
Personal Calculator Algorithms I
Square Roots
A deta i led descr ip t ion o f the a lgor i thm used in Hewle t t -
Packard hand-he ld ca lcu la to rs to compute square roo ts .

by Wi l l iam E. Egbert

BEGINNING WITH THE HP-35,1'2 all HP personal
calculators have used essent ial ly the same al

gorithms for computing complex mathematical func
t ions in their BCD (binary-coded decimal) micro
processors. While improvements have been made in
newer calculators,3 the changes have affected primarily
special cases and not the fundamental algorithms.

This article is the first of a series that examines
these a lgor i thms and thei r implementat ion. Each
ar t ic le wi l l present in deta i l the methods used to
implement a common mathematical funct ion. For
s implici ty, r igorous proofs wil l not be given, and
special cases other than those of particular interest
will be omitted.

Although tailored for efficiency within the environ
ment of a special-purpose BCD microprocessor, the
basic mathemat ical equat ions and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Square Root A lgor i thm
This article will discuss the algorithm and methods

used to implement the square root function.
The core of the square root algorithm is a simple

approximat ion technique ta i lored to be e f f ic ien t
using the instruction set of a B CD processor. The tech
nique is as follows:

V~x is desired
1. Guess an answer a
2. Generate a2
3 . F i n d R = x - a 2
4. If the magnitude of R is sufficiently small, a = Vx.
5. If R is a positive number, a is too small.

If R is a negative number, a is too big.
6. Depending on the result of step 5, modify a and

return to step 2.
The magnitude of R will progressively decrease until
the desired accuracy is reached.

This procedure is only a rough outline of the actual
square root rout ine used . The f i r s t re f inement i s
to avoid having to find a2 and x -a2 each time a is
changed. This is done by finding a one decade at a
t ime. In other words, f ind the hundreds digit of a,
then the tens digit, the units digit, and so on. Once

the hundreds digi t is found, i t is squared and sub
tracted fromx, and the tens digit is found. This pro
cess, however, is not exactly straightforward, so some
algebra is in order.

The following definitions will be used:
x = the number whose square root is desired
a = most significant digit(s) of Vx previously

computed
b = the next digi t of Vx to be found
j = the power of 10 associated with b
RQ = x-a2, the current remainder
dj = the new a when digit b is added in i ts

p r o p e r p l a c e . a Â ¡ = a + (b x l O j) (1)
Rb = the portion of remainder R â€ž that would be

removed by adding b to a. Rfa = a2-a2 (2)

For example, let x = 54756. Then Vx = 234.
Let a = 200.
b = the digit we are seeking (3, in this case)
j = 1 (the 10's digit is being computed)
Ra = 54756 -(200)2 = 14756.

Note that aÂ¡ and Rb will vary with the choice of b.
The process of f inding Vx one decade at a t ime

approaches the value of Vx from below. That is, at
any point in the computation, a =sVx. Consequently,
R a ^ 0 .

With th is in mind i t i s easy to see that for any
decade j, the value of b is the largest possible digit so
that

E a - R b ^ 0
or

R b ^ R o - (3)
Using equations 1 and 2 we have

Rb = [a-HbxlO')]2 -a2.
Expanding and simplifying,

R b = 2 a b x l O i + (b x l O i) 2 . (4)
Inserting (4) into (3) yields the following rule for
finding digit b.

Digit b is the largest possible digit so that
2 a b x l O i + (b x l O ') 2 = Â £ R a (5)

When the digit that satisfies equation 5 is found, a
new a is formed by adding bxlO' to the old a , the
decade counter (j) is decremented by 1, and a new
Ra is created; the new Ra is the old Ra minus Rb.

2 2

© Copr. 1949-1998 Hewlett-Packard Co.

Continuing the previous example,
x = 54756
j = 1
a = 200
x-a2 =Ra = 14756

Applying equation 5 to find b :

b 2abxlO) + (bxlO])2

0 0

1 4 1 0 0

2 8 4 0 0

3 1 2 9 0 0

4 1 7 6 0 0

14756
10656

6356
1856

-2844

Thus b =3, since b =4 causes overdraft, i .e.,
Ra-Rb <0. The new a=200 + 3xl01 = 230. The new
Ra = 1856, the new j = 0. With these new parameters,
the units digit can be found.

This process may seem vaguely familiar, which is
not surprising since upon close inspection it turns
out to be the (usually forgotten) scheme taught in
grade school to find square roots longhand. Of course,
trailing zeros and digits are not written in the long
hand scheme.

To make this process efficient for a calculator, still
another refinement is needed.

(bxio')2 can be expressed as a series, using the
fact that the square of an integer b is equal to the sum
of the first b odd integers. Thus,

(bxiO')2 = b2 xlO2'

b
= Â£ (2i-l)xl02)

For example,

f3xlO']2 = i x 102' -)-3 x 102' -)- 5 x 10

= 9 xlO2'

Thus 2abxlO'+(bxlO')2 can be expressed as:

b
2abxlOi+(bxlOi)2 = Â£ 2a xlO' +(2i-l) XlO2'

o r

= 2 2axlO' + (2i- l)xl02' (6)

Now comes a key transformation in the square root
routine. It was shown earlier how inequality 3 will

give the value b for the next digit of a. Since multi
plying both sides of an inequality by a positive con
stant does not change the inequality, equations 3 and
6 can be multiplied by the number 5.

1

5Rb =s 5RQ

lOaxlO' + tlOi-SjxiO2' (7)

b becomes the largest digit so that 5Rb=s5Ra. The new
5Ra is equal to the old 5flQ minus 5flb.

These transformations may seem useless until we
examine a few examples of the last term of the right
side of (7) for various values of b.

10ax lO '+05x l02 i ,b= l
10axlOi + 15xi02i,b=2
10aXlO' + 25xl02i,b=3

Notice that the two-digit coefficient of 102' con
sists of (b-1) and a 5. These two digits will be ex
pressed as (b-1) 1 5 in succeeding equations. 10a is
formed by a simple right shift and does not change
between terms. If the sum defined in equation 7, as
b is incremented by 1, is subtracted from 5na until
overdraft occurs, the digit in the next-to-last digit
position is b. Best of all, it is in the exact posi
tion to form the next digit of a without further ma
nipulation. Redoing the previous example may help
clarify matters.

