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A deta i led  descr ip t ion  o f  the  a lgor i thm used in  Hewle t t -  
Packard  hand-he ld  ca lcu la to rs  to  compute  square  roo ts .  

by Wi l l iam E.  Egbert  

BEGINNING WITH THE HP-35,1'2 all HP personal 
calculators  have used essent ial ly the same al  

gorithms for computing complex mathematical func 
t ions in  their  BCD (binary-coded decimal)  micro 
processors. While improvements have been made in 
newer calculators,3 the changes have affected primarily 
special cases and not the fundamental algorithms. 

This article is the first  of a series that examines 
these  a lgor i thms and thei r  implementat ion.  Each 
ar t ic le  wi l l  present  in  deta i l  the  methods used to  
implement  a  common mathematical  funct ion.  For  
s implici ty,  r igorous proofs wil l  not  be given,  and 
special cases other than those of particular interest 
will be omitted. 

Although tailored for efficiency within the environ 
ment of a special-purpose BCD microprocessor, the 
basic  mathemat ical  equat ions  and the  techniques  
used to transform and implement them are applicable 
to a wide range of computing problems and devices. 

The  Square  Root  A lgor i thm 
This article will discuss the algorithm and methods 

used to implement the square root function. 
The core of the square root algorithm is a simple 

approximat ion  technique  ta i lored  to  be  e f f ic ien t  
using the instruction set of a B CD processor. The tech 
nique is as follows: 

V~x is desired 
1. Guess an answer a 
2. Generate a2 
3 .  F i n d R = x - a 2  
4. If the magnitude of R is sufficiently small, a = Vx. 
5. If R is a positive number, a is too small. 

If R is a negative number, a is too big. 
6. Depending on the result of step 5, modify a and 

return to step 2. 
The magnitude of R will progressively decrease until 
the desired accuracy is reached. 

This procedure is only a rough outline of the actual 
square  root  rout ine  used .  The  f i r s t  re f inement  i s  
to avoid having to find a2 and x -a2 each time a is 
changed. This is done by finding a one decade at a 
t ime. In other words,  f ind the hundreds digit  of  a,  
then the tens digit,  the units digit,  and so on. Once 

the hundreds digi t  is  found,  i t  is  squared and sub 
tracted fromx, and the tens digit is found. This pro 
cess, however, is not exactly straightforward, so some 
algebra is in order. 

The following definitions will be used: 
x = the number whose square root is  desired 
a = most significant digit(s)  of Vx previously 

computed 
b = the next  digi t  of  Vx to  be found 
j  = the power of 10 associated with b 
RQ = x-a2, the current remainder 
dj  = the new a when digit  b is  added in i ts  

p r o p e r  p l a c e .  a Â ¡  =  a + ( b x l O j )  ( 1 )  
Rb = the portion of remainder R â€ž that would be 

removed by adding b to a.  Rfa = a2-a2 (2) 

For example, let  x = 54756. Then Vx = 234. 
Let a = 200. 
b = the digit we are seeking (3, in this case) 
j  = 1 ( the 10's  digit  is  being computed) 
Ra = 54756 -(200)2 = 14756. 

Note that aÂ¡ and Rb will vary with the choice of b. 
The process of  f inding Vx one decade at  a  t ime 

approaches the value of Vx from below. That is,  at 
any point in the computation, a =sVx. Consequently, 
R a ^ 0 .  

With  th is  in  mind i t  i s  easy  to  see  that  for  any 
decade j, the value of b is the largest possible digit so 
that 

E a - R b ^ 0  
or 

R b ^ R o -  ( 3 )  
Using equations 1 and 2 we have 

Rb = [a-HbxlO')]2 -a2. 
Expanding and simplifying, 

R b  =  2 a b x l O i  +  ( b x l O i ) 2 .  ( 4 )  
Inserting (4) into (3) yields the following rule for 
finding digit b. 

Digit b is the largest possible digit so that 
2 a b x l O i + ( b x l O ' ) 2  = Â £  R a  ( 5 )  

When the digit that satisfies equation 5 is found, a 
new a is  formed by adding bxlO'  to the old a ,  the 
decade counter (j)  is decremented by 1, and a new 
Ra is created; the new Ra is the old Ra minus Rb. 

2 2  
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Continuing the previous example, 
x = 54756 
j = 1 
a = 200 
x-a2 =Ra = 14756 

Applying equation 5 to find b : 

b 2abxlO) + (bxlO])2 

0  0  

1  4 1 0 0  

2  8 4 0 0  

3  1 2 9 0 0  

4  1 7 6 0 0  

14756 
10656 

6356 
1856 

-2844 

Thus b =3, since b =4 causes overdraft, i .e.,  
Ra-Rb <0. The new a=200 + 3xl01 = 230. The new 
Ra = 1856, the new j = 0. With these new parameters, 
the units digit can be found. 

This process may seem vaguely familiar, which is 
not surprising since upon close inspection it turns 
out to be the (usually forgotten) scheme taught in 
grade school to find square roots longhand. Of course, 
trailing zeros and digits are not written in the long 
hand scheme. 

To make this process efficient for a calculator, still 
another refinement is needed. 

