
Personal  Calculator  Algori thms I I  
Tr igonometr ic  Funct ions 
A deta i led  exp lanat ion  o f  the  a lgor i thms used by  HP 
hand-he ld  ca lcu la to rs  to  compute  s ine ,  cos ine ,  and  
tangent. 

by Wi l l iam E.  Egbert  

BEGINNING WITH THE HP-35,1'2 all HP personal 
calculators have used essentially the same al 

gorithms for computing complex mathematical func 
tions in their BCD (binary-coded decimal) micro 
processors. While improvements have been made in 
newer calculators,3 the changes have affected primarily 
special cases and not the fundamental algorithms. 

This article is the second of a series that examines 
these algorithms and their implementation. Each 
article will present in detail the methods used to 
implement a common mathematical function. For 
simplicity, rigorous proofs will not be given, and 
special cases other than those of particular interest 
will be omitted. 

Although tailored for efficiency within the environ 
ment of a special-purpose BCD microprocessor, the 
basic mathematical equations and the techniques 
used to transform and implement them are applicable 
to a wide range of computing problems and devices. 

The Tr igonometr ic  Funct ion Algor i thm 
This article will discuss the method of generating 

sine, cosine, and tangent. To minimize program 
length, a single function, tan B, is generated first. 
Once tan 6 is calculated, sin 6 is found by the formula 

sin 6 = 
Â±tanfl 

Vl+tan20 

It turns out (as will be explained later) that cot 6 can 
easily be generated while generating tan 6. Then cos 6 
is calculated using the formula 

cos 0 - 
Â±cot0 

Vl+cot20 

It can be seen that these formulas are identical, ex 
cept for the contangent replacing the tangent. Thus 
the same routine can solve for either sine or cosine 
depending on whether the argument is tangent or 
cotangent. 

Scaling 
Since 6 and 0+n(360Â°) yield identical trigonometric 

functions, every angular argument is resolved to a 
positive angle between 0Â° and 360Â°. For reasons to be 
explained later, all calculations assume angles ex 
pressed in radians. An angle in degrees is first con 
verted to radians by: 

0rad = 0deg X TT/180. 

Angles expressed in grads are also converted using 
the appropriate scale factor. 

Once 6 is in radians, 2-rr is subtracted repeatedly 
from 1 8 1 until the absolute remainder is between 0 
and 2 77. For large angles this would take a long time. 
In such cases 27rxl0n can be subtracted in a process 
similar to division. Suppose an angle 6 is expressed 
in scientific notation (e.g., 8.5X 10s). 2-rr x 10", or 6.28... 
xlOn, is then repeatedly subtracted from 6 until 
the result becomes negative (underflow). Thus 6.28... 
x 10s is subtracted from 8.5 x 10s twice and underflow 
occurs. 6. 28... x 10s is then added to the negative re 
mainder to give a number between 0 and ITT x 10s, in 
this case 2.2X105. The remainder is expressed now as 
22xl04 and the process is repeated, this time sub 
tracting 277X104. With this method, large angles are 
quickly resolved. 

The problem with this scaling process is that in cur 
rent computers numbers can be expressed only to a 
limited number of digits, so 2-77 and therefore ZTTX 10n 
cannot be expressed exactly. Error creeps in with 
each shift of the remainder. Thus, the larger the angle, 
the fewer significant digits remain in the scaled re 
sult. A rule of thumb for rough estimates is that for 
each count in the exponent, one digit of accuracy 
will be lost. For example, 5 x 10s when scaled will 
lose five digits of accuracy. 

A negative argument is treated the same as a posi 
tive number until the end, when the scaling routine 
returns a number between 0 and -2-7T. Then 2rr is 
added to the negative result, giving again a number 
between 0 and 2-rr. This addition of 2-rr causes a digit 
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to be lost,  which results in asymmetry such as 
cos(86Â°) Â£ cos(-86Â°). Newer calculators obviate this 
problem by scaling to a number between 0 and 77/4. 

Vector  Rotat ion 
An angle can be expressed as a vector having X 

and Y components and a resultant R (see Fig. 1). 
If R is the unit vector, then X=cos 9 and Y=sin 0. 
However, regardless of the length of R, Y/X = tan 0and 
X/Y=cot0.  This  holds  true for  al l  values  of  6  
from 0 to 277. Thus, if some way could be found 
to generate X and Y for a given 9, all the trigonometric 
functions could be found. 