Ra = 14756

5fla =

= 1
= 200

73780

1
2
3
4

20500
21500
22500
23500

new value of a
digits

5Ra-5Rb

53280
31780

9280 new 5Ra
-14220 overdraft

Notice that when overdraft occurs the new value of
a is already created and the new value of 5Ra can be
found by restoring the previous remainder.

Decrementing the value of j would cause, in effect,
(10a x 10') to shift right one place, and (b-1) | 5 x 102i to
shift right two places. The result is that the final 5
shifts one place to the right to make room for a new
digit. Continuing with the same example,

5RQ = 9280
a = 230
j = 0

2 3

© Copr. 1949-1998 Hewlett-Packard Co.

b 10axiO'+(b- l) 5X102Ã

1 2 3 0 5
2 2 3 1 5
3 2 3 2 5
4 2 3 3 5
5 2 3 4 5

final a =

5fÃ­a-5Rb

6975

4660

2335

O remainder
-2345 overdraft

For ease of understanding, the preceding example
treated a large positive number. A number in the cal
culator actually consists of a mantissa between 1 and
10 and an exponent. The problem is to find the square
root of both parts of this argument. Happily, if the
input exponent is an even number, the portion of the
answer resulting from it turns out to be the exponent
of the final answer and is simply the input exponent
divided by 2. Thus to find Vx, the exponent of x is
first made even and the mantissa shifted to keep the
number the same. The exponent of Vx is found by
dividing the corrected input exponent by 2. The
method described above is then used to find the
square root of the shifted input mantissa, which (after
possibly being shifted) can be between 1 and 100. The
result will then be between 1 and 10, which is the
range required for the mantissa of Vx".

During the process of finding Vx the remainder
fla progressively decreases. To avoid losing accu
racy, this remainder is multiplied by 10' after finding
each new digit b. This avoids shifting a at all, once
the square root extraction process begins. A 12-digit
mantissa is generated, which insures accuracy to
Â±1 in the tenth digit of the mantissa of Vx,

In summary, the computation of Vx proceeds as
follows:

1. Generate exponent of answer.
2. Multiply mantissa by 5 to create original 5na

3. With an original a of 0, use the method de
scribed above to find 12 b digits to form the
mantissa of the answer.

4. Round the mantissa and attach the exponent
found previously.

5. Display the answer.
The calculator is now ready for another operation, ff

References
1. T.M. Whitney, F. RodÃ©, and C.C. Tung, "The 'Powerful
Pocketful': An Electronic Calculator Challenges the Slide
Rule," Hewlett-Packard Journal, June 1972.
2. D.S. Cochran, "Algorithms and Accuracy in the
HP-35," Hewlett-Packard Journal, June 1972.
3. D.W. Harms, "The New Accuracy: Making 23 = 8,"
Hewlett-Packard Journal, November 1976.

Wil l iam E. Egbert
Bi l l Egbert Is a pro ject leader at
HP's Corvai l ls , Oregon Divis ion.
He produced th is ser ies o f a lgor i thm
ar t ic les as par t o f h is work on the
HP-67 and HP-97 Programmable
Calcu la tors . He was pro jec t leader
f o r t he HP-67 and d id m ic ro
programming for both ca lcu la tors .
B i l l received h is BSEE degree f rom
Br igham Young Univers i ty in 1973
and h is MSEE f rom Stan fo rd Un i
vers i ty in 1976. He 's been wi th HP
since 1973. Born in Fal lÃ³n, Nevada,
he 's marr ied, has two smal l ch i ldren,
and l ives in Corval l is.

Hew le t t -Packard Company , 1501 Page M i l l
Road, Palo Al to , Cal i forn ia 94304

HEWLETT-PACKARD JOURNAL
MAY 1977 Volume 28 â€¢ Number 9

T e c h n i c a l i n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f
H e w l e t t - P a c k a r d C o m p a n y

Hewle t t -Packard Cent ra l Ma i l ing Depar tment
Van Heuven Goedhar t laan 121

Amste lveen-1134 The Nether lands
Yokogawa-Hewle t t -Packard L td . , Sh ibuya-Ku

Tokyo 151 Japan

Edi tor ia l D i rec tor â€¢ Howard L . Rober ts
Managing Edi tor â€¢ Richard P. Dolan

Ar t D i rec to r , Pho tog rapher â€¢ Arv id A . Dan ie l son
I l l u s t r a t o r . S u s a n E . W r i g h t

Admin i s t ra t i ve Se rv i ces , Typog raphy â€¢ Anne S . LoPres t i
Eu ropean Produc t ion Manager â€¢ D ick Leeksma

Bulk Rate
U.S. Postage

Paid
Hewlet t -Packard

Company

2 0 S 1 0 7 J O H N A A A 8 L A O U A 1 6 5

Â«0 Â¿QS W

~ / ~ \ n a m e A y o u r o f f) . r ~) p O O . T o c h a n g e y o u r a d d r e s s o r d e l e t e y o u r n a m e f r o m o u r m a i l i n g l i s t p l e a s e s e n d u s y o u r o l d a d d r e s s l a b e l (i t p e e l s o f f) .
L . V - y l M i l l U . S . A . \ - J 1 1 C O O . S e n d c h a n g e s t o H e w l e t t - P a c k a r d J o u r n a l , 1 5 0 1 P a g e M i l l R o a d , P a l o A l t o , C a l i f o r n i a 9 4 3 0 4 U . S . A . A l l o w 6 0 d a y s .

© Copr. 1949-1998 Hewlett-Packard Co.

Personal Calculator Algori thms I I
Tr igonometr ic Funct ions
A deta i led exp lanat ion o f the a lgor i thms used by HP
hand-he ld ca lcu la to rs to compute s ine , cos ine , and
tangent.

by Wi l l iam E. Egbert

BEGINNING WITH THE HP-35,1'2 all HP personal
calculators have used essentially the same al

gorithms for computing complex mathematical func
tions in their BCD (binary-coded decimal) micro
processors. While improvements have been made in
newer calculators,3 the changes have affected primarily
special cases and not the fundamental algorithms.

