
The AMGA Metadata Service

B. Koblitz (birger.koblitz@cern.ch)
CERN, Switzerland

N. Santos (nuno.santos@cern.ch)
EPFL, Switzerland

V. Pose (vpose@cern.ch)
JINR, Russia

Abstract. We present the AMGA Metadata Catalogue, which was developed as
part of the EGEE (Enabling Grids for EsciencE) project's gLite Grid Middleware.
AMGA provides access to metadata for �les stored on the Grid, as well as a sim-
pli�ed general access to relational data stored in database systems. Design and
implementation of AMGA was done in close collaboration with the very diverse
EGEE user community to make sure all functionality, performance and security
requirements were met. In particular, AMGA targets the needs of the High Energy
Physics community to rapidly access very large amounts of metadata, as well as the
needs for security of the Biomedical community. AMGA therefore tightly integrates
�ne grained access control making use of a Virtual Organisation management sys-
tem. In addition, it o�ers advanced federation and replication features to increase
dependability, performance and data security.
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1. Introduction

Many advances in science today depend on the capability of researchers
to share vast amounts of data and collaboratively use computing re-
sources like networks, storage space or computer nodes. To give an
example, in high-energy physics (HEP), the experiments at the Large
Hadron Collider (LHC) will produce data in the order of tens of petabytes
annually when the machine will be commissioned in 2007 [?]. Collab-
orations of thousands of researchers from institutes around the globe
will need to access this data. Grid technologies [?] provide the means
to e�ciently share resources in such huge distributed environments.

As part of the Grid Middleware, scalable and fault-tolerant Meta-
data Services are essential for Data Grids, primarily as a means of
describing and discovering data stored in �les but also as a simpli-
�ed, Grid-enabled, relational database service. In this paper we present
the AMGA (ARDA1 Metadata Grid Application) metadata catalogue,

1 A Realisation of Distributed Analysis for LHC:
http://lcg.web.cern.ch/lcg/activities/arda/arda.html
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which was developed as part of the EGEE project's gLite Middleware.
AMGA implements the EGEE metadata interface, which was de�ned
in close collaboration with the di�erent EGEE user communities and
which has been adopted also by other Grid metadata services [?]. The
main features of the AMGA catalogue are high performance, tight in-
tegration into the Virtual Organisation (VO) management system of
the EGEE Grid, which works with X509 Grid certi�cates, �ne-grained
access control and advanced replication features. During the implemen-
tation of AMGA a continuous stream of feedback from early adopters
assured that the performance needs of the users (in particular of the
HEP community) were ful�lled while meeting the strict security needs
of the biomedical community.

In this paper we will �rst present an overview of the requirements
collected from the EGEE user community (Section 2), before describing
the EGEE metadata interface (Section 3) and the AMGA implemen-
tation (Section 4). The emphasis is on the replication and distribution
mechanisms of AMGA that were designed to provide the scalability and
fault-tolerance required for operation in a Grid environment. Being part
of the middleware, these mechanisms provide database independent
replication, especially suited for heterogeneous Grids. We show how
asynchronous replication is used for scalability on wide-area networks
and for better fault tolerance. Our implementation supports updates on
the primary copy, with replicas being read-only. For �exibility, AMGA
supports partial replication and federation of independent catalogues.

Section 5 gives an overview of the performance characteristics of
AMGA, which is one of the main requirements on a metadata cata-
logue. In Section 6 we describe several EGEE Grid applications that
are currently using AMGA, and in Section 7 we discuss related work.

2. EGEE Requirements for a Metadata Catalogue

The work presented here is motivated by the use cases we have iden-
ti�ed while working with the EGEE user community. This is a large
and active community, as shown by the number of applications being
ported to the EGEE grid Middleware. These applications vary widely in
requirements, complexity, size and maturity, but it is possible to de�ne
general trends, and one of such trends is that Metadata Catalogues are
essential for most of them. Here, we will describe the requirements of
the two main EGEE user communities, HEP [?] and Biomed [?], which
were the main motivation for our work. They are examples of two very
di�erent classes of use cases, with most of the use cases of other EGEE
applications falling somewhere in between.
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2.1. High-Energy Physics Community

HEP applications use a large number of �les, in the order of hundreds
of millions, with metadata associated to them. After production, the
�les and the metadata are usually read-only for users. The write rate
is not expected to exceed a few entries per second [?]. The read rate
is harder to predict, since it depends on the behaviour of thousands
of physicists across many grid sites, but is expected to be one or two
orders of magnitude larger than the write rate, with the possibility of
usage spikes. Apart from �le-related metadata HEP analysis often also
needs additional structured relational data describing the calibration of
the experiment or its condition. This application speci�c data is usually
stored on relational databases that must be made available on the Grid.

HEP users are spread geographically across around two hundred
sites, requiring special attention to deal with high-latency connections.
Security is not a primary concern, as the metadata is not sensitive.
Authentication is required to prevent denial of service attacks and
for tracking users, but data is commonly sent as clear-text. For this
class of applications, the main concerns are scalability, performance
and fault-tolerance.

