Metadata Services on the Grid
Nuno Santos® P* T, and Birger Koblitz**

2CERN, Geneva, Switzerland

bDepartment of Computer Science, University of Coimbra, Portugal

We present an interface for metadata access on the Grid, designed to support flexible schema management,
efficient retrieval of large result sets and to allow a broad range of implementations. We also describe an imple-
mentation of this interface, which supports a wide range of storage backends and two access protocols: SOAP and
a TCP-streaming based protocol. This interface and implementation have been selected as the official metadata
components of the glLite-EGEE middleware. Finally, we present the results of extensive performance studies,
where the two front-ends are compared to evaluate the cost of using SOAP as metadata access protocol.

1. Introduction

Data Grids often contain millions of files spread
over several storage sites. To find the files of inter-
est, users and applications need an efficient mech-
anism to discover and query information about
their contents. This is provided by associating de-
scriptive attributes (metadata) to files and by ex-
posing this information in catalogues, which can
then be queried to locate files based on the value
of their attributes [1].

A metadata catalogue can also be regarded
as a simplified database for jobs running on the
Grid, which often need to retrieve or store non-
file related metadata too small or too volatile to
be stored in data files. If this information can
be modelled as metadata (i.e., in the form of
(key, value) pairs with type information), then
a metadata catalogue is often a good alternative
to using a relational DB, offering a simplified in-
terface and greater integration with other Grid
services (e.g., GSI security).

A metadata service for use in this environment

*This work was performed within the ARDA project and
the authors would like to thank in particular V. Pose
(Dubna, Russia) for his intensive studies and testing of
the streaming protocol. Also we would like to thank the
GridPP and EGEE-gLite teams for their collaboration on
metadata ideas.

TPartially funded by grant SFRH/BD/17276/2004 of the
Portuguese Foundation for Science and Technology (FCT)
fPartially funded by Bundesministerium fiir Bildung und
Forschung, Berlin, Germany.

should satisfy some specific requirements. It must
expose a complete but simple interface, so non-
technical users can easily use it. It should be flex-
ible and support dynamic schemas, since there is
no single schema that will serve all application
domains. The service must also allow metadata
to be structured as an hierarchy of logical collec-
tions, so that related metadata can be grouped
together and isolated from other metadata. To
deal with the large number of entries (several
millions), it must be designed with scalability in
mind. The support for collections and hierarchies
is a good first step in this direction, with replica-
tion being the next logical step. Finally, security
is required to provide different access levels to dif-
ferent users.

In this paper we describe an interface for Meta-
data Services? that we have developed based on
our experience with testing a number of custom
metadata services used by several LHC collabo-
rations at CERN. Although these services have
similar goals and are built around similar con-
cepts, they have incompatible interfaces and sta-
tic schemas designed for a specific application-
domain, limiting their reuse in other domains.
Our interface generalises the functionality of
these Metadata Services in a coherent and generic

4This interface was initially proposed by the ARDA group
and then evolved jointly with the gLite (EGEE) Data
Management team. It has since then become the official
EGEE metadata interface.

interface, suitable for most application-domain.

The remainder of this paper is organised as fol-
lows. Section 2 describes our interface, Section 3
presents our implementation of the interface, Sec-
tion 4 presents the results of a benchmark study
of this implementation and Section 5 presents the
related work.

2. The Metadata Interface

In order to create an interface generic enough
to be used by many types of Grid applications,
we had not only to design a generic set of opera-
tions for users, but also to allow a broad range of
different implementations. No single implementa-
tion is likely to satisfy the metadata needs of the
whole range of Grid applications, which vary sig-
nificantly in their size and access patterns. Hav-
ing this in mind, we designed our interface to hide
as many implementation details as possible, al-
lowing those decisions to be taken by implemen-
tors in the way that better suits the needs of the
target applications. In the following discussion
we will point out the main aspects where imple-
mentations might differentiate themselves.

The basic concepts of the metadata interface®
are entries, attributes and schemas. An entry
is the name of the data item or resource being
described, an attribute is a (key, value) pair
with type information, and a schema is a logical
group of attributes. Entries are associated with
one or more schemas and inherit the attributes
defined in those schemas. This is the only way of
associating attributes to an entry, it is not pos-
sible to have attributes associated directly with
entries. The interface defines operations to add
and remove entries from a schema, and to list the
schemas to which an entry belongs. Also, entries
cannot exist on their own, they must be created
with at least one associated schema.