(bxio')2 can be expressed as a series, using the 
fact that the square of an integer b is equal to the sum 
of the first b odd integers. Thus, 

(bxiO')2 = b2 xlO2' 

b 
= Â£ (2i-l)xl02) 

For example, 

f3xlO']2 = i x 102' -)-3 x 102' -)- 5 x 10 

= 9 xlO2' 

Thus 2abxlO'+(bxlO')2 can be expressed as: 

b 
2abxlOi+(bxlOi)2 = Â£ 2a xlO' +(2i-l) XlO2' 

o r  

= 2 2axlO'  + (2i- l)xl02'  (6 )  

Now comes a key transformation in the square root 
routine. It was shown earlier how inequality 3 will 

give the value b for the next digit of a. Since multi 
plying both sides of an inequality by a positive con 
stant does not change the inequality, equations 3 and 
6 can be multiplied by the number 5. 

1  

5Rb =s 5RQ 

lOaxlO' + tlOi-SjxiO2' ( 7 )  

b becomes the largest digit so that 5Rb=s5Ra. The new 
5Ra is equal to the old 5flQ minus 5flb. 

These transformations may seem useless until we 
examine a few examples of the last term of the right 
side of (7) for various values of b. 

10ax lO '+05x l02 i ,b= l  
10axlOi + 15xi02i,b=2 
10aXlO' + 25xl02i,b=3 

Notice that the two-digit coefficient of 102' con 
sists of (b-1) and a 5. These two digits will be ex 
pressed as (b-1) 1 5 in succeeding equations. 10a is 
formed by a simple right shift and does not change 
between terms. If the sum defined in equation 7, as 
b is incremented by 1, is subtracted from 5na until 
overdraft occurs, the digit in the next-to-last digit 
position is b. Best of all, it is in the exact posi 
tion to form the next digit of a without further ma 
nipulation. Redoing the previous example may help 
clarify matters. 

Ra = 14756 

5fla = 

= 1 
= 200 

73780 

1 
2 
3 
4 

20500 
21500 
22500 
23500 

new value of a 
digits 

5Ra-5Rb 

53280 
31780 

9280 new 5Ra 
-14220 overdraft 

Notice that when overdraft occurs the new value of 
a is already created and the new value of 5Ra can be 
found by restoring the previous remainder. 

Decrementing the value of j would cause, in effect, 
(10a x 10') to shift right one place, and (b-1) | 5 x 102i to 
shift right two places. The result is that the final 5 
shifts one place to the right to make room for a new 
digit. Continuing with the same example, 

5RQ = 9280 
a = 230 
j = 0 

2 3  
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b 10axiO'+(b- l )  5X102Ã 

1  2 3 0 5  
2  2 3 1 5  
3  2 3 2 5  
4  2 3 3 5  
5  2 3 4 5  

final a = 

5fÃ­a-5Rb 

6975 

4660 

2335 

O remainder 
-2345 overdraft 

For ease of understanding, the preceding example 
treated a large positive number. A number in the cal 
culator actually consists of a mantissa between 1 and 
10 and an exponent. The problem is to find the square 
root of both parts of this argument. Happily, if the 
input exponent is an even number, the portion of the 
answer resulting from it turns out to be the exponent 
of the final answer and is simply the input exponent 
divided by 2. Thus to find Vx, the exponent of x is 
first made even and the mantissa shifted to keep the 
number the same. The exponent of Vx is found by 
dividing the corrected input exponent by 2. The 
method described above is then used to find the 
square root of the shifted input mantissa, which (after 
possibly being shifted) can be between 1 and 100. The 
result will then be between 1 and 10, which is the 
range required for the mantissa of Vx". 

During the process of finding Vx the remainder 
fla progressively decreases. To avoid losing accu 
racy, this remainder is multiplied by 10' after finding 
each new digit b. This avoids shifting a at all, once 
the square root extraction process begins. A 12-digit 
mantissa is generated, which insures accuracy to 
Â±1 in the tenth digit of the mantissa of Vx, 

In summary, the computation of Vx proceeds as 
follows: 

1. Generate exponent of answer. 
2. Multiply mantissa by 5 to create original 5na 

3. With an original a of 0, use the method de 
scribed above to find 12 b digits to form the 
mantissa of the answer. 

4. Round the mantissa and attach the exponent 
found previously. 

5. Display the answer. 
The calculator is now ready for another operation, ff 
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Personal  Calculator  Algori thms I I  
Tr igonometr ic  Funct ions 
A deta i led  exp lanat ion  o f  the  a lgor i thms used by  HP 
hand-he ld  ca lcu la to rs  to  compute  s ine ,  cos ine ,  and  
tangent. 

by Wi l l iam E.  Egbert  

BEGINNING WITH THE HP-35,1'2 all HP personal 
calculators have used essentially the same al 

gorithms for computing complex mathematical func 
tions in their BCD (binary-coded decimal) micro 
processors. While improvements have been made in 
newer calculators,3 the changes have affected primarily 
special cases and not the fundamental algorithms. 

This article is the second of a series that examines 
these algorithms and their implementation. Each 
article will present in detail the methods used to 
implement a common mathematical function. For 
simplicity, rigorous proofs will not be given, and 
special cases other than those of particular interest 
will be omitted. 

Although tailored for efficiency within the environ 
ment of a special-purpose BCD microprocessor, the 
basic mathematical equations and the techniques 
used to transform and implement them are applicable 
to a wide range of computing problems and devices. 