2.2. Biomed

Biomed applications manage a much smaller amount of metadata and
have relatively low update and read rates. On the other hand, they have
very strict requirements on the privacy and safety of data (e.g. medical
images). The metadata itself may be even more sensitive, since it often
includes patient names or speci�cs of their illnesses. This metadata is
generated in di�erent locations (hospitals or laboratories). Due to its
sensitivity, it must be handled with extreme care.

The metadata service therefore should have �ne-grained access re-
strictions based on Access Control Lists (ACLs) which allows to restrict
e.g. reading patient data to only a few medical practitioners. While
most other applications usually will be able to use only per-schema
access permissions (which is easier to manage and has a much smaller
performance impact), medical applications will need per-entry access
permissions in a schema.

2.3. Requirement Analysis

The descriptions above suggest two classes of use cases: �le metadata
and application-speci�c structured data. The need for a catalogue for
�le metadata arises primarily from the vast number of �les stored on a
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data grid, which users must be able to search for relevant �les. A cata-
logue for structured relational application metadata becomes necessary
on the Grid since direct access to database systems is not viable in such
an environment, since traditional databases are not grid-aware, mainly
in what concerns authentication and access control.

The two classes of applications are similar enough so that a single
generic metadata catalogue can address then both. As basic require-
ments, the catalogue must support insertion, deletion, querying and
updating of data records similar to the data manipulation in relational
database systems. It should describe data in terms of a schema provided
by users. And since no schema would serve the needs of all the applica-
tion domains, the catalogue must support �exible and dynamic schemas,
giving users the possibility of changing it at run-time. The service must
also allow metadata to be structured as a hierarchy of logical collections,
so that related metadata can be grouped together and isolated from
other metadata. To deal with large number of entries (several millions),
it must be designed with scalability in mind. The support for collections
and hierarchies is a good �rst step in this direction, with replication
being the next logical step.

Security is one of the major requirements, especially for the Biomed
community. Authentication and access control are essential features.
To integrate with the EGEE grid Middleware, the security of the cat-
alogue should be based on X509 Grid certi�cates for authentication
and on the Virtual Organisation Management System (VOMS)[?] for
authorisation. Virtual Organisations (VO), i.e., groups of individuals
and institutions collaborating on the Grid towards a common purpose,
can set up membership or special roles for their members on their VOMS
servers. Users within a VO ask the VOMS upon signing on to the Grid
to create a short-term X509 certi�cate which contains a requested role
or the group membership as additional attributes. The metadata service
needs to extract such attributes from a certi�cate presented by a user
upon login and use that information for authorisation purposes. Some
communities like Biomed require �ne-grained access control to their
data, i.e. to individual items as opposed to full sets.

To cope with the heterogeneity of the Grid environment, a metadata
catalogue service should support several di�erent database back-ends,
to better adapt to what is deployed on each grid site. The LHC comput-
ing grid (LCG) currently consists of about 200 participating sites and
deployment of the middleware claims a large amount of the available
manpower. Since many middleware services (e.g. the File Catalogue,
batch system, �le transfer system) anyway require database back-ends,
it must be possible for a site to consolidate the number of di�erent
database systems deployed and use the one they have the most experi-
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Figure 1. Replication/Distribution models.

ence with. On the other hand, the applications targeted by LCG have
very di�erent requirements on the availability and scalability of the
metadata service, which may require only a �le-based database linked
into the service but might also demand a load-balanced multi-server
installation of Oracle.

2.4. Replication Requirements

Replication is required by the HEP community to provide the scala-
bility and fault-tolerance required to support over 200 geographically
distributed sites. Still in the case of HEP applications, writes can easily
be performed in one or a few central catalogues, but reads are more
frequent and must be o�oaded to read-only replicas that are closer to
the users. Partial replication is also an important feature, as replicating
only the data needed by local users can often result in an order of
magnitude decrease in the amount of replicated data.

For the Biomed community replicating the data either to a central
catalogue or to other replicas would increase the exposure to attacks.
A better solution is the federation of individual catalogues into a single
virtual catalogue, allowing data to remain secure at its site of origin,
while providing transparent access to authorised users regardless of
their location. While users see a global storage of metadata, access to
the metadata stored on individual sites can be regulated by that site
according to local privacy laws.
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Figure 1 describes the main usage scenarios we have identi�ed. Full
and partial replication correspond to the HEP application case, where
data is generated centrally and replicated for fault-tolerance and scala-
bility. Partial replication is necessary for situations where remote users
are only interested in part of the Metadata. This scenario can be im-
plemented either by replicating part of the directory hierarchy, or by
using a �lter to specify an arbitrary subset of the data. The former
requires a hierarchical structure of metadata schemas to replicate only
the sub-trees required at the slave. Filtering is more generic and �exible,
allowing the slave to specify arbitrary conditions that will be used by the
master to select the logs shipped to the slave. In fact, partial replication
of sub-trees is a special case of �ltering, where the �lter matches only
a sub-tree.

Federation corresponds to the Biomed use case, where data gener-
ated in di�erent Grid sites is federated as a single distributed catalogue
consisting of several physical catalogues. In this case, the remote nodes
can be either physical or virtual replicas. In the �rst case the data is
copied to the replica, while in the second no data is copied; instead the
metadata commands executed on the slave are redirected to the master.
Federation is described in more detail later in this paper together with
the replication architecture of AMGA.

