2.

All/globalReh.m
Fitted parameters from a Kretschmann setup.|SesRehfor details.

in: el Dielectric constant; of the sample holder
e3 Dielectric constantz behind the metal film
kO Wavevectolk in free space [ratn]
Rm Measured reflectané®, in intensity
tm Incidence angleény [°]
s Window title

out: e2 Dielectric constant, of the metal film
h2 Thickness, of the metal film [m]
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function [e2,h2]=globalReh(el,e3, kO, Rm,tm, s)
m=[1+floor((0:4)/4*(length(Rm)-1)) find(Rm == min(Rm)) find(Rm == max(Rm))];
gm=sqrt(el)*sin(tm(:)*pi/180);

Rm=Rm(:);

%

%Retrieve the angle and reflectance of the flattest curve part
%

g0=abs(derive(Rm, 1,gm));

g0=find(g® == min(g®));

g0=[max(1,90-1) :min(g0+1,length(Rm))];

%

%Compensate the damping due to the sample holder

%

% The sample holder is assumed to reduce the reflection

% efficiency by a constant factor (about 0.92 for a glass

% cylinder due to two glass-air interfaces for example).

%

Rm=Rm/mean(Rm(g0)) ;

g0=gm(g0);

%

%Look for the global error minimum
%
h2=10e-9:10e-9:100e-9;
er=-1.5:-0.5:-20;
ei=0.1:0.1:5;
e2=complex(repmat(er’,size(ei)),repmat(ei,size(er’)));
e=zeros(length(h2),length(er),length(ei));
for a=1:length(h2)

for b=1:length(e2(:))

e(a,b)=localReh([e2(b);h2(a)],el,e3,k0,g0,gm(m),Rm(m));

end;
end;
[a,b]=find(e == min(e(:)));
%
%Refine the global minimum looking for the local minimum
%
[m, e]=fminsearch(@localReh, [e2(b);h2(a)],optimset(’Display’, ’off’,’TolX’,le-4),el,e3,k0,g0,gm,Rm);
e2=m(1);
h2=m(2);
%
%Display results and diagnostics
%
tt=min(tm):0.01:max(tm);
gm=sqrt(el)*sin(tt*pi/180);
Rt=layerRTtm(el,e2,e3,gm,k0,h2);
RO=layerRTtm(el,e2,e3,g0,k0,h2);
figure(’Name’,s,’NumberTitle’,’off’,’Toolbar’, ’none’);
plot(tm,Rm,’ro’,tt,real (Rt.*conj(Rt)/mean(RO.*conj(RO))),’'b-");
fprintf(’Found:\n\te2 = %g %+gi\n\th2 = %gnm\n\nMean error is %g%%.\n’,[real(e2) imag(e2) 1e9*h2 100*sqrt(e/length(Rm))]);
set(gca, 'Box’,’off’, ’FontSize’,14,’Position’,[0.08 0.08 0.8 0.8],’XLim’, [min(tm) max(tm)]);
text(1.05,-0.04, ti’, FontSize’, 14, ’HorizontalAlignment’,’left’,’VerticalAlignment’, ’middle’,’Units’, ’Normalized’);
text(-0.02,1.06,’R’, ’FontSize’, 14, 'HorizontalAlignment’, ’'center’, ’VerticalAlignment’, ’'baseline’,’'Units’, ’Normalized’);
grid on;
%
%Special
%
h=get(gca, ’Children’);
set(gca, 'XLim’, [41.5 80],’YLim’,[® 1.2],’YTick’,[0:0.2:1.2], YTickLabel’,[’0.0’;'0.2";'0.4";°0.6";°'0.8";'1.0";°1.2"]);
set(h(4), ’MarkerEdgeColor’,’black’, ’MarkerFaceColor’, ’black’,’MarkerSize’,3);
set(h, ’Color’,’black’);

All/localReh.m

Squaresum of the fierences between the computed and measured reflectance étsatiftnann setup. Collimated, monochromatic
light is incident on a thin metal film at TM polarisation. Theetal film is deposited on a sample holder - in general a glass se
cylinder. The reflectionféiciencyRy, = I;/lj is measured at various incidence angles.

=)

el Dielectric constant; of the sample holder

in: x Fitting parameter%

e3 Dielectric constants behind the metal film
kO Wavevectolk in free space [ratn]
gf Incidence angleg; of the flat

gm Incidence anglegm [kx/ko > 1]

Rm Measured reflectané®, in intensity

out: e Square-summed error betwd®@p and the theoretical reflectance

function e=localReh(x,el,e3,k0,gf,gm,Rm)
Rt=layerRTtm(el,x(1),e3,gm,k0,x(2));
Rf=layerRTtm(el,x(1),e3,9f,k0,x(2));
Rt=Rt.*conj(Rt) /mean(Rf.*conj(Rf));
e=sum((Rm-real (Rt))."2);
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