The Tr igonometr ic  Funct ion Algor i thm 
This article will discuss the method of generating 

sine, cosine, and tangent. To minimize program 
length, a single function, tan B, is generated first. 
Once tan 6 is calculated, sin 6 is found by the formula 

sin 6 = 
Â±tanfl 

Vl+tan20 

It turns out (as will be explained later) that cot 6 can 
easily be generated while generating tan 6. Then cos 6 
is calculated using the formula 

cos 0 - 
Â±cot0 

Vl+cot20 

It can be seen that these formulas are identical, ex 
cept for the contangent replacing the tangent. Thus 
the same routine can solve for either sine or cosine 
depending on whether the argument is tangent or 
cotangent. 

Scaling 
Since 6 and 0+n(360Â°) yield identical trigonometric 

functions, every angular argument is resolved to a 
positive angle between 0Â° and 360Â°. For reasons to be 
explained later, all calculations assume angles ex 
pressed in radians. An angle in degrees is first con 
verted to radians by: 

0rad = 0deg X TT/180. 

Angles expressed in grads are also converted using 
the appropriate scale factor. 

Once 6 is in radians, 2-rr is subtracted repeatedly 
from 1 8 1 until the absolute remainder is between 0 
and 2 77. For large angles this would take a long time. 
In such cases 27rxl0n can be subtracted in a process 
similar to division. Suppose an angle 6 is expressed 
in scientific notation (e.g., 8.5X 10s). 2-rr x 10", or 6.28... 
xlOn, is then repeatedly subtracted from 6 until 
the result becomes negative (underflow). Thus 6.28... 
x 10s is subtracted from 8.5 x 10s twice and underflow 
occurs. 6. 28... x 10s is then added to the negative re 
mainder to give a number between 0 and ITT x 10s, in 
this case 2.2X105. The remainder is expressed now as 
22xl04 and the process is repeated, this time sub 
tracting 277X104. With this method, large angles are 
quickly resolved. 

The problem with this scaling process is that in cur 
rent computers numbers can be expressed only to a 
limited number of digits, so 2-77 and therefore ZTTX 10n 
cannot be expressed exactly. Error creeps in with 
each shift of the remainder. Thus, the larger the angle, 
the fewer significant digits remain in the scaled re 
sult. A rule of thumb for rough estimates is that for 
each count in the exponent, one digit of accuracy 
will be lost. For example, 5 x 10s when scaled will 
lose five digits of accuracy. 

A negative argument is treated the same as a posi 
tive number until the end, when the scaling routine 
returns a number between 0 and -2-7T. Then 2rr is 
added to the negative result, giving again a number 
between 0 and 2-rr. This addition of 2-rr causes a digit 

© Copr. 1949-1998 Hewlett-Packard Co.



to be lost,  which results in asymmetry such as 
cos(86Â°) Â£ cos(-86Â°). Newer calculators obviate this 
problem by scaling to a number between 0 and 77/4. 

Vector  Rotat ion 
An angle can be expressed as a vector having X 

and Y components and a resultant R (see Fig. 1). 
If R is the unit vector, then X=cos 9 and Y=sin 0. 
However, regardless of the length of R, Y/X = tan 0and 
X/Y=cot0.  This  holds  true for  al l  values  of  6  
from 0 to 277. Thus, if some way could be found 
to generate X and Y for a given 9, all the trigonometric 
functions could be found. 

In vector geometry a useful formula results when 
one rotates a vector through a given angle. Let 
us suppose we have a vector whose angle is 6\, 
and we know its components Xa and Yj (see Fig. 2). 
The X2 and Y2 that result when the vector is rotated 
an additional angle 02 are given by: 

X2 = Xa cos 62 - Ya sin 02 

Y2 = Y! cos 02 + Xa sin 02 

Dividing both sides of these equations by cos 02 
gives: 

X, 

cos 02 

C O S  0 2  

= X1- Yjtan 82 = X2' 

= Y! +X1tan02 = Y2' 

(1) 

Note that X2' and Y2', while not the true values of X2 
and Y2, both differ by the same factor, cos 02. Thus 
Y2'/X2' = Y2/X2. From Fig. 2 it is plain that the quo 
tient Y2'/X2' is equal to tan (0a+ 02). Thus the tan 
gent of a large angle can be found by manipulating 
smaJJer angles whose sum equals the large one. Re 
turning to equation 1 above, it can be seen that to 
generate X2' and Y2'f Xa and Yj need to be multiplied 

Fig. 2. 

by tan 02 and added or subtracted as needed. If 02 is 
chosen so that tan 02 is a simple power of 10 
(i.e., 1, 0.1, 0.01,...) then the multiplications simply 
amount to shifting X: and Yj. Thus to generate X2' 
and Y2', only a shift and an add or subtract are needed. 

Pseudo-Division 
The tangent of 0 is found as follows. First 0 is 

divided into a sum of smaller angles whose tangents 
are powers of 10. The angles are tan"1 (1) = 45Â°, 
tan"1 (0.1) = 5.7Â°, tan'1 (0.01) Â« 0.57Â°, tan'1 (0.001) 
=0.057Â°, tan'1 (0.0001)=0.0057Â°, and so on. 
This process is called pseudo-division. First, 45Â° is 
subtracted from 0 until overdraft, keeping track of 
the number of subtractions. The remainder is restored 
by adding 45Â°. Then 5.7Â° is repeatedly subtracted, again 
keeping track of the number of subtractions. This pro 
cess is repeated with smaller and smaller angles. 
Thus: 

+r 

Fig. 1. 