3. The gLite Metadata Interface

In this section we provide an overview of the interface. The detailed
description can be found in [?].

Metadata is de�ned within the gLite metadata interface in terms
of schemas, entries and attributes. Entry are the most basic elements
managed by the catalogue, representing the real world entities described
in the catalogue. Schemas are collections of entries and may contain
other schemas. The AMGA implementation organises schemas hierar-
chically, like directories in a �le system, with entries playing the role
of �les. A schema has a list of attributes, which have a storage type
and a unique name within each schema. Entries assign to each of the
attributes of their schema a value, which can also be NULL. In a typical
implementation of the interface, on the database back-end, schemas will
correspond to tables, attributes to columns of these tables, and entries
to rows.

The view taken by the gLite Interface is that a Metadata Service
should be generic, in order to allow its use in as many applications as
possible. Therefore, it makes no assumptions on the classes of entries
that are to be stored on the metadata service, and does not provide
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any prede�ned schemas. Instead, it provides the building blocks that
allow users to de�ne their own classes of objects: entries can represent
any object with an unique name, and the schemas can be de�ned freely
on a collection-basis. This is in contrast with other types of Grid Cat-
alogues that are designed to store speci�c classes of entities, e.g., File
Catalogues, and therefore have hard-coded support for those classes,
including prede�ned schemas and speci�c operations for those types.
This makes them easier to use, but limits them to the particular appli-
cation domain they were designed to. In some cases, this specialisation
is necessary due to the complexity of the task, like with File Catalogues.
But for other types of applications, which are the target of the gLite
Interface, a generic catalogue is enough.

The interface speci�es operations to add and delete entries, and to
set or update attributes of entries. To support dynamic schemas, there
are operations to add and remove attributes from schemas and to list
the attributes of schemas. In addition, it is possible to restrict updates
so that they apply only to entries whose attributes ful�l a condition
speci�ed by the user. Values of attributes can be retrieved through
the interface, which also allows to restrict retrieval to entries ful�lling
a given condition. Most of the operations can be used in bulk mode,
so that they work on several entries at once to reduce the number of
network round-trips. In particular, entries can be registered in bulk
(even across di�erent directories) as well as updated or deleted in bulk
based on a given condition. Transactions spanning di�erent operations
are also supported by creating transactions on the database backend.
Both transactions and bulk operations are limited in the time they take
to complete (by default 20 minutes), because they are bound to a server
process and require a persistent TCP connection to the server. To make
the interface more intuitive, patterns for entry names are supported,
which is particularly important when used for �le metadata.

For the retrieval of large datasets, the gLite metadata interface uses
iterators, allowing users to retrieve the answer in chunks. One way of
implementing iterators is by keeping the iterator state at the server.
However, while a stateful implementation will typically provide better
performance, it is also much more prone to resource exhaustion at the
server if clients are not well behaved, making it harder to implement
safely. Acknowledging this, the interface allows either stateless or state-
ful implementations of the service. A stateless implementation will need
to perform the query for each iteration and limit its results based on
the current position of the client, which is an optional argument to the
method of the interface used for iterating.

The interface de�nes an SQL-like query language including string
and mathematical functions which an implementation must translate to
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the respective SQL or XPath query on the backend. An implementation
must therefore parse any query and validate it to prevent access control
violations.

A crucial problem for scienti�c applications is the handling of the
di�erent data types of attributes. The interface must guarantee that
data can be stored transparently on the backend and retrieved again
as the same value. Several di�erent data types on the backend must be
supported, as this is required to be able to execute queries on that back
end using data type aware functions. The interface therefore requires
implementations to be able to store the following data types on the
backend: �oats, integers, strings, timestamps and numeric (a �xed point
DB type). The interface itself is unaware of the actual data type of a
value and knows only string representations thereof, but guarantees
that applications will retrieve the same value they stored, within the
limits of the data type's precision. The interface design leaves therefore
the problem of type conversion to the client application (and the server
implementation).

The metadata interface was designed to be modular, allowing a ser-
vice to implement only parts of it. As an example AMGA running
alongside the LFC �le catalogue [?] does not need to implement the
part of the interface which handles entries, as the �le catalogue already
has this capability.

4. Implementation of AMGA

AMGA follows closely the gLite Interface, providing all the features
speci�ed in Section 3. But the Interface leaves some freedom to the
implementations in some aspects, which we clarify in this Section.

AMGA is implemented as a multi-process C++ server with a rela-
tional database back-end. It has two di�erent front-ends, a web service
front-end implemented using gSOAP, and a text-protocol based front-
end, which is able to stream data back to the client. We will give here
only a brief overview of the implementation of AMGA focusing on the
features relevant for its performance or replication capabilities. A more
detailed description can be found in [?].