Schemas are defined dynamically by the user.
There are operations to create and delete
schemas, as well as to add and remove attributes
from a schema. Since the schemas are dynamic,
we provide methods to discover their attributes
at runtime. Schemas are the basic blocks used

5The complete specification of the interface is at https:
//edms.cern.ch/file/573725/1.2.

N. Santos, B. Koblitz

to structure and organise metadata as logical
groups. But much of the details of schema man-
agement are left open to implementations. For
instance, implementations may either allow an
entry to belong to multiple schemas or only to
a single schema. Also, they may either organise
the schemas in a flat namespace or in a hierarchy.

To design the query operations we considered
several issues, starting by the query language.
Since most implementations will use relational
databases as back-ends, an SQL-based language
was a natural option, with advantages both for
users, most of which are familiar with SQL, and
for implementors, who can delegate most of the
query processing to the RDMS engine. Never-
theless, the Metadata Interface does not restrict
the type of storage back-end and other implemen-
tations may not use relational databases. For
instance, an implementation based on an XML
datastore would probably use XQuery as query
language. Since, no single query language is suit-
able for all possible implementations, we decided
not to specify any at the interface, leaving this
as an implementation detail. For the interface,
queries are simply two text strings: the query it-
self and the name of query language being used.

The second issue is how to deal with large re-
sult sets. A naive implementation will read from
the back-end all the results of a query in a single
operation and send them to the client in one mes-
sage. This does not scale for large result sets or
for many clients due to the memory requirements.
To address this issue, the interface uses iterators
to retrieve responses in small chunks. This is im-
plemented by the methods query() (initiates a
query and retrieves the first bunch of results),
nextQuery () (gets the next chunk of results)
and abortQuery() (cancels a query). Queries
are identified by an opaque token, obtained in
the initial query () invocation, that must then be
provided to nextQuery () and abort () methods.
Implementations are free to choose either to use
a stateful or stateless model to implement these
methods. A stateful implementation backed by a
relational database can use a database cursor to
read the results from the back-end. This is effi-
cient and ensures consistency of the results, since
the query is executed only once, but requires the

Metadata Services on the Grid

server to keep state between invocations from the
client, increasing its complexity. A stateless im-
plementation can use the LIMIT clause of SQL
to return a specific range of results and use the
opaque token sent to the client to store the cur-
rent position in the results. This option is sim-
pler to implement, but is less efficient (multiple
queries) and has consistency problems since the
database may be updated between two invoca-
tions from the client, changing the result set.

3. A Prototype Implementation

Together with the interface we have developed
a prototype implementation called ARDA Meta-
data Grid Application (AMGA)S, to validate the
interface and receive feedback from users.

The AMGA implementation uses a file-system
model for structuring metadata. Schemas play
the role of directories: they may contain entries
and other schemas, allowing users to create an
hierarchical structure. Our experience with users
shows this to have been a good option, since many
of them are making heavy use of hierarchies for
better organising their metadata. From now on
we will refer to schemas as directories, since this
better reflects the model of AMGA.

Access control is on a per directory basis, with
all entries in a directory sharing the same ACL
list. Having a per-item ACL would impose a large
performance penalty for little added value. The
implementation also supports groups of users.
Other security features are authentication based
on certificates, grid-certificates or password, and
secure connections using SSL.

Entries can only be in a single directory. This
simplifies access control, since allowing an entry
to be in multiple directories could result in con-
flicts between the possibly contradictory security
policies of the different directories.

AMGA is designed to use a relational database
as storage. FEach directory is a table, entries are
rows and attributes are columns. Attributes are
added or removed from directories by adding or
removing columns from the directory’s table. A
master table keeps the index of all directories,

6The AMGA implementation was recently chosen to be
the official metadata catalogue of the gLite middleware.