0 = q0 tan l (1) + qa tan"1 (0.1) +q2 tan"1 (0.01)... 

The coefficients qÂ¡ refer to the number of subtractions 
possible in each decade. Each qÂ¡ is equal to or less 
than 10, so it can be stored in a single four-bit digit. 

This process of pseudo-division is one reason that 
all the trigonometric functions are done in radians. 
For accuracy, tan'^lO"') needs to be expressed to 
ten digits. In degrees, these constants are random digits 
and require considerable ROM (read-only memory) 
space to store. However, in radians, they become, for 
the most part, nines followed by sixes. Because of this, 
they can be generated arithmetically, thus using 
fewer ROM states. Also, in radians, tan"1 (1) = 77/4, 
which is needed anyway to generate TT. The problem 
with using radians is that since 77 is an irrational num 
ber, scaling errors occur as discussed earlier. This 
means cardinal points do not give exact answers. For 
example, sin (720Â°) Â¿ O when calculated this way 
but rather 4xlO~9. See reference 3 for a discussion 
of this point. 

18 
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So far, a pseudo-quotient has been generated that 
represents the division of the given angle 6 into 
smaller angles whose tangents are powers of 10. In 
many HP calculators the pseudo-quotient is five 
hexadecimal digits long. Each digit represents one 
series of subtractions and is a number from 0 to 10. 
For example, if 6 were 359.9999Â°, the pseudo-quotient 
would  be  77877,  represent ing  6  =  7 tan~a( l )  
+ 7tan~a(0.1) + Stan-^O.Ol) + 7tan~1(0.001) 
+ 7tan~1(0.0001). There may also be a remainder r, 
which is the angle remaining after the previous par 
tial quotient subtractions have taken place. 

Tan 9 can now be found using the vector rotation 
process discussed earlier. 

Pseudo-Mult ipl ication 
To use equation 1 we need an initial Xl and Yv 

These correspond to the X and Y of the residual 
angle r discussed previously. This angle is small 
(less than 0.001Â°), and for small angles in radians, 
sin 6 = 6 (another reason to use radians instead of 
degrees). Thus, to good accuracy, the initial Ya can 
be set to the residual angle, and the initial Xa set to 1. 
Equation 1 can now be repeatedly applied, where 02 
is the angle whose tangent is 10"'. Each time equa 
tion 1 is applied, a new Xa and Ya are generated, i.e., 
X2' and Y2'. The number of times equation 1 is 
applied is determined by the count in the pseudo- 
quotient digit for that 6 . Thus if the original angle 
had a 3 in the pseudo-quotient digit corresponding to 
tan~a0.1, or 5.7Â°, equation 1 would be applied three 
times with Xa and Yl being shifted one place right 
for tan (tan~10.1) before the addition or subtraction. 
In this manner, new Xa and Yl are formed as the vec 
tor is rotated the amount corresponding to the count 
in the pseudo-quotient digits which, of course, sum 
to the original angle 6. 

Equation 1 shows that to generate X2 requires a 
shift of Yj and a subtraction from Xa. Likewise Y2 
requires a shift of X} and an addition to Yv To imple 
ment this would require either two extra registers to 
hold the shifted values of Xj and Ya, or else shifting 
one register twice and the other once. It would be 
desirable to shift only one register once. Happily, 
this is possible. Consider the following: Let Y = 123 
and X = 456. Suppose we want Y + (Xx 0.01). This can 
be obtained by keeping the decimal points in the 
same places and shifting X two places right. 

123 
+  4 . 5 6  

127.56 

12300 
456 

12756 

The digits in both answers are exactly the same. The 
only difference between the two is that the second 
answer is 100 times the correct value, which is the 
same value by which Y was multiplied before the 
addition. Thus to avoid shifting X, Y must be multi 
plied by 10'. 

Expanding this method to the problem at hand also 
helps us solve another problem, that of accuracy. 
During pseudo-division, the angle 6 is resolved until 
a small angle r is left as the original Y value. Since 
this is done in fixed point arithmetic, zero digits are 
generated following the decimal point (e.g., .00123). 

Since zero digits do not convey information except 
to indicate the decimal point, the remainder is shifted 
left one place (multiplied by 10) during each decade 
of pseudo-division. This preserves an extra digit of 
accuracy with each decade. The final remainder is 
equal to rxlO4 if the pseudo-quotient is five digits 
long. 

To demonstrate mathematically the implementa 
tion that requires only a single register shift, return 
to equation 1 and replace tan 62 by 10~'. This substi 
tution is legal because 62 = tan"1 (10~'), where j is 
the decade digit. 

X2' = X^ 
(2) 

Y2' = 

( 3 )  

Now suppose instead of shifting X two places right, 
we multiply Y by 100, shifting it two places left. 
What happens? 

Now let Z = Yj x 10', or Ya =ZxlO~Â¡. Substituting 
in equation 2, 

./\.i ~~ /\.i â€” /< X 1U 
1  1  

2  1  

Multiplying the second equation by 10' gives: 
Y2'xlO' = Z+X! 
The left-hand side (Y2'xlO') is in the correct form 

to be the new Z for the next iteration. Thus for each 
iteration within a decade: 

- A - 2  =  - A - i  Â ¿ t X l U  

Y2'xlO' = Z+Xj 
X2' becomes the new Xt 
Y2'xlO' becomes the new Z 

Since the shifted remainder (rxlO4) is desired as Z 
for the first iteration, the original j is 4. 