AMGA is a service in front of a relational database system used as a
storage back-end. Currently Oracle, PostgreSQL, MySQL and SQLite
are supported. Requests received by either of the two front-ends are
forwarded to the back-end, which streams data back into a bu�er shared
with the front-end. This data is returned to the user by the text-based
front-end as a text stream whereas the front-end using SOAP provides
the user with an iterator mechanism to browse the result. The text-
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based protocol signi�cantly outperforms the SOAP protocol [?], but
only the SOAP front-end provides a fully compliant implementation
of the interface as de�ned in [?]. Both access protocols support bulk
operations where several entries are inserted or read in bulk. In addition,
AMGA also provides support for user controlled transactions spanning
multiple operations.

Schemas are implemented hierarchically in AMGA. This model has
the advantage of being natural to users as it resembles a �le system, and
of providing good scalability as metadata can be organised in sub-trees
that can be queried independently. In addition this implementation
choice permits replication of only parts of the schema hierarchy or
to setup federated schemas where remote (sub-trees) of schemas are
mounted into the local schema hierarchy. Schemas are dynamic and
de�ned on a per-collection basis. In addition, child directories may
optionally inherit the schema of the parent directory.

Considerable e�ort has been spent on providing native client APIs
for C, C++, Python, Perl and Java, both for the SOAP and the text
protocol. Interestingly, the text protocol implementations using stan-
dard socket techniques were considerably easier to implement due to
many compatibility problems of the SOAP toolkits. A command line
client is also provided, which is used by many applications.

Caching SSL security contexts in sessions on the server is very impor-
tant for the server's scalability, as the public-private key cryptography
to establish SSL connection contexts is very CPU intensive and limits
the number of connections that can be established severely on custom
hardware [?, ?]. AMGA caches the SSL contexts either in shared mem-
ory or in a �le based database. The command line client caches the
session in a �le between calls, which speeds up the operations by about
a factor of 10.

AMGA itself has few interaction points with other gLite middleware,
because it is supposed to be used �exibly for various tasks involving re-
lational data in the user applications. However, AMGA makes use of the
gLite service lookup service, allowing AMGA clients to conveniently �nd
the closest or otherwise most suitable AMGA server. Of course AMGA
is also tightly integrated into the VO management system by making
use of the VO speci�c information encoded in X509 certi�cates used to
access AMGA as is being described in more detail in the following.

4.1. Security

AMGA features very �exible authentication and authorisation methods,
based on passwords, X509 (Grid-)certi�cates and VOMS enabled certi�-
cates. Connections can be encrypted via SSL but this can be switched
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o� for performance reasons. AMGA also supports user management
internally if necessary. This allows simple deployment for VOs that only
need a few Grid services and therefore may not need or want to manage
resources centrally through a VOMS.

Access control is supported either on a per schema or per entry basis.
The default is per schema access control, where all entries in a schema
share the same ACL (Access Control List). Per entry access control
is also supported, at the cost of some performance degradation. The
implementation also supports groups of users, which can be de�ned
within AMGA itself or via VOMS roles. ACLs are inherited from the
parent directory when new entries are created, similar to sticky bits in
a Unix �lesystem.

Column-wise (i.e. per attribute) access restrictions are supported by
views in AMGA, an approach found commonly in database systems.
AMGA allows users to create views combining selected attributes from
di�erent collections into new collections. These collections then can
have di�erent access rights as the primary ones. While this solution
is not straightforward for the users, it is the only solution with good
performance we are aware of, since column-level access control would
impose an unacceptable overhead.

4.2. Replication

This section provides a brief overview of the replication mechanisms in
AMGA. A complete description can be found in [?].

Replication allows a catalogue (slave) to create a replica of part or of
the totality of the metadata contained in another catalogue (master).
The system ensures that the replica is kept up-to-date, by receiving
updates from the master. The clients of the slave catalogue can then
access the replicated metadata locally. This has many bene�ts in terms
of improved scalability and fault-tolerance.

AMGA uses an asynchronous, master-slave model for replication.
The use of asynchronous replication is motivated mainly by the high
latency of Wide-Area Networks, where synchronous replication does
not scale properly [?]. Master-slave replication was chosen because it
covers the needs of the majority of our target applications, all of them
having simple write patterns. The master-slave model works well with
applications where writes are infrequent or else originate from the same
geographical location. Multi-master replication would signi�cantly in-
crease the complexity of the system by requiring inconsistent updates to
be detected and resolved, and would not provide any signi�cant bene�t
to the target applications.
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Figure 2. Replication internal architecture.

Figure 2 presents the replication architecture of AMGA. The basic
mechanism is to have the master keep on its local database a log of all
the updates it performed on its back-end. For each update, the master
saves the metadata command that originated the update plus some
contextual information required to replay the log on the slave. At a
later time, these updates are shipped to slaves that replay the command
locally. Since the metadata commands are independent of the database
back-end, replication works even between AMGA servers using back-
ends from di�erent vendors.

The AMGA Server is only responsible for saving the updates into
the replication log. The remainder of the functionality is implemented
on the replication module, which is an independent daemon that can
run on a di�erent machine for better performance.

