Error function of complex numbers
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This document describes the current implementation of tre éunction for use
with MATLAB. The error function is briefly introduced and series devalepts
for its evaluation are given. The numerical evaluation effiimction for real- and
complex-valued numbers is discussed.

1 Introduction

The error function erfd) is defined as the integral of the normal distribution frono @ $caled such that
erf(xoo) = +1.

erf(2) = % Of et dt (1)

It is an entire function defined for real- and complex-valnednbers. For real-valued= R, the GNU
math library defines the error functiaibuble erf(double z). For complexz = R+ il, it can be
rewritten as a line integral in the complex plane.

1
erf(2) = % fe‘zzsz ds 2

The error function is odd as a whole as well as by its real aregjimary parts, that is edg) = — erf(2)
and erf¢’) = erf(2)* with z* denoting the complex conjugate. It is zero at the origint harf(0) = 0,
which is the only zero on the real axis. For reahe error function is bound and strictly monotonically
increasing, that iserf(R)| < 1 and derfR)/dR > 0. At +oo, it is exactly+1 by definition. The error
function cannot be written in closed form but the develophwdrihe integrand into a Taylor series is
simple and reads as
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The error function is discussed in detail in standard mattbteoks, i.e. Abramowitz and Stegun[1].
Summaries are also found online, see for instance Weigata@nWikipedia[3].



2 Numerical evaluation

In principal, one can assess the correct value within theemigal precisions by summing all terms
of the Taylor series (3) of at leasiz?™/n.!(2n. + 1) magnitude, where, is the index of the largest
term. This approach fails for large because the corresponding intermal [Ny, ny] > n; scales withz.
Thanks to the factoe™/4, the following series development in Abramowitz and Stégjlicircumvents
this problem as the number of required terfims= n, — n; + 1 is independent of.
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erf(2) = erf(R) + — = *2 2, T (2R— e 2R (2Rcoshfl) - insinh(nl)))} (4)

= erf(R) + E(2) + F(2) — € ?R(G(2) + H(2) (5)

The evaluation of Eq. (5) with the five partial functions &)(E(2), F(2), G(2) andH(2) can be done
with | > 0. The sign of the imaginary part of the result is then adpistecording to the symmetry
rules. Therefore, the first partial function is
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We shall assume a relative numerical precisiorz ofefined as the smallest positive number one can
subtract(!) from 1 such that the result inequals 1. Furtivershall assume a numerical dynamic range
bound by the smallest positive value- 0 and the largest positive valig< co. Numbergm| < v will
underflow and produce0 whereas numbetd| >  will overflow and produce-co. For instancek(2)
underflows foilR| > +/—log(rv) but never overflows. The second partial function reads as
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and underflows fofR| > +/=log(rv) — 1/4. The upper sum indeM(s) is given bye-N/4 < ¢ i.e.

N(e) = +/1 - 4log(e), which would also account for the worst cdBe> N. Becausd-(2) is real,N(g)

could be reduced witR such thaR/zeN*/4R(N2/4 + R2) < eerf(R). As we forced! to be positive,
the last partial function
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H(2 = (R+1in/2) (8)

can be evaluated with the same constraints (@s(without decreasindy). Its evaluation can be skipped
if |1 > v/~ log(e) because|G(2)| > |H(2)| in this case. Finally, the third partial function reads as
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and requires closer attention as the sum term becomes maima= M(l) > 1 in general. If we
assume again the worst cgdB > N, the maximum is found avi(l) ~ 2I. The numerical precision
defines the range of the sum index as before. Bec@@ecan overflow as well, the central sum term
should obey

logv) < 12 - R% - % log(1? + R?) — log(27) < log(Y) . (10)

Violation of the lower bound results in underflow aGgdz) = 0, whereas violation of the upper limit
producess(z) = oo — ico.