To implement equation 3, Xj and Z are stored in 
two registers. ZxlO~2'is formed and stored in a third 
register. Xa is added to Z to form the new Z. This 
leaves Xj undisturbed so that ZxlO"2' can be sub 
tracted from it to form the new X2'. 

This implementation saves extra shifts and in 
creases accuracy by removing leading zeros in Z. 
The only register shifted is Z. 

19 
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After equation 3 has been applied the number of 
times indicated by one pseudo-quotient digit, Z is 
shifted right one place, and a new pseudo-quotient 
digit is fetched. This in effect creates Y5 x 10', where j 
is one less than before. Again equation 3 is applied, 
and the process is repeated until all five pseudo- 
quotient digits have been exhausted. The result is an 
X and a Y that are proportional to the cosine and sine 
of the angle 6. Because the final j is zero, the final Y 
( = Z) is correctly normalized with respect to X. 

So far, then, an X and a Y have been generated by a 
pseudo-multiply operation consisting of shifts and 
additions. If tan 9 is required, Y/X is generated, which 
is the correct answer. For sin 6, Y/X is calculated, and 
for cos 0, X/Y is calculated. Then either X/Y or Y/X is 
operated on by the routine described at the beginning 
of this article. The only difference between the com 
putation for sin 0 and that for cos 6 is whether X and 
Y are exchanged. 

In summary, the computation of trigonometric 
functions proceeds as follows: 

1. Scale the input angle to a number in radians 
between 0 and 2rr. 

2. Using the pseudo-division process divide 
the scaled number into groups of selected 
smaller angles. 

3. With the pseudo-multiply process of equation 3 
applied once for each angle resulting from the 
division of the input argument, generate an X 
and a Y that are proportional to the sine and co 

sine of the input angle. 
4. With X and Y, compute the required function 

using elementary operations. 
5. Round and display the answer. 

The calculator is now ready for another operation.^ 
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Personal Calculator Algorithms III: 
Inverse Trigonometric Functions 
A deta i led  descr ip t ion  o f  the  a lgor i thms used in  
Hewle t t -Packard  hand-he ld  ca lcu la to rs  to  compute  
arc  s ine ,  a rc  cos ine,  and arc  tangent .  

by Wi l l iam E.  Egbert  

BEGINNING WITH THE HP-35,1'2 all HP personal 
calculators have used essentially the same al 

gorithms for computing complex mathematical func 
tions in their BCD (binary-coded decimal) micro 
processors. While improvements have been made in 
newer calculators,3 the changes have affected primarily 
special cases and not the fundamental algorithms. 

This article is the third of a series that examines 
these algorithms and their implementation. Each 
article presents in detail the methods used to imple 
ment a common mathematical function. For sim 
plicity, rigorous proofs are not given, and special 
cases other than those of particular interest are 
omitted. 

Although tailored for efficiency within the environ 
ment of a special-purpose BCD microprocessor, the 
basic mathematical equations and the techniques 
used to transform and implement them are applicable 
to a wide range of computing problems and devices. 

Inverse  Tr igonometr ic  Funct ions 
This article will discuss the method of generating 

sin"1, cos"1, and tan"1. An understanding of the 
trigonometric function algorithm is assumed. This 
was covered in the second article of this series and 
the detailed discussion will not be repeated here.4 

To minimize program length, the function tan-1A 
is always computed, regardless of the inverse trig- 
onometric function required. If sin-1A is desired, 
A/V 1-A2 is computed first, since 

sin A = tan - i  

For cos A, sin A is computed as above and then 
cos"1 A is calculated using 

cos"1 A = 7T/2 - sin"aA. 

Cos"1 is found in the range 0=Â£0=Â£7r and sin"1 and 
tan"1 are computed for the range -^12^6^17/2. The 
tan"1 routine solves only for angles between 0 
and 77/2, since -tan A = tan (-A). Thus A may be 

assumed to be positive and the sign of the input argu 
ment becomes the sign of the answer. All angles are 
calculated in radians and converted to degrees or 
grads if necessary. 

General  Algor i thm 
A vector rotation process similar to that used in the 

trigonometric routine is used in the inverse process 
as well. A vector expressed in its X and Y components 
can easily be rotated through certain specific angles 
using nothing more than shifts and adds of simple 
integers. In the algorithm for tan"1 A|, the input 
argument is | A | , or | tan 6 , where 6 is the unknown. 
Letting tan 6 = Ya/X1; |A| can be expressed as |A /I, 
where Y: = A| and Xl = 1. A vector rotation pro 
cess (see Fig. 1) is then used to rotate the vector clock 
wise through a series of successively smaller angles 
0Â¡, counting the number of rotations for each angle, 
until the Y2 component approaches zero. If qÂ¡ 
denotes the number of rotations for 8i then 

\6\ = q0 + ql6l +...+ qiflj +... 

This process is described in detail below. 

Vector  Rotat ion 
To initialize the algorithm, A and 1 are stored in 

fixed-point format in registers corresponding to Y-, 

Direction of  Rotat ion 

Fig.  1.  Vector  rotat ion.  
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and Xa. This is done in such a way as to preserve as 
many digits of A as possible when the exponent of A 
differs from zero. 