4.2.1. Managing Subscribers

To replicate a directory, a node must subscribe to that directory with
the node that owns it. This informs the master that it should save
the updates performed on that directory to its replication log, so they
can later be sent to the subscribers. Subscriptions are hierarchical, i.e.
they always include the metadata sub-tree rooted on the subscribed
directory. They are also persistent, meaning they outlive crashes of the
master and of the slave. If a slave disconnects without having �rst re-
quested to be unsubscribed, the master continues saving the updates for
the subscribed directories. When the slave reconnects, the subscription
is resumed from the point it was interrupted. If the slave is disconnected
for a long time, the master will eventually discard the subscription when
the amount of pending logs exceeds a certain threshold. If the master
fails, the slave tries to reestablish the connection automatically, while
continuing to serve its local clients.
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4.2.2. Generating logs

Nodes with at least one subscriber have to save to the replication log all
the updates performed to directories subscribed by some other node.
Each log entry is numbered with a unique sequence number - its ID
- and contains all the contextual information required to execute the
update on subscribers. To ensure consistency between the log table
and the metadata tables, the replication log is written during the same
database transaction used to perform the update.

4.2.3. Sending the Initial Snapshot

After subscribing to a set of directories, the slave must obtain an initial
snapshot of their contents. To remain database independent, we cannot
use the dump mechanisms available on most databases, since they are
database speci�c. Instead, we have implemented a similar dump mech-
anism in AMGA that dumps the contents of a sub-tree of the metadata
hierarchy as a sequence of metadata commands.

Sending a snapshot is a lengthy process, during which the master
may receive updates from its clients. This can result in inconsistencies
in the slave if these updates change the directories being copied. To
prevent this situation, the reading of the snapshot from the database is
isolated from any incoming update using a database transaction. These
updates will be saved to the replication log and shipped to the slave
when it �nishes receiving the snapshot.

4.2.4. Shipping Updates

After obtaining the initial snapshot, the slave starts receiving and apply-
ing updates. To do so, it connects to the master using a TCP connection,
sends the ID of the �rst update it needs, and waits for updates to be
sent by the master. At the master, the replication module is responsible
for shipping updates. It keeps track of all subscribers that are currently
connected and of the ID of the last update they have acknowledged.
Periodically, it polls the replication log table and sends any new up-
dates to the subscribers interested on them. The replication module
also deletes the updates from the log table when they are no longer
needed by any subscriber. When all subscribers are connected, updates
are deleted shortly after being generated. Only when a subscriber is
o�-line will an update be kept for a longer time.

4.2.5. Federation of Catalogues

The mechanisms described above support partial and full replication
and provide the basis for federation. The federation mechanisms on
AMGA are built on the hierarchical structure of metadata and on the
support for partial replication. Mastership is granted not to a catalogue
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as a whole, but only to sub-trees of the catalogue. Therefore, node A
can be the master for directory /a, which is replicated by node B, while
node B can be the master for directory /b, which can also be replicated
by A. The distributed catalogue contains both /a provided by A, and /b

provided by B, corresponding to the situation depicted in Figure 1(c).
This scheme permits di�erent catalogues to have mastership of non-
overlapping partitions of the metadata hierarchy, ensuring that for each
directory there is a well known master.

Distributed queries are not supported, i.e., queries can only execute
on a single node. However, it is possible to workaround this limitation
in some cases by replicating all the directories needed by a certain query
into a single node, where the query is then executed.

5. Server Analysis

Performance and resilience against failures are important attributes of
a metadata service on the Grid. AMGA has undergone extensive per-
formance studies and the replication capabilities are currently studied
with respect to the recovery from various failure modes of a distributed
system. In the following we present some of the results obtained, to give
an overview of the characteristics of the AMGA metadata service.

5.1. Server Analysis

An important requirement of the HEP community is that a metadata
service must not have a large performance overhead with respect to
direct database access. We have therefore benchmarked AMGA and
compared it with direct access to the same back-end database using
JDBC. JDBC is a Java API for Databases and uses the native connec-
tion protocol of the respective database. In our test, we used JDBC to
directly retrieve data from the database tables in which AMGA stores
its data. During the tests no user-authentication was performed as in
the HEP use-case where read-access should be unauthenticated and
unencrypted. However the connection from AMGA to the database and
from the JDBC client to the database was authenticated.

The test was performed on a LAN with about 2 ms round trip time
and a bandwidth of 11.4 MB/s as measured with the netcat tool. Both
server and client were dual Xeon machines with 1GB and 0.5 GB RAM
respectively. The server ran the AMGA service as well as a PostgreSQL
back-end database. The database was �lled with 10 million entries with
5 attributes corresponding to an average payload size of 40 bytes. The
entries were stored in 100 di�erent schemas. Up to 100 concurrent
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Figure 3. Comparison of the access speed to metadata stored in a PostgreSQL
database through AMGA and directly through a JDBC client. Shown are the num-
bers of entries retrieved per second for single rows and 1000 rows at a time for both
access methods depending on the number of concurrent clients.

clients were simulated on the client node while assuring that it is not a
performance bottleneck for the test. The better performing streaming
interface of AMGA was used during the tests.

