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Outline

• Electro-mechanical information processing
• NEMS technology

– Top-down versus bottom-up
• MEMS/NEMS resonators

– Vibrating transistors
• Vibrating nanowires for mass sensing:

– NEMSIC project
• Conclusion
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Electro-mechanical information 
processing

Electro-mechanical information processing:
(i) as a multi-state logic, with the logic states 

dictated by a spatial configuration of 
movable objects.

(i) as vibrational modes of mechanical 
elements, based upon waves.

Highly sensitive to mass loading.
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Features of NEMS information 
processing

• Addresses some of the main limitation of dense digital 
computation with CMOS such as standby power.

• High potential of NEMS for analog computation and sensing; 
resonant nanostructures embed today full equivalent circuit 
functions: filtering or frequency refs.

• Nanometer small size generates supplementary interest for 
collective information processing.

• Extreme mass reduction: increases resonance frequency 
beyond the GHz and mass sensitivity below the attogram. 

• Poor signal-to-noise ratio: new detection schemes.
• Size reduction at nanoscale may be not a panacea for all 

the applications.
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NEMS simulation and modeling
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NEMS technology

• NEMS technology requires the fabrication 
of nano-objects combined with surface 
micromachining

• The fabrication techniques capable of 
making nanostructures can be grouped 
into two three main categories:
– top-down
– bottom-up
– hybrid bottom-up/top-down
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Top-down nanofabrication
• MEMS top-down

processing: based on 
the optical lithography 
and etching batch-
type processing of 
semiconductor 
industry, which gives 
high volumes and 
high productivity on 
silicon wafers

• NEMS top-down
processing: research, 
many fabrication 
techniques explored 

Top-down fabrication 
techniques 

Minimum feature 
size 

Advantages and 
Issues 

(DUV) optical lithography [ref] ~30nm Batch processing, robust, 
controlable, complex 

e-beam lithography [7] ~5nm Low-throughput, High 
resolution 

Nano-imprinting [8] ~10nm High-throughput, low-cost, 
alignment issues 

Nano-stencil [9] ~50nm High-throughput, low-cost, 
alignment issues (~1μm) 

Spacer or side-wall [10] ~20nm High-throughput, Some 
limitation in design 

Scanning probe lithography [11] ~5nm Fast prototyping of individual 
devices with very small size 

Reactive ion etching [12] ~50nm Free of wet etching 
restrictions, Suitable for mass 

production, Profile and 
uniformity control needed at 

nano scale 
Metal deposition by lift-off [13] ~10nm Removing metals hard to 

etch, surface microfabrication 
Focused ion beam (FIB) [14] ~30nm Versatile, fast, ion 

contamination issues 

DUV (optical litho)

e-beam litho

Nanoimprinting
Nanostenciling

Spacer or side-wall

Scanning probe litho

Reactive ion 
etching

Metal lift-off 

Focused ion-beam
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Nanostructure top-down fabrication
Nanoimprinting Nanostenciling

Side-wall AFM nanoscratching

Nanoimprinting Nanostenciling

Side-wall AFM nanoscratching
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• possibility of suspending 
and anchoring parts of 
the fabricated 
nanostructures based on 
deposited thin films

• a free-standing structure 
is obtained by using a 
sacrificial layer that is 
selectively etched 

Bustillo, J.M.; Howe, R.T.; Muller, R.S., 
Surface micromachining for 
microelectromechanical systems, 
Proceedings of the IEEE Volume 86, 
Aug. 1998 Page(s):1552 – 1574.

Surface micromachining
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Example: Si NEMS fabrication

J. Brugger, EPFL.
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Bottom-up processing
• Key bottom-up nano-structures used to fabricate NEMS 

processed by a non-lithographical method: growth or self-
assembly processing that can provide feature size much 
smaller than the resolution offered by the lithography

• Silicon nanowires (SiNWs) and carbon nanotubes (CNTs) 
are typical nano-structures than can be realized by 
bottom-up techniques with cross sections smaller than 
50nm

• issues concerning SiNWs controlability, variability, forming 
contacts and interfaces with desired electronic properties 
and leveraging of existing Si-CMOS process infrastructure 
needs further efforts and exploration of bottom-up and top-
down SiNW fabrication alternatives  
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Example 1: bottom-up Rh and Si 
NW resonator arrays (1) 

a) Molecules are attached to the NWs. b) dielectrophoresis is used to preferentially align single 
NWs in wells patterned in a sacrificial photoresist layer. c) Individual clamp windows are 
defined in a second photoresist layer. d) Metal clamps are electrodeposited around the NW 
tips. e) NWs are exposed to fluorescently labelled complementary and non-complementary 
targets to confirm detection selectivity. 