This article is the second of a series that examines
these algorithms and their implementation. Each
article will present in detail the methods used to
implement a common mathematical function. For
simplicity, rigorous proofs will not be given, and
special cases other than those of particular interest
will be omitted.

Although tailored for efficiency within the environ
ment of a special-purpose BCD microprocessor, the
basic mathematical equations and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Tr igonometr ic Funct ion Algor i thm
This article will discuss the method of generating

sine, cosine, and tangent. To minimize program
length, a single function, tan B, is generated first.
Once tan 6 is calculated, sin 6 is found by the formula

sin 6 =
Â±tanfl

Vl+tan20

It turns out (as will be explained later) that cot 6 can
easily be generated while generating tan 6. Then cos 6
is calculated using the formula

cos 0 -
Â±cot0

Vl+cot20

It can be seen that these formulas are identical, ex
cept for the contangent replacing the tangent. Thus
the same routine can solve for either sine or cosine
depending on whether the argument is tangent or
cotangent.

Scaling
Since 6 and 0+n(360Â°) yield identical trigonometric

functions, every angular argument is resolved to a
positive angle between 0Â° and 360Â°. For reasons to be
explained later, all calculations assume angles ex
pressed in radians. An angle in degrees is first con
verted to radians by:

0rad = 0deg X TT/180.

Angles expressed in grads are also converted using
the appropriate scale factor.

Once 6 is in radians, 2-rr is subtracted repeatedly
from 1 8 1 until the absolute remainder is between 0
and 2 77. For large angles this would take a long time.
In such cases 27rxl0n can be subtracted in a process
similar to division. Suppose an angle 6 is expressed
in scientific notation (e.g., 8.5X 10s). 2-rr x 10", or 6.28...
xlOn, is then repeatedly subtracted from 6 until
the result becomes negative (underflow). Thus 6.28...
x 10s is subtracted from 8.5 x 10s twice and underflow
occurs. 6. 28... x 10s is then added to the negative re
mainder to give a number between 0 and ITT x 10s, in
this case 2.2X105. The remainder is expressed now as
22xl04 and the process is repeated, this time sub
tracting 277X104. With this method, large angles are
quickly resolved.

The problem with this scaling process is that in cur
rent computers numbers can be expressed only to a
limited number of digits, so 2-77 and therefore ZTTX 10n
cannot be expressed exactly. Error creeps in with
each shift of the remainder. Thus, the larger the angle,
the fewer significant digits remain in the scaled re
sult. A rule of thumb for rough estimates is that for
each count in the exponent, one digit of accuracy
will be lost. For example, 5 x 10s when scaled will
lose five digits of accuracy.

A negative argument is treated the same as a posi
tive number until the end, when the scaling routine
returns a number between 0 and -2-7T. Then 2rr is
added to the negative result, giving again a number
between 0 and 2-rr. This addition of 2-rr causes a digit

© Copr. 1949-1998 Hewlett-Packard Co.

to be lost, which results in asymmetry such as
cos(86Â°) Â£ cos(-86Â°). Newer calculators obviate this
problem by scaling to a number between 0 and 77/4.

Vector Rotat ion
An angle can be expressed as a vector having X

and Y components and a resultant R (see Fig. 1).
If R is the unit vector, then X=cos 9 and Y=sin 0.
However, regardless of the length of R, Y/X = tan 0and
X/Y=cot0. This holds true for al l values of 6
from 0 to 277. Thus, if some way could be found
to generate X and Y for a given 9, all the trigonometric
functions could be found.

In vector geometry a useful formula results when
one rotates a vector through a given angle. Let
us suppose we have a vector whose angle is 6\,
and we know its components Xa and Yj (see Fig. 2).
The X2 and Y2 that result when the vector is rotated
an additional angle 02 are given by:

X2 = Xa cos 62 - Ya sin 02

Y2 = Y! cos 02 + Xa sin 02

Dividing both sides of these equations by cos 02
gives:

X,

cos 02

C O S 0 2

= X1- Yjtan 82 = X2'

= Y! +X1tan02 = Y2'

(1)

Note that X2' and Y2', while not the true values of X2
and Y2, both differ by the same factor, cos 02. Thus
Y2'/X2' = Y2/X2. From Fig. 2 it is plain that the quo
tient Y2'/X2' is equal to tan (0a+ 02). Thus the tan
gent of a large angle can be found by manipulating
smaJJer angles whose sum equals the large one. Re
turning to equation 1 above, it can be seen that to
generate X2' and Y2'f Xa and Yj need to be multiplied

Fig. 2.

by tan 02 and added or subtracted as needed. If 02 is
chosen so that tan 02 is a simple power of 10
(i.e., 1, 0.1, 0.01,...) then the multiplications simply
amount to shifting X: and Yj. Thus to generate X2'
and Y2', only a shift and an add or subtract are needed.

Pseudo-Division
The tangent of 0 is found as follows. First 0 is

divided into a sum of smaller angles whose tangents
are powers of 10. The angles are tan"1 (1) = 45Â°,
tan"1 (0.1) = 5.7Â°, tan'1 (0.01) Â« 0.57Â°, tan'1 (0.001)
=0.057Â°, tan'1 (0.0001)=0.0057Â°, and so on.
This process is called pseudo-division. First, 45Â° is
subtracted from 0 until overdraft, keeping track of
the number of subtractions. The remainder is restored
by adding 45Â°. Then 5.7Â° is repeatedly subtracted, again
keeping track of the number of subtractions. This pro
cess is repeated with smaller and smaller angles.
Thus:

+r

Fig. 1.

0 = q0 tan l (1) + qa tan"1 (0.1) +q2 tan"1 (0.01)...

The coefficients qÂ¡ refer to the number of subtractions
possible in each decade. Each qÂ¡ is equal to or less
than 10, so it can be stored in a single four-bit digit.