Figure 3 shows the number of entries (= DB rows) retrieved through
AMGA and JDBC for single entry requests and requests of 1000 rows
each against the number of concurrent clients. For every request the
clients open a new connection to AMGA or to the Database. While
the overhead of processing the retrieved data makes AMGA about
half as fast compared to direct access through JDBC for the requests
returning 1000 entries, access through AMGA is actually faster when
returning a single entry. Here, the access through AMGA bene�ts from
the fact that the service has a pool of processes already connected to
the database waiting for client connections, while JDBC establishes new
connections for every query. This outweighs the additional database
operations (likely cached by PostgreSQL) AMGA has to perform for
access control checks. Our tests show the very good scalability and
excellent performance of AMGA comparable to native database access.

A similar benchmark has been recently performed for the OGSA-
DAI access layers for databases on a Grid (see Section 7 on related
work) for a single client in [?], which showed an overhead of factors
7 to 40 over direct JDBC database access. Results of several other
benchmarks of AMGA including comparison with the SOAP front-end,
wide-area network access, and the impact of secure connections and
authentication are given in [?].
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5.2. Replication Performance

The replication in AMGA requires the master nodes to do a signi�cant
amount of work in addition to the normal operations of an AMGA
server. This includes updating the replication log, managing subscribers
and shipping the logs to several slaves. In contrast, the overhead on the
slaves compared to stand-alone operation is minimal or even nonex-
istent, since receiving updates from a master requires the same com-
putational resources as if they were being performed by a local client.
Therefore, the master nodes are the potential bottleneck of the system.

We present here the results of a benchmark study assessing the
scalability of AMGA replication at master nodes. The benchmark was
performed on a 10 Mbit LAN. In spite of its low speed, the LAN was
not the bottleneck as the data rate between the masters and each slave
was about 10 KB/s2. The master AMGA server plus the associated
replication daemon were running on the same computer, a P4 3 GHz
with 1 GB of RAM. The slaves were running on two di�erent computers,
up to �ve in each, and were patched to discard incoming logs. This
was done so that several slaves could be run in the same computer
without becoming the bottleneck. The tests were performed with the
slaves already connected to the master and waiting for logs. We then
inserted 10,000 entries on the master at a rate of 90 per second, which
corresponds to around 80% of the maximum rate when used stand-
alone. We measured the overall rate at which updates were sent by the
master to the slaves, and the CPU load at the master. Figure 4 shows
the results.

The data point for 0 slaves corresponds to having the master save
replication logs for slaves that are subscribed but disconnected. To pro-
vide a baseline, we measured the CPU usage with the AMGA server
running stand-alone, i.e. no subscribers and not saving logs, which was
around 20%. As can be seen, the scalability is close to linear with only
a modest increase in CPU usage on the master.

5.3. Resilience of Replication

The replication mechanisms of AMGA are prepared to deal with faults
resulting in the interruption of the connection between the slave and the
master. If a master fails, the slaves attempt to reconnect automatically.
If the slave fails, the master keeps the updates for the slave until it
reconnects.

2 Each update shipped to the slaves was around 100 bytes. For a rate of 100
updates a second, the network bandwidth required for each slave is approximately
10KB/s.
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Figure 5. Behaviour of replication in AMGA measured in a master node while toler-
ating and recovering from a slave failure. The test starts with two slaves connected
and receiving logs. At t = 20 s (20 seconds into the test), a client starts inserting
20.000 entries into the master at a rate of 50 per second. A slave disconnects at
around t = 100 s and reconnects 120 seconds later.

Figure 5 shows how AMGA behaves when a slave fails. The tests
were performed using the same hardware setup as the one used for the
scalability tests described above. There were only two slaves running on
separate machines. The slaves were unmodi�ed, i.e. they were applying
the received updates to their back ends. During the tests we monitored
the performance of the slave nodes and veri�ed that they were not the
bottleneck.

From t = 20 s to t = 100s the system is in a steady state, with both
slaves connected and receiving updates. The size of the replication log
oscillates between 10 and 50. The spikes correspond to the intervals
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Figure 6. Table schema of the MDM biomedical application using AMGA.

between the periodic garbage collections of logs. The replication log is
not smaller because the master can only delete an update from the log
if it has received from all the slaves the acknowledgments con�rming
that the update was committed to the slave's back-end. This process
takes some time, during which the updates must be kept on the log.

At t = 100 s one of the slaves disconnects. Immediately, the size of the
replication log starts increasing, as the master is keeping the updates
for the slave that is disconnected. At t = 220 s the slave reconnects,
causing a large spike in the send rate, as the master starts sending
all the pending updates to this slave. Recovery takes 60 seconds; at
t = 280 s the send rate and the size of the replication log has once again
stabilised at levels similar to those before the disconnection of the slave.

6. Experiences

Several applications from di�erent user communities are currently ei-
ther evaluating AMGA or using it in a production environment. Close
contact between the developers and these user communities has been
very important to improve the design of the metadata interface and the
AMGA implementation.