At this point the sign of A is saved and Ya = | A| . 
Now comes the vector rotation (see Fig. 1). If the vec 
tor R is rotated in a clockwise direction, Y2 becomes 
smaller and smaller until it passes zero and becomes 
negative. As soon as Y2 becomes negative, we know 
that we have rotated R just past the desired angle 0. 
Thus to find 6, R is simply rotated clockwise until 
Y2 becomes negative. The amount of rotation is re 
membered and is equal to the desired angle 0 = 
tan"1 A | . To rotate R, the following formula is used. 

x 
C O S 0  

2 = X-i + Y! tan 02 = X2' 

(11 
Y2 =  Y!  -Xj tan02  =  Y2 '  .  

metric routine. Thus: 

6 = q0 tan"1 (I) + qi tan"1 (0.1) 
+02 tan"1 (0.01) +...+r 

Each coefficient qÂ¡ refers to the count in a particular 
pseudo-quotient digit. 

The result of this summation process, also called 
pseudo-multiplication, is an angle 6 that is equal to 
tan"1 A , where A | is the input argument to the tan"1 
routine. At this point the original sign of A is appended 
to 6. For tan"1 this angle is normalized, converted 
to degrees or grads if necessary, and displayed. Re 
call that for sin"1, A/Vl-A2 was first generated. 
Thus for sin"1, the result of the tan"1 routine is again 
simply normalized, converted to degrees or grads if 
necessary, and displayed. For cos"1, the tan"1 routine 
returns s in"1.  Cos"1 is  then simply found as  

This equation is the same as equation 1 of the 
article on trigonometric functions,4 except that the 
plus and minus signs are exchanged because R is 
rotated in the opposite direction. As before, tan 02 is 
chosen such that the implementation requires a simple 
shift and add (tan 62 = 10"'). To find 6, R is initially 
rotated with tan 82 = 1 (02 = 45Â°). Y2' soon becomes 
negative and the number of successful rotations is 
stored as the first digit of what is known as the pseudo- 
quotient. Y2' is then restored to the last value it had 
before becoming negative and R is rotated again, this 
time through a smaller angle, i.e., tan 62 = 0.1 
(02 = 5.7Â°). This process is repeated with the angle of 
rotation becoming smaller and smaller until five 
pseudo-quotient digits have been generated. 

At the end of each series of rotations, Y2 is multi 
plied by 10 to preserve accuracy. 

Pseudo-Mult ipl ication 
It is now time to shift gears and add up all the small 

angles represented by the pseudo-quotient digits. 
There remains a residual angle ,r, represented by the 
final X2' and Y2'. Since the residual angle is small, 
we would like to say Y2' = sin r = r. However, 
this is true only if X2' = 1. Unfortunately, X2' in this 
case is the product of all the I/cos d terms result 
ing from several applications of equation 1. How 
ever,  Y2' is this same product t imes Y2. Thus 
Y2'/X2' = Y2/l. Therefore, the final Y2' is divided by 
the final X2' and the result is sin r, which for small 
angles in radians is approximately equal to r, the 
residual angle. 

With the residual angle as the first partial sum, 6 is 
generated by adding the angles represented by the 
digits of the pseudo-quotient. This is exactly the re 
verse of the pseudo-division operation in the trigono 

Summary  
In summary, the computation of inverse trigono 

metric functions proceeds as follows: 
1. Calculate A/V 1-A2 if the desired function is 

sm A or cos 1 A. 
2. Place A | and 1 in fixed-point format into ap 

propriate registers, while preserving the sign 
of A. 

3. Repeatedly rotate the vector with A = Y and 1 = X 
clockwise using equation 1 until Y approaches 
zero. The number of rotations and the amount 
of each rotation is stored as a pseudo-quotient 
along the way. 

4. Using the pseudo-multiplication process of 
equation 2, sum all of the angles used in the ro 
tation to form 1 0 1 . 

5. Append the proper sign to the answer and cal 
culate cos"1 A = 77/2 -sin"1 A if required. 

6. Convert to the selected angle mode, and round 
and display the answer. 

The calculator is now ready for another operation. - 
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Personal  Calculator  Algori thms IV 
Logari thmic Funct ions 
A deta i led descr ip t ion o f  the a lgor i thms used in  
Hewle t t -Packard  hand-he ld  ca lcu la tors  to  compute  
logarithms. 

by Wil l iam E.  Egbert  

BEGINNING WITH THE HP-35,1'2 all HP personal 
calculators have used essential ly the same al  

gorithms for computing complex mathematical func 
tions in their BCD (binary-coded decimal) micropro 
cessors .  While  improvements  have been made in  
n e w e r  c a l c u l a t o r s , 3  t h e  c h a n g e s  h a v e  a f f e c t e d  
pr imar i ly  specia l  cases  and not  the  fundamenta l  
algorithms. 

This article is the fourth in a series that examines 
these algorithms and their implementation.4'516 Each 
article presents in detail the methods used to imple 
ment a common mathematical function. For simplic 
ity, rigorous proofs are not given and special cases 
other than those of particular interest are omitted. 

Al though ta i lored  for  e f f ic iency wi th in  the  en  
vironment of a special-purpose BCD microprocessor, 
the basic mathematical equations and the techniques 
used to transform and implement them are applicable 
to a wide range of computing problems and devices. 