This process of pseudo-division is one reason that
all the trigonometric functions are done in radians.
For accuracy, tan'^lO"') needs to be expressed to
ten digits. In degrees, these constants are random digits
and require considerable ROM (read-only memory)
space to store. However, in radians, they become, for
the most part, nines followed by sixes. Because of this,
they can be generated arithmetically, thus using
fewer ROM states. Also, in radians, tan"1 (1) = 77/4,
which is needed anyway to generate TT. The problem
with using radians is that since 77 is an irrational num
ber, scaling errors occur as discussed earlier. This
means cardinal points do not give exact answers. For
example, sin (720Â°) Â¿ O when calculated this way
but rather 4xlO~9. See reference 3 for a discussion
of this point.

18

© Copr. 1949-1998 Hewlett-Packard Co.

So far, a pseudo-quotient has been generated that
represents the division of the given angle 6 into
smaller angles whose tangents are powers of 10. In
many HP calculators the pseudo-quotient is five
hexadecimal digits long. Each digit represents one
series of subtractions and is a number from 0 to 10.
For example, if 6 were 359.9999Â°, the pseudo-quotient
would be 77877, represent ing 6 = 7 tan~a(l)
+ 7tan~a(0.1) + Stan-^O.Ol) + 7tan~1(0.001)
+ 7tan~1(0.0001). There may also be a remainder r,
which is the angle remaining after the previous par
tial quotient subtractions have taken place.

Tan 9 can now be found using the vector rotation
process discussed earlier.

Pseudo-Mult ipl ication
To use equation 1 we need an initial Xl and Yv

These correspond to the X and Y of the residual
angle r discussed previously. This angle is small
(less than 0.001Â°), and for small angles in radians,
sin 6 = 6 (another reason to use radians instead of
degrees). Thus, to good accuracy, the initial Ya can
be set to the residual angle, and the initial Xa set to 1.
Equation 1 can now be repeatedly applied, where 02
is the angle whose tangent is 10"'. Each time equa
tion 1 is applied, a new Xa and Ya are generated, i.e.,
X2' and Y2'. The number of times equation 1 is
applied is determined by the count in the pseudo-
quotient digit for that 6 . Thus if the original angle
had a 3 in the pseudo-quotient digit corresponding to
tan~a0.1, or 5.7Â°, equation 1 would be applied three
times with Xa and Yl being shifted one place right
for tan (tan~10.1) before the addition or subtraction.
In this manner, new Xa and Yl are formed as the vec
tor is rotated the amount corresponding to the count
in the pseudo-quotient digits which, of course, sum
to the original angle 6.

Equation 1 shows that to generate X2 requires a
shift of Yj and a subtraction from Xa. Likewise Y2
requires a shift of X} and an addition to Yv To imple
ment this would require either two extra registers to
hold the shifted values of Xj and Ya, or else shifting
one register twice and the other once. It would be
desirable to shift only one register once. Happily,
this is possible. Consider the following: Let Y = 123
and X = 456. Suppose we want Y + (Xx 0.01). This can
be obtained by keeping the decimal points in the
same places and shifting X two places right.

123
+ 4 . 5 6

127.56

12300
456

12756

The digits in both answers are exactly the same. The
only difference between the two is that the second
answer is 100 times the correct value, which is the
same value by which Y was multiplied before the
addition. Thus to avoid shifting X, Y must be multi
plied by 10'.

Expanding this method to the problem at hand also
helps us solve another problem, that of accuracy.
During pseudo-division, the angle 6 is resolved until
a small angle r is left as the original Y value. Since
this is done in fixed point arithmetic, zero digits are
generated following the decimal point (e.g., .00123).

Since zero digits do not convey information except
to indicate the decimal point, the remainder is shifted
left one place (multiplied by 10) during each decade
of pseudo-division. This preserves an extra digit of
accuracy with each decade. The final remainder is
equal to rxlO4 if the pseudo-quotient is five digits
long.

To demonstrate mathematically the implementa
tion that requires only a single register shift, return
to equation 1 and replace tan 62 by 10~'. This substi
tution is legal because 62 = tan"1 (10~'), where j is
the decade digit.

X2' = X^
(2)

Y2' =

(3)

Now suppose instead of shifting X two places right,
we multiply Y by 100, shifting it two places left.
What happens?

Now let Z = Yj x 10', or Ya =ZxlO~Â¡. Substituting
in equation 2,

./\.i ~~ /\.i â€” /< X 1U
1 1

2 1

Multiplying the second equation by 10' gives:
Y2'xlO' = Z+X!
The left-hand side (Y2'xlO') is in the correct form

to be the new Z for the next iteration. Thus for each
iteration within a decade:

- A - 2 = - A - i Â ¿ t X l U

Y2'xlO' = Z+Xj
X2' becomes the new Xt
Y2'xlO' becomes the new Z

Since the shifted remainder (rxlO4) is desired as Z
for the first iteration, the original j is 4.

To implement equation 3, Xj and Z are stored in
two registers. ZxlO~2'is formed and stored in a third
register. Xa is added to Z to form the new Z. This
leaves Xj undisturbed so that ZxlO"2' can be sub
tracted from it to form the new X2'.

This implementation saves extra shifts and in
creases accuracy by removing leading zeros in Z.
The only register shifted is Z.

19

© Copr. 1949-1998 Hewlett-Packard Co.

After equation 3 has been applied the number of
times indicated by one pseudo-quotient digit, Z is
shifted right one place, and a new pseudo-quotient
digit is fetched. This in effect creates Y5 x 10', where j
is one less than before. Again equation 3 is applied,
and the process is repeated until all five pseudo-
quotient digits have been exhausted. The result is an
X and a Y that are proportional to the cosine and sine
of the angle 6. Because the final j is zero, the final Y
(= Z) is correctly normalized with respect to X.

So far, then, an X and a Y have been generated by a
pseudo-multiply operation consisting of shifts and
additions. If tan 9 is required, Y/X is generated, which
is the correct answer. For sin 6, Y/X is calculated, and
for cos 0, X/Y is calculated. Then either X/Y or Y/X is
operated on by the routine described at the beginning
of this article. The only difference between the com
putation for sin 0 and that for cos 6 is whether X and
Y are exchanged.

In summary, the computation of trigonometric
functions proceeds as follows:

1. Scale the input angle to a number in radians
between 0 and 2rr.

2. Using the pseudo-division process divide
the scaled number into groups of selected
smaller angles.

3. With the pseudo-multiply process of equation 3
applied once for each angle resulting from the
division of the input argument, generate an X
and a Y that are proportional to the sine and co

sine of the input angle.
4. With X and Y, compute the required function

using elementary operations.
5. Round and display the answer.