6.1. Medical Data Management

The MDM (Medical Data Manager) application [?] is a biomedical ser-
vice that stores medical images on the grid and allows users to retrieve
them again for post-processing or viewing. The service makes use of
the fact that medical image data is highly standardised and that most
medical imagers in hospitals, like X-ray machines, NMR scanners or
computer tomographs all use the DICOM standard to store their �les.
Hospitals are often already equipped with central storage systems for
this data. However, due to the high sensitivity of the personal metadata
of these �les and the lack of a global infrastructure to establish trust,
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these image �les are not commonly shared between practitioners. The
MDM service targets this need. A (simpli�ed) schema of the table struc-
ture is given in Figure 6. Additional tables contain speci�c information
on the DICOM description of the image and information about series
of images as from a tomography unit. Finally, a logging table exists.
The schema can be extended by the user for other image protocols.

The following is an example query actually performed by some of
the used-cases:

selectattr /PATIENT:id '/PATIENT:name = family_name and

/PATIENT:dob = date_of_birth'

This query selects a patient's id based on his family name and the date
of birth.

Access restrictions are very important to the MDM application be-
cause the stored data is highly con�dential and the handling needs to
meet the privacy requirements of all countries where this application is
deployed. MDM therefore makes use of the �ne-grained access restric-
tions of AMGA for the tables. The current scheme only uses per-table
access restrictions so that e.g. doctors are allowed to modify the medical
information while nurses can only read that table. There are currently
no per entry access restrictions being used.

Since the MDM application also makes use of the storage middleware
to store the images in an encrypted form (the keys are stored in a sep-
arate key-storage, which stores them in a distributed fashion) and the
computing elements for post-processing of the images, the permission
handling for the middleware components used needs to be tightly inte-
grated. All the permission management is therefore centralised within
the VOMS and AMGA only implements the access control as taken
from the VOMS enabled certi�cate presented by the user at login.

The MDM application is still being developed. In the future MDM
will make use of ACLs on a per-entry basis such that only medical
sta� which is concerned with a certain patient will be able to see all
the related information. In addition, the use of AMGA's capabilities to
create views are foreseen. This will allow to selectively restrict access
for di�erent groups to parts of an entry's metadata (column access
restrictions) without hurting performance as these restrictions will be
per-view. Finally AMGA's support for federating the metadata shall be
used to keep metadata and access restrictions physically in the hospitals
where they were created.
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6.2. LHCb Bookkeeping

The LHCb experiment is one of the four HEP experiments at the LHC
accelerator at CERN. Their bookkeeping service keeps count of the
processing of the huge amount of data taken by the experiment and
stored in �les (their AMGA service contains currently 15 million entries,
equivalent to a full year of data) on the Grid. This is a typical use case
where �le-related metadata is stored in AMGA. Per entry about 1KB
of data is stored, currently amounting to 15GB of relational data in
a complex schema documenting the characteristics of the data taken
initially, the processing parameters and details of the processing process
like the site and the time.

The Logging and Bookkeeping system system is for LHCb the central
data inventory, that contains information about �le contents and their
processing steps. Production jobs store into this central system the
information on what processing has been done with a �le and user
analysis jobs look up information about �les based on e.g the physics
process the user is interested in or the time of data taking. The Logging
and Bookkeeping system can then provide the user job with the logical
�lenames of the �les of interest as well as additional information like
the data taking conditions.

LHCb bookkeeping has put strong requirements on AMGA in par-
ticular due to the need to be able to retrieve very large result-sets
(millions of entries) without straining the AMGA server, because hun-
dreds of concurrent users are expected to query the service to select
data �les for their analyses. This requirement was taken up by imple-
menting streaming and iterators, and the intensive stress-testing has
lead to identifying and removing many bottle-necks and instabilities.
The bookkeeping team uses an Oracle database as a backend and is
currently performing tests with over 100 million simulated entries to
study the scalability of the setup. In the future replication could be
used to further increase the scalability should the need arise.

6.3. UNOSAT

The UNOSAT project3 is a United Nations program that provides satel-
lite images to help aid workers in the event of natural disasters. Users
can access and, if necessary, process images on the Grid by specifying by
geographical coordinates and image type. This image metadata is stored
within AMGA which holds also the storage location of the images on
the Grid. This use case is similar to the MDM use case apart from
the fact that the access restrictions are much less detailed because

3 http://unosat.web.cern.ch
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authorised users always have access to all the images. On the other
hand this use-case is special because AMGA allows the users to use
the GIS (Geographical Information System) features of the backend
database, which provides essential functionality like spatial indexing of
the data to provide fast access.

6.4. GANGA

GANGA [?] is a user job monitoring and management application de-
veloped by the LHCb and ATLAS HEP experiments. The GANGA
application uses AMGA to store the status information of jobs running
on the Grid which are controlled by GANGA. Objects representing Jobs
by their metadata are in fact stored centrally on the AMGA database,
which allows to migrate the monitoring of the jobs from one user client
to another user client. AMGA's simple relational database features
are mainly used to ensure consistency when several GANGA clients
of the same user are accessing the stored information remotely. The job
metadata stored includes information about the Job's status, its input
and output data as well as inter-job relations when jobs depend on each
other.

7. Related Work

The importance of a metadata service middleware for the usability of
large scale local or wide area storage infrastructures has induced many
groups to investigate metadata access for the Grid and to implement
such metadata services.