Summary Figurel 1 shows the magnitude of the error function in the €tsidrant of the complex
planeR xiR. For largeR), the partial function&(z) — 0, F(2 — 0 andH(2) — 0 as well. Furthermore,
the partial functionG(z) — 0 and hence ergf — erf(R) if |I| < |R. If the real and imaginary part
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Figure 1: Complex error function mig0, log|erf(R+ il)|}. White circles indicate the location of zeros
listed in table 1, which are due to phase singularities. Brezmark the border line above which eyf(
diverges and below which ed)(~ erf(R).



\ z=R+il \ z=R+il \ z=R+il \ z=R+il |

0 4.847970+ 5.101588i| 6.960740+ 7.164193i| 8.571987+ 8.749670i
1.450616+ 1.880943i| 5.158768+ 5.403333i| 7.181757+ 7.381187i| 8.752713+ 8.927948i
2.244659+ 2.616575i| 5.452192+ 5.688837i| 7.396234+ 7.591927i| 8.929805+ 9.102713i
2.839741+ 3.175628i| 5.730854+ 5.960483i| 7.604720+ 7.796925i| 9.103474+ 9.274167i
3.335461+ 3.646174i| 5.99676%+ 6.220120i| 7.807687+ 7.996629i| 9.273911+ 9.442491i
3.769006+ 4.060697i| 6.251536+ 6.469216i| 8.005553+ 8.191429i| 9.441290+ 9.607850i
4.158998+ 4.435571i| 6.496444+ 6.708966i| 8.198681+ 8.381670i| 9.605769%+ 9.770396i
4.51631% 4.780448i| 6.732551+ 6.940351i| 8.387396+ 8.567659i| 9.767493+ 9.930268i

Table 1: The first 32 zeros of eg(in the first quadrant of the complex plane.

are large but of similar magnitud&(2) stays finite and is the only partial function to be evaluated
However,G(2) and erfg) quickly diverge forjl| > |R|.

Example If the evaluation is done with the standard IEB&ble precision,e = 27°3, v = 271022
andY = (1 - £)2%0%4 respectively. Therefore\(s) > 122, which means that summing 13 terms is
suficient to getF(2) andH(2) and no more than 27 terms are required@ge). The partial functions
E(2), F(2 andH(2) all underflow to 0 forlR| = 26.6. FurthermoreF(2) only requires evaluation up to
n < N(g) v/1 - R?/5.822, The upper bound df| beforeG(z2) overflows is reached fdt| > |R, that is

I < \/Iog(T) + log(2r) + R2 + % 10g(2R?) ~ 712+ R+ log(R) . (11)

3 Implementation

The error function of a real number is currently implemenpeetewise by polynomes with ten non-
zero codficients. ForlR| < 0.3, the polynome is given directly by the Taylor series (3)wilie sum
evaluated up to the™®term. For 03 < |R| < 6, a total of 57 polynomes off@order approximate erR)
within intervals of lengtlAR = 0.1 to the desiredlouble precision. FotR| > 6, this implementation
returnszl as 1- erf(R) < e.

For complex numberg, each partial function is only evaluated if it contributesthe result. For in-
stance, none of them is evaluated i O (as all would yield zero) and their real parts do not require
evaluation ifR = 0. Table 2 lists the evaluation conditions for the individpartial functions, wheré;,
denotes the real part &(2).

4 Matas functions

This software package contains twoAMLAB functionse=erf(r) ande=erfz(z) as MEX-files for
Windows. erf overloads the default MrLAB error function of real-valued numbersbut this imple-
mentation is about 5>6faster.erfz enhanceerf to evaluate the error function of complex numbers
too. If called with real numbers it is identical toerf and equally fast. Users can replaaef by erfz



| Partial function| Evaluated ifl # 0 and|

E(2 R+0

E (2 IR < 6.0

F(2 0<|R <58
Gi(2 R+0

H(2 [l < 6.1 and|R| < 107
H: (2 R+0

Table 2: Conditions for the evaluation of the partial fuons ifl # O.

directly if they do not requesirf to print an error when called with complex numbers. For caimpa
bility with operating systems other than Windows on x86 pssorserfz is egally implemented as a
normal MATLAB M-file. The M-file relies upon the defaudir £ by MATLAB for calculation of erfR).
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