The calculator is now ready for another operation.^

References
1. T.M. Whitney, F. RodÃ©, and C.C. Tung, "The 'Powerful
Pocketful': An Electronic Calculator Challenges the Slide
Rule," Hewlett-Packard Journal, June 1972.
2. D.S. Cochran, "Algorithms and Accuracy in the
HP-35," Hewlett-Packard Journal, June 1972.
3. D.W. Harms, "The New Accuracy: Making 23 = 8,"
Hewlett-Packard Journal, November 1976.

Wil l iam E. Egbert
Bi l l Egbert is a pro ject leader at
HP's Corval l is , Oregon Divis ion.
He produced this series of algorithm
art ic les as part of his work on the
HP-67 and HP-97 Programmable
Calculators. He was project leader
f o r t he HP-67 and d id m ic ro
programming for both calculators.
Bil l received his BSEE degree from
Brigham Young Universi ty in 1973
and h is MSEE f rom S tan fo rd Un i
versity in 1976. He's been with HP
since 1 973. Born in FallÃ³n, Nevada,
he's married, has two small children,
and l ives in Corval l is.

Hew le t t -Packard Company , 1501 Page M i l l
Road, Palo A l to , Cal i forn ia 94304

HEWLETT-PACKARD JOURNAL
J U N E 1 9 7 7 V o l u m e 2 8 . N u m b e r 1 0

Technica l in format ion f rom the Laborator ies of
Hewle t t -Packard Company

Hewle t t -Packard Cent ra l Ma i l ing Depar tment
Van Heuven Goedhar t laan 121

Amste lveen-1134 The Nether lands
Yokogawa-Hewle t t -Packard L td . . Sh ibuya-Ku

Tokyo 151 Japan

Editorial Director â€¢ Howard L. Roberts
Managing Editor â€¢ Richard P. Dolan

Art Director, Photographer â€¢ Arvid A. Danielson
Illustrator â€¢ Susan E. Wright

Administrative Services. Typography â€¢ Anne S. LoPresti
European Production Manager â€¢ Dick Leeksma

Bulk Rate
U.S. Postage

Paid
Hewlet t -Packard

Company

/^ I j delete N mailing /"> _ peels [~~ A I I |~) p O O â€¢ To Cnan9e yÂ°ur address or delete your name from our mailing list please send us your old address label (it peels off)
V - / I I / " \ IN A l low days _ / l f \ \ - J LJ P i C .OO.Send changes to Hewle t t -Packard Journa l , 1501 Page Mi l l Road, Pa lo A l to , Ca l i fo rn ia 94304 U.S.A . A l low 60 days

© Copr. 1949-1998 Hewlett-Packard Co.

Personal Calculator Algorithms III:
Inverse Trigonometric Functions
A deta i led descr ip t ion o f the a lgor i thms used in
Hewle t t -Packard hand-he ld ca lcu la to rs to compute
arc s ine , a rc cos ine, and arc tangent .

by Wi l l iam E. Egbert

BEGINNING WITH THE HP-35,1'2 all HP personal
calculators have used essentially the same al

gorithms for computing complex mathematical func
tions in their BCD (binary-coded decimal) micro
processors. While improvements have been made in
newer calculators,3 the changes have affected primarily
special cases and not the fundamental algorithms.

This article is the third of a series that examines
these algorithms and their implementation. Each
article presents in detail the methods used to imple
ment a common mathematical function. For sim
plicity, rigorous proofs are not given, and special
cases other than those of particular interest are
omitted.

Although tailored for efficiency within the environ
ment of a special-purpose BCD microprocessor, the
basic mathematical equations and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

Inverse Tr igonometr ic Funct ions
This article will discuss the method of generating

sin"1, cos"1, and tan"1. An understanding of the
trigonometric function algorithm is assumed. This
was covered in the second article of this series and
the detailed discussion will not be repeated here.4

To minimize program length, the function tan-1A
is always computed, regardless of the inverse trig-
onometric function required. If sin-1A is desired,
A/V 1-A2 is computed first, since

sin A = tan - i

For cos A, sin A is computed as above and then
cos"1 A is calculated using

cos"1 A = 7T/2 - sin"aA.

Cos"1 is found in the range 0=Â£0=Â£7r and sin"1 and
tan"1 are computed for the range -^12^6^17/2. The
tan"1 routine solves only for angles between 0
and 77/2, since -tan A = tan (-A). Thus A may be

assumed to be positive and the sign of the input argu
ment becomes the sign of the answer. All angles are
calculated in radians and converted to degrees or
grads if necessary.

General Algor i thm
A vector rotation process similar to that used in the

trigonometric routine is used in the inverse process
as well. A vector expressed in its X and Y components
can easily be rotated through certain specific angles
using nothing more than shifts and adds of simple
integers. In the algorithm for tan"1 A|, the input
argument is | A | , or | tan 6 , where 6 is the unknown.
Letting tan 6 = Ya/X1; |A| can be expressed as |A /I,
where Y: = A| and Xl = 1. A vector rotation pro
cess (see Fig. 1) is then used to rotate the vector clock
wise through a series of successively smaller angles
0Â¡, counting the number of rotations for each angle,
until the Y2 component approaches zero. If qÂ¡
denotes the number of rotations for 8i then

\6\ = q0 + ql6l +...+ qiflj +...

This process is described in detail below.

Vector Rotat ion
To initialize the algorithm, A and 1 are stored in

fixed-point format in registers corresponding to Y-,

Direction of Rotat ion

Fig. 1. Vector rotat ion.

22

© Copr. 1949-1998 Hewlett-Packard Co.

and Xa. This is done in such a way as to preserve as
many digits of A as possible when the exponent of A
differs from zero.