The Logar i thmic Funct ion Algor i thm 
This article will discuss the method of generating 

the ln(x) and Iog10(x) functions. To minimize pro 
gram length, a single function, ln(x), is always com 
puted first. Once ln(x) is calculated, Iog10(x) is found 
by the formula 

l n ( x )  
Iog1 

ln(x) is generated using an approximation process 
much the same as the one used to compute trigono 
metric functions.5 The fundamental equation used in 
this case is the logarithmic property that 

In anj = InfaJ + In(a2) 

+ln(an) 

This algorithm simply transforms the input number 
x into a product of several terms whose logarithms 
are known. The sum of the logarithms of these various 
partial-product terms forms ln(x). 

Exponent 
Numbers in HP calculators are stored in scientific 

no ta t ion  in  the  form x  =  M-10K.  M i s  a  number  
whose magnitude is between 1.00 and 9.999999999 
and K is  an  in teger  be tween -99  and +99.  Using  
equation 1, it is easy to see that 

ln(M-10K) = ln(M) + ln(10K) 

At this point, another logarithmic property becomes 
useful, which is 

ln(Ab) = b-ln(A). 

Using this relationship 

ln(M-10K) = ln(M) + K-ln(lO). 

Thus to find the logarithm of a number in scientific 
notation, one calculates the logarithm of the mantissa 
of the number and adds that to the exponent times 

Mantissa 
The problem of f inding ln(x) is  now reduced to 

finding the logarithm of its mantissa M. 
Let P = 1/M. Then 

ln(PM) = ln(P) + ln(M) 
ln(l) = ln(P) + ln(M) 

0 = ln(P) + ln(M) 
- l n ( P )  =  l n ( M )  ( 2 )  

This may appear to be a useless exercise since at 
first glance -ln(P) seems to be as hard to compute as 

Suppose, however, that a new number Pn is formed 
by multiplying P by r which is a small number close 
to 1. 

P n = P - r  

In addition, let Pn be defined as a product of powers 

2 9  
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of numbers aÂ¡ whose natural logarithms are known. 

P â € ”  a  K g  K i  K ;  .  .  â € ž  K n  
n  -  a O  a l  â € ¢ â € ¢ â € ¢  a j  '  â € ¢ â € ¢ â € ¢  a n  

Thus 

P = Pn/r 

ln(P) = ln(PJ - ln(r) 

Using equation 2 

ln(M) = ln(r) - ln(PJ 

Finally 

ln(M) = ln(r) - (K0ln(a0j + K^nfaJ + ... + Kjln(aj) 
+ ... + Knln(an)) 

Thus to find ln(M) one simply multiplies M by the 
carefully selected numbers aÂ¡ so that the product 
MPn is forced to approach 1. If all the logarithms of 
aÂ¡ are added up along the way to form ln(Pn) then 
ln(M) is the logarithm of the remainder r minus this 
sum. Notice that the remainder r is nothing more than 
the final product MPn. 

Implementat ion 
How is this algorithm implemented in a special- 

purpose microprocessor? First of all, the terms of Pn 
were chosen to reduce computation time and mini 
mize the amount of ROM (read-only memory) needed 
to store aÂ¡ and its logarithm. The numbers chosen for 
the aÂ¡ terms are of the form aÂ¡ = (1 + 10"'), where 
j = 0-4 (see Table 1). 

Table 1 Values of aÂ¡ Terms 

0 
1 
2 

"J 

2 
1.1 
1.01 
1.001 
1.0001 

In aÂ¡ 

0.6931 
0.09531 
0 . 0 0 9 9 5 0  
0 . 0 0 0 9 9 9 5  
0 . 0 0 0 0 9 9 9 9 5  

To achieve high accuracy using relatively few aÂ¡ 
t e rms ,  an  app rox ima t ion  i s  u sed  when  r  =  MPn  
approaches 1. For numbers close to 1, ln(r) 
This yields 

râ€” 1. 

In M = (r-l) - Â£ KÂ¡ln(aÂ¡ ( 3 ]  
i=o 

between 0 and 1 if the product PnM is to approach 1. 
As M is defined to be between 1 and 10, a new quan 
tity A is formed by dividing M by 10. A is now in the 
proper range (0.1=sA<l) so that using the aÂ¡ terms as 
def ined  wi l l  cause  the  product  APn to  approach  
1 without exceeding 1. 

The product Pn can now be formally defined as a 
series, where j goes from 0 to n. Each partial product 
APÂ¡ has the form 

A-Pj = A-Pj_a(l+10-J) ', j = 0,1, 2,..., n 

P_! = 1, and Kj is the largest integer such that PÂ¡ <1. 
In practice, each A-PÂ¡ is formed by multiplying 

A-Pj.j by (1 + 10~'), KJ times. There is one inter 
mediate product, TÂ¡, for each count of KÂ¡, as shown 
below. 