Perhaps the earliest metadata middleware is the Metadata Catalogue
Service (MCAT), which is part of the Storage Resource Broker (SRB) [?]
developed by the San Diego Supercomputing Centre. The project's goal
is to provide an abstraction layer over heterogeneous storage devices
and �le systems at or even across computing centres. The metadata
catalogue component of the system stores metadata on the resources
managed by SRB including all �le-related metadata. The �le metadata
consists of system metadata (like access permissions) and user de�ned
metadata. Like the AMGA implementation of the gLite metadata in-
terface, MCAT is hierarchically organised using a tree of collections.
More recently the MCAT was extended with support for federation and
replication mechanisms [?]. While MCAT has functionality quite similar
to AMGA, it is tightly integrated into the SRB system, which limits
its usability by other Grid Middlewares. The AMGA catalogue, on the
other hand is designed to be a component in a modular architecture.
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The Global Grid Forum is currently working on a standardisation
of a generic database interface in the Database Access and Integration
Services (DAIS) working group. The interface is part of the Open Grid
Services Architecture (OGSA) framework [?]. In contrast to the gLite
metadata interface, which tries to hide the backing DBMS, the DAIS
speci�cation exposes the underlying data storage to the user. While it
gives users access to all the features of the respective DBMS, it requires
the user also to cope with the di�erent implementations. Consequently,
no simpli�ed query language is de�ned, instead the user discovers the
speci�c backend, and then uses for example the respective SQL-dialect
of this backend or XPath for an XML database. We believe that the
gLite metadata interface is therefore better suited for a heterogeneous
environment as is the EGEE computing Grid.

The OGSA-DAI project aims to implement the DAIS speci�cation
as part of the Globus Alliance's middleware [?].

The Metadata Catalogue Service MCS [?], which is being developed
by the Globus Alliance, is based on the same paradigms as the interface
presented here, as it does also not expose the underlying storage back-
end. Initially implemented as a standalone service using Apache, it is
now being developed on top of OGSA-DAI [?]. MCS provides like the
gLite interface a hierarchical organisation of the metadata and �exible
schemas. While a combination of OGSA-DAI and MCS would provide
much of the functionality that the AMGA catalogue provides, we believe
that the gLite interface is currently easier to use and that it provides
the user with a more homogeneous interface to general hierarchically
organised metadata.

In High Energy Physics, several LHC experiments have implemented
metadata catalogues speci�c to their needs and consist of a standard
RDBMS backend and an adapter layer to allow access in a distributed
computing environment. These catalogues were studied in detail dur-
ing the design phase of the gLite interface so that it encompasses the
functionality needed by the HEP experiments. The catalogues are the
ATLAS Metadata Interface AMI [?], which is now implementing the
gLite metadata interface, the CMS experiment's RefDB [?] and the
Alien Metadata catalogue [?] from the Alice experiments. Benchmarks
of these implementations have raised questions about their scalability,
which were addressed in AMGA.

All major database systems have some kind of replication mecha-
nism, like Oracle Streams or Slony-I for PostgreSQL, but they are all
vendor speci�c and therefore do not address the heterogeneity of a Grid.
The motivation for generating and shipping replication updates came
from these systems. However, instead of replicating at the database
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level, we replicate metadata commands, which provides database inde-
pendence.

The FroNtier [?] project aims to improve the performance of database
read access over the Internet, by wrapping database queries in HTTP
requests and using Internet caching mechanisms. The LCG's 3D project
[?] is setting up a distributed database infrastructure for LHC experi-
ments, using Oracle Streams as the main replication technology. Both
Frontier and the 3D project are aimed at generic database applica-
tions while we are focusing on replication of Metadata Catalogues,
which allows us to be database independent by moving the replication
functionality from the database to the Metadata Catalogue.

8. Conclusions

We have presented the AMGA metadata service, which is being de-
veloped as part of the EGEE gLite middleware. AMGA is being used
as a core middleware component by a number of very diverse EGEE
applications. The spectrum ranges from bookkeeping applications for
high energy physics data with very high demands on the performance
of handling requests and returning large amounts of data, to medical
applications with very high privacy requirements resulting in very �ne-
grained access permissions. We have shown in a comparison benchmark,
that the access speed of AMGA is comparable to the direct access to a
database.

An important feature of AMGA, and one that is to our knowledge
unique for a metadata catalogue for Grids, is its replication capability.
We believe that replication and the federation of metadata provide a
high level of resilience against failures and performance of distributed
metadata systems that will allow many new applications to be used on
computing Grids. We have given the security needs of medical applica-
tions as an example for the application of federated metadata. Although
the replication capabilities are still in an early stage of development, our
benchmarks and stability tests have shown very promising behaviour.
It is in this direction, therefore, that we will focus our future research.

An important aspect in the design and implementation of AMGA
has been to closely collaborate with early users to provide the features
necessary to ful�l the applications' needs. In several cases additional
requirements on AMGA arose during the application development and
wherever possible the needed features have been added in a manner,
which should be of general use also for other applications. We believe
that this co-evolution of AMGA and the diverse EGEE applications has
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lead to a metadata catalogue that will be useful for the large majority
of Grid-applications making use of metadata.
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