At this point the sign of A is saved and Ya = | A| .
Now comes the vector rotation (see Fig. 1). If the vec
tor R is rotated in a clockwise direction, Y2 becomes
smaller and smaller until it passes zero and becomes
negative. As soon as Y2 becomes negative, we know
that we have rotated R just past the desired angle 0.
Thus to find 6, R is simply rotated clockwise until
Y2 becomes negative. The amount of rotation is re
membered and is equal to the desired angle 0 =
tan"1 A | . To rotate R, the following formula is used.

x
C O S 0

2 = X-i + Y! tan 02 = X2'

(11
Y2 = Y! -Xj tan02 = Y2 ' .

metric routine. Thus:

6 = q0 tan"1 (I) + qi tan"1 (0.1)
+02 tan"1 (0.01) +...+r

Each coefficient qÂ¡ refers to the count in a particular
pseudo-quotient digit.

The result of this summation process, also called
pseudo-multiplication, is an angle 6 that is equal to
tan"1 A , where A | is the input argument to the tan"1
routine. At this point the original sign of A is appended
to 6. For tan"1 this angle is normalized, converted
to degrees or grads if necessary, and displayed. Re
call that for sin"1, A/Vl-A2 was first generated.
Thus for sin"1, the result of the tan"1 routine is again
simply normalized, converted to degrees or grads if
necessary, and displayed. For cos"1, the tan"1 routine
returns s in"1. Cos"1 is then simply found as

This equation is the same as equation 1 of the
article on trigonometric functions,4 except that the
plus and minus signs are exchanged because R is
rotated in the opposite direction. As before, tan 02 is
chosen such that the implementation requires a simple
shift and add (tan 62 = 10"'). To find 6, R is initially
rotated with tan 82 = 1 (02 = 45Â°). Y2' soon becomes
negative and the number of successful rotations is
stored as the first digit of what is known as the pseudo-
quotient. Y2' is then restored to the last value it had
before becoming negative and R is rotated again, this
time through a smaller angle, i.e., tan 62 = 0.1
(02 = 5.7Â°). This process is repeated with the angle of
rotation becoming smaller and smaller until five
pseudo-quotient digits have been generated.

At the end of each series of rotations, Y2 is multi
plied by 10 to preserve accuracy.

Pseudo-Mult ipl ication
It is now time to shift gears and add up all the small

angles represented by the pseudo-quotient digits.
There remains a residual angle ,r, represented by the
final X2' and Y2'. Since the residual angle is small,
we would like to say Y2' = sin r = r. However,
this is true only if X2' = 1. Unfortunately, X2' in this
case is the product of all the I/cos d terms result
ing from several applications of equation 1. How
ever, Y2' is this same product t imes Y2. Thus
Y2'/X2' = Y2/l. Therefore, the final Y2' is divided by
the final X2' and the result is sin r, which for small
angles in radians is approximately equal to r, the
residual angle.

With the residual angle as the first partial sum, 6 is
generated by adding the angles represented by the
digits of the pseudo-quotient. This is exactly the re
verse of the pseudo-division operation in the trigono

Summary
In summary, the computation of inverse trigono

metric functions proceeds as follows:
1. Calculate A/V 1-A2 if the desired function is

sm A or cos 1 A.
2. Place A | and 1 in fixed-point format into ap

propriate registers, while preserving the sign
of A.

3. Repeatedly rotate the vector with A = Y and 1 = X
clockwise using equation 1 until Y approaches
zero. The number of rotations and the amount
of each rotation is stored as a pseudo-quotient
along the way.

4. Using the pseudo-multiplication process of
equation 2, sum all of the angles used in the ro
tation to form 1 0 1 .

5. Append the proper sign to the answer and cal
culate cos"1 A = 77/2 -sin"1 A if required.

6. Convert to the selected angle mode, and round
and display the answer.

The calculator is now ready for another operation. -

References
1. T.M. Whitney, F. RodÃ©, and C.C. Tung, 'The Power
ful Pocketful': An Electronic Calculator Challenges the
Slide Rule," Hewlett-Packard Journal, June 1972.
2. D.S. Cochran, "Algorithms and Accuracy in the
HP-35," Hewlett-Packard Journal, June 1972.
3. D.W. Harms, "The New Accuracy: Making 23 = 8,"
Hewlett-Packard Journal, November 1976.
4. W.E. Egbert, "Personal Calculator Algorithms II:
Trigonometric Functions," Hewlett-Packard Journal, June
1977.

BiJI Egbert is a project manager at HP's CorvaJJis
(Oregon] Division.

23

© Copr. 1949-1998 Hewlett-Packard Co.

Personal Calculator Algori thms IV
Logari thmic Funct ions
A deta i led descr ip t ion o f the a lgor i thms used in
Hewle t t -Packard hand-he ld ca lcu la tors to compute
logarithms.

by Wil l iam E. Egbert

BEGINNING WITH THE HP-35,1'2 all HP personal
calculators have used essential ly the same al

gorithms for computing complex mathematical func
tions in their BCD (binary-coded decimal) micropro
cessors . While improvements have been made in
n e w e r c a l c u l a t o r s , 3 t h e c h a n g e s h a v e a f f e c t e d
pr imar i ly specia l cases and not the fundamenta l
algorithms.

This article is the fourth in a series that examines
these algorithms and their implementation.4'516 Each
article presents in detail the methods used to imple
ment a common mathematical function. For simplic
ity, rigorous proofs are not given and special cases
other than those of particular interest are omitted.

Al though ta i lored for e f f ic iency wi th in the en
vironment of a special-purpose BCD microprocessor,
the basic mathematical equations and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Logar i thmic Funct ion Algor i thm
This article will discuss the method of generating

the ln(x) and Iog10(x) functions. To minimize pro
gram length, a single function, ln(x), is always com
puted first. Once ln(x) is calculated, Iog10(x) is found
by the formula

l n (x)
Iog1

ln(x) is generated using an approximation process
much the same as the one used to compute trigono
metric functions.5 The fundamental equation used in
this case is the logarithmic property that

In anj = InfaJ + In(a2)

+ln(an)

This algorithm simply transforms the input number
x into a product of several terms whose logarithms
are known. The sum of the logarithms of these various
partial-product terms forms ln(x).