Metadata Server;

Oracle

Client SOAP
MD Postgre
Server SQL
" TCP
e Streaming
SQLite

Figure 1. Main components of the AMGA imple-
mentation.

together with some per-directory properties (e.g.
ACLs). This structure is flexible and efficient.
Most operations require only two accesses to the
database: one to the index table and another to
the table of the directory.

The prototype was implemented as a multi-
threaded C++ server (Figure 1). The back-end
is modular, supporting several storage systems by
way of modules. Most of storage modules we have
developed are for relational databases, including
PostgreSQL, Oracle, MySQL and SQLLite. We
also created a stand-alone implementation that
stores the metadata directly on the filesystem.

For operations that return large result sets, the
server uses a stateful model. When the user sends
a query() request, the server creates a cursor
on the database to read the result set. It then
sends the partial results to the client asynchro-
nously: when the client is processing a chunk of
the results, the server is already reading the next
chunk into a local buffer, so it can answer immedi-
ately to the next request. Since database connec-
tions are kept open between calls from the client,
there is the risk of running out of resources due
to buggy or malicious clients. The server imple-
ments two mechanisms to prevent this situation:
it kills sessions that are left unused for a long
time and limits the maximum number of sessions
a single user can open. A stateless server would
not require these mechanisms, but it would have
significantly worse performance (queries have to
be repeated for each chunk of results sent to the
client) and would also require complex mecha-
nisms to ensure that results are kept consistent
between calls of the same query.

The front-end supports two access protocols:
SOAP and TCP Streaming (TCP-S). The SOAP
front-end is based on the gSoap toolkit[2]. The
TCP-S front-end is based on a text protocol sim-
ilar to SMTP or TELNET, where commands and
answers are sent as plain text. Since this is a
stream-oriented protocol, it is not possible to im-
plement the interface as it is, since it is designed
for a message-based protocol. Nevertheless, the
commands supported by the TCP-S protocol mir-
ror closely the operations defined on the interface.
The main difference is in how large results are
sent to the client, where we take advantage of the
stream-oriented nature of the protocol, by send-
ing the results back in a single stream of bytes.
This is efficient, since it does not require several
round-trips between the client and the server. For
the TCP-S protocol, we have created an iterative
command line interface to the server and client
libraries in C++4, Java, Python, Perl and Ruby.

Several applications have used or are using
the AMGA implementation, either for evalua-
tion or production. The LHCD collaboration has
been evaluating the AMGA implementation us-
ing their bookkeeping information (20 million en-
tries, 15GB). They have uncovered many bugs
and some limitations on the initial versions, which
have since then been fixed. Another user with
very different access patterns is Ganga[3], an user
interface to submit jobs to the Grid being de-
veloped by LHCb and ATLAS. Ganga uses the
AMGA implementation to store metadata de-
scribing the status of the jobs, consisting in a
small but highly dynamic set of metadata.

4. Benchmark Study

In this section, we present the results of a
benchmark study comparing the SOAP and the
TCP Streaming front-ends”. The tests were per-
formed on two Linux desktop computers con-
nected via switched fast Ethernet with a net-
work latency of =~ 0.1 ms®. The metadata server

"Due to space limitations, we can only present part of
the results. Please consult the ACAT’05 presentation
at http://www-zeuthen.desy.de/acat05/talks/Santos.
Nuno.1/Metadata.ppt for the complete study.

8The client PC was a dual 2.4 GHz Xeon with 1 GB RAM.
The server a dual Pentium III (800 MHz, 0.5 GB RAM).

N. Santos, B. Koblitz

TCP-S, Single —+—
TCP-S, Bulk =---»---
gSOAP, Single d
gSOAP, Bulk g

,,,,, e SRIE RIS

1000 p T

B

100

Average throughput [entries/sec]

clients

Figure 2. Throughput of the metadata service
while reading 1000 attributes using single and
bulk operations

was pre-loaded with 100 collections, each contain-
ing 1,000 entries. Each entry has 60 attributes,
amounting to about 700 bytes of data.

Figure 2 presents the results of reading 1,000
entries from the server using two access methods:
in single entries are read one at time, while in
bulk they are read using a single query. The bulk
method shows the benefits of the iterators defined
in the interface, that allows large responses to
be read in a single query. Results were taken
for different numbers of concurrent clients. Each
client was reading from its own directory.