M. Li et al., Nature Nanotechnology 3, 88 - 92 (2008)   
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Example 1: bottom-up Rh and Si 
NW resonator arrays (2)

Fabricated Si- and RhNW resonator arrays
FE-SEM images: RhNW resonator arrays showing a high yield of single NWs
positioned at predefined locations (a,b); cantilevered SiNW resonator clamped with 
electrodeposited Au (right), and suspended 300 nm above the Au electrode (left) 
(c,d); cantilevered RhNW resonator (e).
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Example 2: CNT NEMS fabrication

C. Hierold, ETHZ.
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M/NEMS for analog/RF and sensing

• Device and system miniaturization
• Co-Integration with ICs (above- and in-IC, 3D) 

– lower costs 
• Power savings (low power operated devices)
• Novel functionality

– re-configurable RF ICs
• High performance at RF

– mobile communication systems
• High sensitivity/resolution of sensors
• NEMS: collective low power signal processing
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Principle of MEM resonator
• Micro-Electro-Mechanical resonator
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MEM resonator is tuneable

Tuning the resonance 
frequency: stiffness!

mx’’+bx’+kx=F

Lq’’+Rq’+(1/C)q=Vi

Stiffness ~1/C
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MEM resonator needs nanogap

fres=31MHz, r=40um, tSi=1.25um
Non-lithographic gap=200nm, Q>20’000, Rm=130kOhm.  

Rm ~ gap4/voltage2 (1/10 gap, 1/10’000 Rm)
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Rm versus nanogap
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SOI resonator with non-lithographic 
gap definition: 4-mask process

(a) TEOS deposition and mask 1: 
patterning

(b) deposition of the thin polysilicon
gap spacer

(c) deposition of the second oxide 
layer

(d) CMP and BHF back-etch of the 
second oxide to reveal the 
polysilicon layer

(e) mask 2: patterning of 
electrodes

(f) transferring the hard mask into 
the silicon film by dry etch

(g) mask oxide removal
(h) mask 3: opening of contacts
(i) mask 4: metal deposition and 

patterning
(j) release 
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Gap control @ nm scale

Adrian M. Ionescu, June 2009. 22

High-Q resonator needs vacuum

D. Ciressan, PhD thesis.

water
Q~100
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20nm gap in top-down NEM switch

W.W. Jang et al, Solid-State Electronics 52 (2008) 1578–1583.

poly-Si release
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Nanowire and nanotube resonators

(VHF) nanomechanical resonators based on single-crystal 
silicon nanowires (SiNWs) prepared by the bottom-up 
chemical synthesis – fres ~ 200 MHz , Q  = 2’000 - 2’500.

X.L. Feng et al, Nanoletts, Vol. 7, 2007.
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NW resonance frequencies
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‘Nano’ added value 
Vibrating cantilever: uniform scaling of all dimensions

• Scaling of frequency:

• Scaling of compliance:

• Scaling of thermomechanical noise:
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Sensing by resonator mass-loading

Minimum detectable mass:

• Δf is the measurement bandwidth
• Q is the quality factor of the resonator
• DR is the dynamic range
• Ec is the kinematic energy of the resonator when driven at a constant 
mean square amplitude

Mass sensitivity influenced by:
• resonator mass
• quality factor
• resonance frequency

Adrian M. Ionescu, June 2009. 28

Example 1: SiC resonators

• Measured frequency shifts: Δf (bottom) 
induced by sequential gold atom 
adsorption upon the CC beam resonator
• Mass of gold atoms, Δm, in the upper plot 
is measured by a separate quartz crystal 
detector 

K. L. Ekinci, X. M. H. 
Huang, and M. L. Roukes, 
“Ultrasensitive 
nanoelectromechanical
mass detection”, Applied 
Physics Letters, vol 84, 
2004.



15

Adrian M. Ionescu, June 2009. 29

Example 2a:
• Detection based upon 

a change in device 
compliance

• Detection based upon 
a change in device 
damping

Adrian M. Ionescu, June 2009. 30

Example 2b:

• Bio-NEMS detection based on a change in 
device compliance

• the fine gold lines at the cantilever tip 
and along the dock in the vicinity of the 
tip are functionalized with a receptor 
specific to the analyte
• binding of an analyte across the gap 
leads to a change in the cantilever’s 
effective spring constant
(compliance)

Arlett JL, Paul MR, Solomon JE, Cross MC, Fraser SE, Roukes ML
BioNEMS: Nanomechanical Systems for Single-Molecule Biophysics
Lect. Notes Phys. 711, 241-270, 2007. 
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Caltech state-of-the-art 
nanosensors

Adrian M. Ionescu, June 2009. 32

Rationale: NEM sensing (DARPA)
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NEM-semiconductor hybrids
Pure M/NEM devices:
- micro/nano movable parts
- passive device operation

Hybrid M/NEM devices:
- micro/nano movable parts
- solid state semiconductor 
device involved in operation

Drain

Source

Gate

Ex: suspended nano-beams Ex: suspended-gate FETs

Adrian M. Ionescu, June 2009. 34

FET with movable parts

20μm

Drain

Source

tgap = 220nm

Suspended-
Gate

A
A’

• Resonant-Gate FET (Nathanson,1966) 
• Suspended-Gate MOSFET

(EPFL 2001, 2005 & 2006)
• Nano-Electro-Mechanical FET

(UC Berkeley, 2005)
• Movable-Body FET (EPFL, 2008)
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2006: EPFL