Exponent
Numbers in HP calculators are stored in scientific

no ta t ion in the form x = M-10K. M i s a number
whose magnitude is between 1.00 and 9.999999999
and K is an in teger be tween -99 and +99. Using
equation 1, it is easy to see that

ln(M-10K) = ln(M) + ln(10K)

At this point, another logarithmic property becomes
useful, which is

ln(Ab) = b-ln(A).

Using this relationship

ln(M-10K) = ln(M) + K-ln(lO).

Thus to find the logarithm of a number in scientific
notation, one calculates the logarithm of the mantissa
of the number and adds that to the exponent times

Mantissa
The problem of f inding ln(x) is now reduced to

finding the logarithm of its mantissa M.
Let P = 1/M. Then

ln(PM) = ln(P) + ln(M)
ln(l) = ln(P) + ln(M)

0 = ln(P) + ln(M)
- l n (P) = l n (M) (2)

This may appear to be a useless exercise since at
first glance -ln(P) seems to be as hard to compute as

Suppose, however, that a new number Pn is formed
by multiplying P by r which is a small number close
to 1.

P n = P - r

In addition, let Pn be defined as a product of powers

2 9

© Copr. 1949-1998 Hewlett-Packard Co.

of numbers aÂ¡ whose natural logarithms are known.

P â € ” a K g K i K ; . . â € ž K n
n - a O a l â € ¢ â € ¢ â € ¢ a j ' â € ¢ â € ¢ â € ¢ a n

Thus

P = Pn/r

ln(P) = ln(PJ - ln(r)

Using equation 2

ln(M) = ln(r) - ln(PJ

Finally

ln(M) = ln(r) - (K0ln(a0j + K^nfaJ + ... + Kjln(aj)
+ ... + Knln(an))

Thus to find ln(M) one simply multiplies M by the
carefully selected numbers aÂ¡ so that the product
MPn is forced to approach 1. If all the logarithms of
aÂ¡ are added up along the way to form ln(Pn) then
ln(M) is the logarithm of the remainder r minus this
sum. Notice that the remainder r is nothing more than
the final product MPn.

Implementat ion
How is this algorithm implemented in a special-

purpose microprocessor? First of all, the terms of Pn
were chosen to reduce computation time and mini
mize the amount of ROM (read-only memory) needed
to store aÂ¡ and its logarithm. The numbers chosen for
the aÂ¡ terms are of the form aÂ¡ = (1 + 10"'), where
j = 0-4 (see Table 1).

Table 1 Values of aÂ¡ Terms

0
1
2

"J

2
1.1
1.01
1.001
1.0001

In aÂ¡

0.6931
0.09531
0 . 0 0 9 9 5 0
0 . 0 0 0 9 9 9 5
0 . 0 0 0 0 9 9 9 9 5

To achieve high accuracy using relatively few aÂ¡
t e rms , an app rox ima t ion i s u sed when r = MPn
approaches 1. For numbers close to 1, ln(r)
This yields

râ€” 1.

In M = (r-l) - Â£ KÂ¡ln(aÂ¡ (3]
i=o

between 0 and 1 if the product PnM is to approach 1.
As M is defined to be between 1 and 10, a new quan
tity A is formed by dividing M by 10. A is now in the
proper range (0.1=sA<l) so that using the aÂ¡ terms as
def ined wi l l cause the product APn to approach
1 without exceeding 1.

The product Pn can now be formally defined as a
series, where j goes from 0 to n. Each partial product
APÂ¡ has the form

A-Pj = A-Pj_a(l+10-J) ', j = 0,1, 2,..., n

P_! = 1, and Kj is the largest integer such that PÂ¡ <1.
In practice, each A-PÂ¡ is formed by multiplying

A-Pj.j by (1 + 10~'), KJ times. There is one inter
mediate product, TÂ¡, for each count of KÂ¡, as shown
below.

TO = A(l 10"

! = A(l + 10"

TKo =A(1

KO+I

Tm =

m =

TÂ¡ =

10 -Â°)KÂ°(1

...(1 = APn

+ K

for some j (4)

Since all of the aÂ¡ terms are larger than 1 , M must be

Notice that each multiplication of the intermediate
product TÂ¡_j by aÂ¡ simply amounts to shifting TÂ¡_!
right the number of digits denoted by the current
value of j and adding the shifted value to the original
TÃ-I- This very efficient multiplication method is
similar to the pseudo-multiplication of the trigono
metric algorithm.5

An Example
A numeric example to illustrate this process is now

in order. Let A = 0.155. To compute ln(A), A must be
multiplied by factors of aÂ¡ until APn approaches 1.
To begin the process A = 0.155 is multiplied by a0 = 2
to form the intermediate product T0 = 0.31. Another
multiplication by a0 gives Ta = 0.62. A third multi
plication by 2 results in 1.24, which is larger than 1.
Thus K0 = 2 and AP0 = 0.62. The process is con
tinued in Table 2.

3 0

© Copr. 1949-1998 Hewlett-Packard Co.

Table 2 Generation of ln(0.155)

2
2

0.155

0.62

T

0.155
0.31
0.62

ln(aÂ¡)

0.6931
0.6931

0.9996 = A-P4 = r 1.8638 = Â£ ln(aj)

*Another x2 would result in AP3 >1. Thus aÂ¡ is
changed to 1.1.

**The 1.01 constant is skipped entirely.

Applying the values found in Table 2 to equation 3
results in

ln(0.155) = (0.9996 - 1) -1.8638
= -1.8642

This answer approximates very closely the correct
10-digit answer of -1.864330162.

This example demonstrates the simplicity of this
method of logarithm generation. All that is required
is a multiplication (shift and add) and a test for 1.
To implement this process using only three working
registers, a pseudo-quotient similar to the one gen
erated in the trigonometric algorithm is formed.5 Each
digit represents the number of successful multipli
cations by a particular aÂ¡. For the preceding example,
the pseudo-quotient would be

2 5 0 1 1
t t t t T

j = O j = 1 j = 2 j = 3 j = 4

With -ln(r) = (r - 1) as the first term, the appro
priate logarithms of (aÂ¡) are then summed according
to the count in the pseudo-quotient digit correspond
ing to the proper aÂ¡. The final sum is -ln(A).