In vector geometry a useful formula results when 
one rotates a vector through a given angle. Let 
us suppose we have a vector whose angle is 6\, 
and we know its components Xa and Yj (see Fig. 2). 
The X2 and Y2 that result when the vector is rotated 
an additional angle 02 are given by: 

X2 = Xa cos 62 - Ya sin 02 

Y2 = Y! cos 02 + Xa sin 02 

Dividing both sides of these equations by cos 02 
gives: 

X, 

cos 02 

C O S  0 2  

= X1- Yjtan 82 = X2' 

= Y! +X1tan02 = Y2' 

(1) 

Note that X2' and Y2', while not the true values of X2 
and Y2, both differ by the same factor, cos 02. Thus 
Y2'/X2' = Y2/X2. From Fig. 2 it is plain that the quo 
tient Y2'/X2' is equal to tan (0a+ 02). Thus the tan 
gent of a large angle can be found by manipulating 
smaJJer angles whose sum equals the large one. Re 
turning to equation 1 above, it can be seen that to 
generate X2' and Y2'f Xa and Yj need to be multiplied 

Fig. 2. 

by tan 02 and added or subtracted as needed. If 02 is 
chosen so that tan 02 is a simple power of 10 
(i.e., 1, 0.1, 0.01,...) then the multiplications simply 
amount to shifting X: and Yj. Thus to generate X2' 
and Y2', only a shift and an add or subtract are needed. 

Pseudo-Division 
The tangent of 0 is found as follows. First 0 is 

divided into a sum of smaller angles whose tangents 
are powers of 10. The angles are tan"1 (1) = 45Â°, 
tan"1 (0.1) = 5.7Â°, tan'1 (0.01) Â« 0.57Â°, tan'1 (0.001) 
=0.057Â°, tan'1 (0.0001)=0.0057Â°, and so on. 
This process is called pseudo-division. First, 45Â° is 
subtracted from 0 until overdraft, keeping track of 
the number of subtractions. The remainder is restored 
by adding 45Â°. Then 5.7Â° is repeatedly subtracted, again 
keeping track of the number of subtractions. This pro 
cess is repeated with smaller and smaller angles. 
Thus: 

+r 

Fig. 1. 

0 = q0 tan l (1) + qa tan"1 (0.1) +q2 tan"1 (0.01)... 

The coefficients qÂ¡ refer to the number of subtractions 
possible in each decade. Each qÂ¡ is equal to or less 
than 10, so it can be stored in a single four-bit digit. 

This process of pseudo-division is one reason that 
all the trigonometric functions are done in radians. 
For accuracy, tan'^lO"') needs to be expressed to 
ten digits. In degrees, these constants are random digits 
and require considerable ROM (read-only memory) 
space to store. However, in radians, they become, for 
the most part, nines followed by sixes. Because of this, 
they can be generated arithmetically, thus using 
fewer ROM states. Also, in radians, tan"1 (1) = 77/4, 
which is needed anyway to generate TT. The problem 
with using radians is that since 77 is an irrational num 
ber, scaling errors occur as discussed earlier. This 
means cardinal points do not give exact answers. For 
example, sin (720Â°) Â¿ O when calculated this way 
but rather 4xlO~9. See reference 3 for a discussion 
of this point. 
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So far, a pseudo-quotient has been generated that 
represents the division of the given angle 6 into 
smaller angles whose tangents are powers of 10. In 
many HP calculators the pseudo-quotient is five 
hexadecimal digits long. Each digit represents one 
series of subtractions and is a number from 0 to 10. 
For example, if 6 were 359.9999Â°, the pseudo-quotient 
would  be  77877,  represent ing  6  =  7 tan~a( l )  
+ 7tan~a(0.1) + Stan-^O.Ol) + 7tan~1(0.001) 
+ 7tan~1(0.0001). There may also be a remainder r, 
which is the angle remaining after the previous par 
tial quotient subtractions have taken place. 

Tan 9 can now be found using the vector rotation 
process discussed earlier. 

Pseudo-Mult ipl ication 
To use equation 1 we need an initial Xl and Yv 

These correspond to the X and Y of the residual 
angle r discussed previously. This angle is small 
(less than 0.001Â°), and for small angles in radians, 
sin 6 = 6 (another reason to use radians instead of 
degrees). Thus, to good accuracy, the initial Ya can 
be set to the residual angle, and the initial Xa set to 1. 
Equation 1 can now be repeatedly applied, where 02 
is the angle whose tangent is 10"'. Each time equa 
tion 1 is applied, a new Xa and Ya are generated, i.e., 
X2' and Y2'. The number of times equation 1 is 
applied is determined by the count in the pseudo- 
quotient digit for that 6 . Thus if the original angle 
had a 3 in the pseudo-quotient digit corresponding to 
tan~a0.1, or 5.7Â°, equation 1 would be applied three 
times with Xa and Yl being shifted one place right 
for tan (tan~10.1) before the addition or subtraction. 
In this manner, new Xa and Yl are formed as the vec 
tor is rotated the amount corresponding to the count 
in the pseudo-quotient digits which, of course, sum 
to the original angle 6. 