Reading in bulk is a factor of 10 faster than
reading single entries for both protocols, showing
the importance of minimising the number of inter-
actions with the server. Comparing the two pro-
tocols, we can see that SOAP is at least 2 times
slower than TCP-S: 1,000 queries per second for
TCP-S against 500 for SOAP. In the other tests
we performed the overhead of SOAP was even
greater, varying between 2 and 5 times.

gSoap is considered one of the fastest SOAP
toolkits[4], but most Grid applications being de-
veloped nowadays are written in Java and there-
fore use Apache Axis. We have evaluated the rel-
ative performance of these toolkits by comparing
clients implemented in gSoap (2.7.0f) and Axis
(1.2RC3). We have also tested a client in Python

The more powerful client was used to simulate multiple
clients. In all tests with multiple clients it was made sure
that the client PC was not limiting performance.

Metadata Services on the Grid

using ZSI (1.6.0). The test consisted in making
1,000 null requests. gSoap took 4 seconds to com-
plete the test, Axis 11 and ZSI 25. All these
tests were made using the gSoap-based server. If
we had also changed the toolkit on the server to
match the one in the client, the results for Axis
and ZSI would be even worse. These results show
clearly that SOAP toolkits vary widely in per-
formance. We have performed the same test with
the TCP-S protocol using clients written in C4+,
Java and Python, and found no significant differ-
ence in performance (all clients took between 3
and 4 seconds), showing that the programming
language by itself is not the limiting factor.

5. Related Work

A metadata service with similar goals is the
Metadata Catalog Service[l,5]. The model and
structure used for metadata is similar to our
own, supporting flexible schemas and an hierar-
chical organisation. The authors have provided
two implementations, one based on Web Ser-
vices and the other on OGSA-DAI[6] Grid Ser-
vices. Our work differs in several aspects. First,
our metadata interface was designed to give as
much freedom as possible to implementations, so
they can adapt to particular segments of appli-
cations. Another difference is that we address
explicitly the problem of returning a large result
set over stateless protocols like SOAP, by using
iterators and sessions. There are also some im-
portant differences in our implementation. To al-
low easy deployment in the available infrastruc-
ture of any Grid site, it is designed to be DB in-
dependent without requiring external middleware
like OGSA-DAI. And for applications with high-
performance requirements, it supports an efficient
TCP streaming protocol, that we have shown to
be 2 to 5 times faster than the alternative SOAP
protocol.

6. Conclusions

We have presented the EGEE interface for
metadata access on the Grid, which is designed to
cover a broad range of applications. It supports
dynamic schemas, an iterator pattern to retrieve

large result sets using message-oriented protocols
and a high level of abstraction that gives devel-
opers freedom to explore different types of im-
plementations. We have also described our im-
plementation, which was chosen as the official
gLite-EGEE Metadata Catalogue. Its main fea-
tures are the support for different relational data-
bases as storage back-end and the support for two
access protocols: SOAP and a custom designed
protocol based on TCP-streaming. Finally, we
have presented the results of a performance study
comparing these two protocols, where the TCP-
streaming based protocol is shown to be 2 to 5
times faster than SOAP.

REFERENCES

1. E. Deelman et al., 16th International Con-
ference on Scientific and Statistical Database
Management (SSDBM’04), 2004.

2. R.A.V. Engelen and K.A. Gallivan, CCGRID
'02: Proceedings of the 2nd IEEE/ACM In-
ternational Symposium on Cluster Comput-
ing and the Grid, p. 128, Washington, DC,
USA, 2002, IEEE Computer Society.

3. Ganga - Gaudi/Athena and Grid Alliance,
http://cern.ch/ganga/.

4. M. Govindaraju et al., GRID ’04: Proceed-
ings of the Fifth IEEE/ACM International
Workshop on Grid Computing (GRID’04),
pp- 365-372, Washington, DC, USA, 2004,
IEEE Computer Society.

5. G. Singh et al., SC ’03: Proceedings of the
2003 ACM/IEEE conference on Supercom-
puting, Washington, DC, USA, 2003, IEEE
Computer Society.

6. M. Antonioletti et al., Concurrency and
Computation: Practice and Experience 17
(2005) 357.