TO = A(l 10" 

! = A(l + 10" 

TKo =A(1 

KO+I 

Tm = 

m = 

TÂ¡ = 

10 -Â°)KÂ°(1 

...(1 = APn 

+  K 

for some j ( 4 )  

Since all of the aÂ¡ terms are larger than 1 , M must be 

Notice that each multiplication of the intermediate 
product TÂ¡_j by aÂ¡ simply amounts to shifting TÂ¡_! 
right the number of digits denoted by the current 
value of j and adding the shifted value to the original 
TÃ-I- This very efficient multiplication method is 
similar to the pseudo-multiplication of the trigono 
metric algorithm.5 

An Example  
A numeric example to illustrate this process is now 

in order. Let A = 0.155. To compute ln(A), A must be 
multiplied by factors of aÂ¡ until APn approaches 1. 
To begin the process A = 0.155 is multiplied by a0 = 2 
to form the intermediate product T0 = 0.31. Another 
multiplication by a0 gives Ta = 0.62. A third multi 
plication by 2 results in 1.24, which is larger than 1. 
Thus K0 = 2 and AP0 = 0.62. The process is con 
tinued in Table 2. 

3 0  
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Table 2 Generation of ln(0.155) 

2 
2 

0.155 

0.62 

T 

0.155 
0.31 
0.62 

ln(aÂ¡) 

0.6931 
0.6931 

0.9996 = A-P4 = r 1.8638 = Â£ ln(aj) 

*Another x2 would result in AP3 >1. Thus aÂ¡ is 
changed to 1.1. 

**The 1.01 constant is skipped entirely. 

Applying the values found in Table 2 to equation 3 
results in 

ln(0.155) = (0.9996 - 1) -1.8638 
= -1.8642 

This answer approximates very closely the correct 
10-digit answer of -1.864330162. 

This example demonstrates the simplicity of this 
method of logarithm generation. All that is required 
is a multiplication (shift and add) and a test for 1. 
To implement this process using only three working 
registers, a pseudo-quotient similar to the one gen 
erated in the trigonometric algorithm is formed.5 Each 
digit represents the number of successful multipli 
cations by a particular aÂ¡. For the preceding example, 
the pseudo-quotient would be 

2 5 0 1 1  
t  t  t  t  T  

j  =  O  j  =  1  j  =  2  j  =  3  j  =  4  

With -ln(r) = (r - 1) as the first term, the appro 
priate logarithms of (aÂ¡) are then summed according 
to the count in the pseudo-quotient digit correspond 
ing to the proper aÂ¡. The final sum is -ln(A). 

At this point one more transformation is needed to 
optimize this algorithm perfectly to the micropro 

cessor's capabilities. Recall that the factors aÂ¡ were 
chosen to force the product PnA towards 1. Suppose 
Bj = TJ -1. Forcing Bm towards 0 causes PnA to be 
forced to 1. Substituting BÂ¡ into (4) and simplifying 
yields 

(B; + l) =(Bi_1+l)(14-10~i] for some j 

B ;  +  l  =  8 ^ ( 1  +  1 0  

B =  10~')4-10 

Multiplying through by -1 results in the following 
equation, which is equivalent to equation 4. 

( 5 )  

This expression is now in a very useful form, since 
the aÂ¡ term is the same as before, but the zero test is 
performed automatically when the 10 ' subtraction 
is done. A test for a borrow is all that is required. An 
additional benefit of this transformation is that accu 
racy can be increased by shifting -BÂ¡ left one digit for 
each 3j term after it has been applied the maximum 
number of times possible. This increases accuracy by 
replacing zeros generated as BÂ¡ approaches zero with 
significant digits that otherwise would have been lost 
out of the right end of the register. This shifting, 
which is equivalent to a multiplication by 10', gives 
yet another benefit. Multiplying equation 5 by 10' and 
simplifying, 

-BÂ¡xlO' = (-Bj.J 

-BjXlO' = -Bj.j  

>)-10~>)xlO' 

-1 forsomej (6)  

Notice that the 10"' subtraction reduces to a simple 
-1 regardless of the value of j. The formation of the 
initial -B0 is also easy since -B0 = -(A - 1) = 1 - A. 
This is formed by taking the 10's complement of M 
(the original mantissa), creating 10 -- M. A right 
shift divides this by 10 to give 1 - M/10 = 1 - A = 
-B0. A final, almost incredible, benefit of the BÂ¡ 
transformation is that the final remainder -Bm x 
10' is in the exact form required to be the first term of 
the summation process of equation 4 without further 
modification. The correct ln(aÂ¡) constants are added 
directly to -Bm x 10', shifting the sum right one 
digit after each pseudo-quotient digit to preserve 
accuracy and restore the proper normalized form dis 
rupted by equation 6. The result is -ln(A). 

Finally, the required ln(M) is easily found by sub 
tracting the computed result -ln(A) from ln(10). 
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- (-ln(A)) = ln(M/10) 
= ln(10-M/10) 
= ln(M) 

Once ln(M) is computed, K-ln(lO) is added as pre 
viously discussed to form ln(xj. At this point log(x) 
can be generated by dividing ln(x) by ln(10). 

S u m m a r y  
In summary, the compulation of logarithmic func 

tions proceeds as follows: 
1. Find the logarithm of 10K using K -In (10). 
2.  Transform the input mantissa to the proper 

form required by â€” B0. 
3. Apply equation 6 repeatedly and form a pseudo- 

quotient representing the number of successful 
multiplications by each aÂ¡. 

4. Form -ln(A) by summing the ln(PÂ¡) constants 
corresponding to the pseudo-quotient digits with 
the remainder -Bm x 10' as the first term in the 
series. 

5. Find ln(x) or log(x) using simple arithmetic 
operations. 

6. Round and display the answer. 
The calculator is now ready for another operation. S 

. 
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