Equation 1 shows that to generate X2 requires a 
shift of Yj and a subtraction from Xa. Likewise Y2 
requires a shift of X} and an addition to Yv To imple 
ment this would require either two extra registers to 
hold the shifted values of Xj and Ya, or else shifting 
one register twice and the other once. It would be 
desirable to shift only one register once. Happily, 
this is possible. Consider the following: Let Y = 123 
and X = 456. Suppose we want Y + (Xx 0.01). This can 
be obtained by keeping the decimal points in the 
same places and shifting X two places right. 

123 
+  4 . 5 6  

127.56 

12300 
456 

12756 

The digits in both answers are exactly the same. The 
only difference between the two is that the second 
answer is 100 times the correct value, which is the 
same value by which Y was multiplied before the 
addition. Thus to avoid shifting X, Y must be multi 
plied by 10'. 

Expanding this method to the problem at hand also 
helps us solve another problem, that of accuracy. 
During pseudo-division, the angle 6 is resolved until 
a small angle r is left as the original Y value. Since 
this is done in fixed point arithmetic, zero digits are 
generated following the decimal point (e.g., .00123). 

Since zero digits do not convey information except 
to indicate the decimal point, the remainder is shifted 
left one place (multiplied by 10) during each decade 
of pseudo-division. This preserves an extra digit of 
accuracy with each decade. The final remainder is 
equal to rxlO4 if the pseudo-quotient is five digits 
long. 

To demonstrate mathematically the implementa 
tion that requires only a single register shift, return 
to equation 1 and replace tan 62 by 10~'. This substi 
tution is legal because 62 = tan"1 (10~'), where j is 
the decade digit. 

X2' = X^ 
(2) 

Y2' = 

( 3 )  

Now suppose instead of shifting X two places right, 
we multiply Y by 100, shifting it two places left. 
What happens? 

Now let Z = Yj x 10', or Ya =ZxlO~Â¡. Substituting 
in equation 2, 

./\.i ~~ /\.i â€” /< X 1U 
1  1  

2  1  

Multiplying the second equation by 10' gives: 
Y2'xlO' = Z+X! 
The left-hand side (Y2'xlO') is in the correct form 

to be the new Z for the next iteration. Thus for each 
iteration within a decade: 

- A - 2  =  - A - i  Â ¿ t X l U  

Y2'xlO' = Z+Xj 
X2' becomes the new Xt 
Y2'xlO' becomes the new Z 

Since the shifted remainder (rxlO4) is desired as Z 
for the first iteration, the original j is 4. 

To implement equation 3, Xj and Z are stored in 
two registers. ZxlO~2'is formed and stored in a third 
register. Xa is added to Z to form the new Z. This 
leaves Xj undisturbed so that ZxlO"2' can be sub 
tracted from it to form the new X2'. 

This implementation saves extra shifts and in 
creases accuracy by removing leading zeros in Z. 
The only register shifted is Z. 
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After equation 3 has been applied the number of 
times indicated by one pseudo-quotient digit, Z is 
shifted right one place, and a new pseudo-quotient 
digit is fetched. This in effect creates Y5 x 10', where j 
is one less than before. Again equation 3 is applied, 
and the process is repeated until all five pseudo- 
quotient digits have been exhausted. The result is an 
X and a Y that are proportional to the cosine and sine 
of the angle 6. Because the final j is zero, the final Y 
( = Z) is correctly normalized with respect to X. 

So far, then, an X and a Y have been generated by a 
pseudo-multiply operation consisting of shifts and 
additions. If tan 9 is required, Y/X is generated, which 
is the correct answer. For sin 6, Y/X is calculated, and 
for cos 0, X/Y is calculated. Then either X/Y or Y/X is 
operated on by the routine described at the beginning 
of this article. The only difference between the com 
putation for sin 0 and that for cos 6 is whether X and 
Y are exchanged. 

In summary, the computation of trigonometric 
functions proceeds as follows: 

1. Scale the input angle to a number in radians 
between 0 and 2rr. 

2. Using the pseudo-division process divide 
the scaled number into groups of selected 
smaller angles. 

3. With the pseudo-multiply process of equation 3 
applied once for each angle resulting from the 
division of the input argument, generate an X 
and a Y that are proportional to the sine and co 

sine of the input angle. 
4. With X and Y, compute the required function 

using elementary operations. 
5. Round and display the answer. 

The calculator is now ready for another operation.^ 
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