At this point one more transformation is needed to
optimize this algorithm perfectly to the micropro

cessor's capabilities. Recall that the factors aÂ¡ were
chosen to force the product PnA towards 1. Suppose
Bj = TJ -1. Forcing Bm towards 0 causes PnA to be
forced to 1. Substituting BÂ¡ into (4) and simplifying
yields

(B; + l) =(Bi_1+l)(14-10~i] for some j

B ; + l = 8 ^ (1 + 1 0

B = 10~')4-10

Multiplying through by -1 results in the following
equation, which is equivalent to equation 4.

(5)

This expression is now in a very useful form, since
the aÂ¡ term is the same as before, but the zero test is
performed automatically when the 10 ' subtraction
is done. A test for a borrow is all that is required. An
additional benefit of this transformation is that accu
racy can be increased by shifting -BÂ¡ left one digit for
each 3j term after it has been applied the maximum
number of times possible. This increases accuracy by
replacing zeros generated as BÂ¡ approaches zero with
significant digits that otherwise would have been lost
out of the right end of the register. This shifting,
which is equivalent to a multiplication by 10', gives
yet another benefit. Multiplying equation 5 by 10' and
simplifying,

-BÂ¡xlO' = (-Bj.J

-BjXlO' = -Bj.j

>)-10~>)xlO'

-1 forsomej (6)

Notice that the 10"' subtraction reduces to a simple
-1 regardless of the value of j. The formation of the
initial -B0 is also easy since -B0 = -(A - 1) = 1 - A.
This is formed by taking the 10's complement of M
(the original mantissa), creating 10 -- M. A right
shift divides this by 10 to give 1 - M/10 = 1 - A =
-B0. A final, almost incredible, benefit of the BÂ¡
transformation is that the final remainder -Bm x
10' is in the exact form required to be the first term of
the summation process of equation 4 without further
modification. The correct ln(aÂ¡) constants are added
directly to -Bm x 10', shifting the sum right one
digit after each pseudo-quotient digit to preserve
accuracy and restore the proper normalized form dis
rupted by equation 6. The result is -ln(A).

Finally, the required ln(M) is easily found by sub
tracting the computed result -ln(A) from ln(10).

31

© Copr. 1949-1998 Hewlett-Packard Co.

- (-ln(A)) = ln(M/10)
= ln(10-M/10)
= ln(M)

Once ln(M) is computed, K-ln(lO) is added as pre
viously discussed to form ln(xj. At this point log(x)
can be generated by dividing ln(x) by ln(10).

S u m m a r y
In summary, the compulation of logarithmic func

tions proceeds as follows:
1. Find the logarithm of 10K using K -In (10).
2. Transform the input mantissa to the proper

form required by â€” B0.
3. Apply equation 6 repeatedly and form a pseudo-

quotient representing the number of successful
multiplications by each aÂ¡.

4. Form -ln(A) by summing the ln(PÂ¡) constants
corresponding to the pseudo-quotient digits with
the remainder -Bm x 10' as the first term in the
series.

5. Find ln(x) or log(x) using simple arithmetic
operations.

6. Round and display the answer.
The calculator is now ready for another operation. S

.
References
1. T.M. Whitney, F. Rode, and C.C. Tung, "The 'Power
ful Pocketful': An Electronic Calculator Challenges the

Wil l iam E. Egbert
Bil l Egbert is a project manager at

â€¢ HP's Corval l is , Oregon Div is ion.
He produced this series of algorithm
art ic les as part of his work on the
HP-67 and HP-97 Programmable
Calculators. He was project leader
f o r t he HP-67 and d id m ic ro
programming for both calculators.
More recent ly , he was pro jec t
leader fo r the f i rmware deve lop
ment o f the HP-19C and the
HP-29C. Bi l l received his BSEE
d e g r e e f r o m B r i g h a m Y o u n g U n i
versity in 1 973 and his MSEE from

Stanford Univers i ty in 1976. He's been wi th HP s ince 1973.
Born in Fal lÃ³n, Nevada, he's marr ied, has two smal l chi ldren,
and l ives in Corval l is.

Slide Rule," Hewlett-Packard Journal, June 1972.
2. D.S. Cochran, "Algorithms and Accuracy in the HP-35,"
Hewlett-Packard Journal, June 1972.
3. D.W. Harms, "The New Accuracy: Making 23 = 8,"
Hewlett-Packard Journal, November 1976.
4. W.E. Egbert, "Personal Calculator Algorithms I:
Square Roots," Hewlett-Packard Journal, May 1977.
5. W.E. Egbert, "Personal Calculator Algorithms II: Trigo
nometric Functions," Hewlett-Packard Journal, June 1977.
6. W.E. Egbert, "Personal Calculator Algorithms III:
Inverse Trigonometric Functions," Hewlett-Packard Jour
nal, November 1977.

Hewle t t -Packard Company , 1501 Page Mi l l
Road, Palo Al to , Cal i forn ia 94304

HEWLETT-PACKARD JOURNAL
A P R I L 1 9 7 8 V o l u m e 2 9 . N u m b e r 8

Technica l in format ion f rom the Laborator ies of
Hewlet t -Packard Company

Hewle t t -Packard Cent ra l Ma i l ing Depar tment
Van Heuven Goedhar t laan 121

Amste lveen-1134 The Nether lands
Y o k o g a w a - H e w l e t t - P a c k a r d L t d S h i b u y a - K u

Tokyo 151 Japan

Editorial Director â€¢ Howard L. Roberts
Managing Editor â€¢ Richard P. Dolan

Ar t D i rector , Photographer . Arv id A . Danie lson
I l lustrator . Susan E. Wr ight

Administrative Services, Typography â€¢ Anne S. LoPresti
European Produc t ion Manager â€¢ D ick Leeksma

C H A N G

Bulk Rate
U.S. Postage

Paid
Hewlet t -Packard

Company

To change peels address or delete your name from our mail ing l ist please send us your old address label (i t peels off) .
Send changes to Hewlet t -Packard Journal , 1501 Page Mi l l Road, Palo Al to , Cal i forn ia 94304 U.S.A. A l low 60 days.

© Copr. 1949-1998 Hewlett-Packard Co.

	Algorithms 1977-05
	Algorithms 1977-06
	Algorithms 1977-11
	Algorithms 1978-04