Sensing?
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NEM-FET design
Out-of-plane In-plane
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NEM-FET simulation & scaling

Simulation: 90nm SG-FET

• Multi-physics simulation for hybrid NEM device design
• Coupled FEA: 2D ANSYS-DESSIS for suspended-gate FET
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A transistor in a guitar string 

drain

source

gate
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Vibrating-body (string FET)

• charge
• piezoresistive

modulations
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VB-FET fabrication

Adrian M. Ionescu, June 2009. 40

Fabrication snapshots
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MEM resonator with intrinsic gain

1 VB-FET resonator
MEM part (filter)

Active part
(amplifier)

VB-FET is a filter-amplifier low power device.

Adrian M. Ionescu, June 2009. 42

Tuning the VB-FET

Model

Experiment
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Intrinsic signal amplification

+ 3dB signal gain measured on a 50Ω VNA
• Rm = -30Ω
(negative res!)
• Impedance 

mismatch 
Higher gain 
expected in 
a matched 
device

D. Grogg et al., IEDM 2008.
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10micro-Watt single FET oscillator

10μW single-device 
oscillator!

EPFL’s VB-FET technology:
• Voltage operation:

Vd=1-2V.
Vg1=Vg2=8-16V.

• Resonance frequency:
1MHz – 100MHz.

• Tuning range: ~1000ppm.
• Thermal drift: ~10ppm/°C.

gain
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High frequency: multi-gate VB-FET

• Frequency (experimental) 24 to 71 MHz
• Multi-gate configuration

Grogg & Ionescu @ IEDM 2008 & VLSI TSA 2006.

Adrian M. Ionescu, June 2009. 46

Experiment multi-gate VB-FET
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NEMS and feedback loop
NEM resonator operation require an 
external oscillator, such as an applied 
a.c. voltage, to compensate for losses.

Self-sustaining (?)
nanoelectromechanical oscillator without 
an external oscillator

Feng, X. L., White, C. J., Hajimiri, 
A. & Roukes, M. L. Nature
Nanotech. 3, 342–346 (2008).

But that’s not a true self-oscillation!

Adrian M. Ionescu, June 2009. 48

True self-sustained NEM oscillation

Self-Oscillations in Field Emission Nanowire
Mechanical Resonators

A. Ayari et al., NANOLETTERS
2007, Vol. 7, No. 8.
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Self-oscillations in VB-FET

• Enabling future single-device nW oscillators

R
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VD

VG2

VS

R
D

S /2

Ranchor

Ranchor

D. Grogg, A.M. Ionescu, submitted to 
IEDM 2009.
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NEMSIC project

• Hybrid Nano-Electro-Mechanical / Integrated Circuit 
Systems for Sensing and Power Management

150MHz
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NEMSIC: resonant gate & body 
transistors for gas and bio-sensing

• Lateral MOS transistor, detection in drain current
• +4.3dB  experimental gain demonstrated compared to 
capacitive detection using same structure

C. Durand et al., IEEE EDL 2008.

- low Q
- high motional resistance
- limited gain

Adrian M. Ionescu, June 2009. 52

Resonant device in NEMS-IC 
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In-Plane Resonant NEM Sensor 
for Sub-Attogram Mass-Detection
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F. A. Hassani et al., SSDM 2009.

• fres= 394.57 MHZ
• enables sensitivity 
less than 10-100 zg/Hz

Reference: quartz crystal microbalance 
(QCM) biosensor features a detection area 
of 0.049 cm2 and a mass detection limit of 
100 pg with a sensitivity of 30 pg/Hz 
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Future NEM applications
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NEM resonators for sensing
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MEM/NEM challenges

• Surfaces and interfaces
• Reliability and packaging
• Scaling
• New material
• Fabrication (control, robustness)
• Modeling (multi-physics)
• Integrate micro/nano power sources

Adrian M. Ionescu, June 2009. 56

Opportunities for NEMS

• Large opportunities for (N/MEMS) in 
enabling new systems (co-integration with 
silicon ICs)

• Look to M/NEM technology to enable 
performance; not drive down cost.

• Nanotechnology applications are driven from 
top-down not bottom-up.

• World competition is intense: massive effort
and investment needed.
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Summary (1)

• Key role of NEMS technology for power savings, 
new functionality and sensing

• NEM resonators: key components for future 
advanced signal electro-mechanical processing: 
role for sub-attogram sensing by mass loading 
or damping in functionalized structures

• Future role of vibrant FET devices for 
integrated sensing

Adrian M. Ionescu, June 2009. 58

Summary (2)
• Vibrating Body FET as active resonator, fres: 

2MHz-71MHz
– Signal gain: > +30dB
– Reduction of the motional resistance: >100x
– Flexible mechanical resonator design

• First active MEM resonator with built-in 
amplification: resonator = oscillator

• Low power consumption: <10μW
• Lowest power self-resonant VB-FET
• Candidate for integrated resonant sensing
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Thank you

Questions?


