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Sunday, May 18, 2008 

 
 
 
 
 
 
 
 
 
 
 
 
 
19:30  Aperitive 
 
20:30  Dinner 
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Monday, May 19, 2008 

 
 
 
  7:30 - 8:30 Breakfast 
 
  8:30 - 8:40 Opening 
 
 
 
  8:40 - 9:25 W. SCHACHERMAYER, Technische Universität Wien 

Hiding the drift 
 
  9:30 - 9:55 P. GUASONI, Boston University 

Portfolios and risk premia for the long run 
 
 9:55 -10:20   S. BIAGINI, University of Pisa 

The relaxed investor and the relaxed utility maximization problem 
 
 
 
10:20 - 10:40 Coffee break 
 
 
 
10:40 - 11:25 D. FILIPOVIC, Vienna Institute of Finance 

Dynamic CDO term structure modeling 
 

11:30 - 11:55 E. EBERLEIN 
Advanced credit portfolio modeling and CDO 

 
11:55 - 12:20 R. CARMONA 

An infinite dimensional stochastic analysis approach to local volatility dynamic 
models  

 
 
 
12:30 - 14:00 Lunch 
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Monday, May 19, 2008 (continued) 

 
 
 
 
 
 
 
14:10 - 14:55 E. PLATEN, University of Technology, Sydney 

Conditions for martingales with applications in finance 
 
15:00 - 15:25 H. PHAM, Université de Paris VI & VII 

Pricing and hedging with execution delay 
 
15:25 - 15:50 J. OBLOJ, Imperial College London 

Model-free pricing and hedging of double barrier options via new solutions to the 
Skorokhod embedding problem 

 
 
 
15:50 - 16:20 Coffee break 
 
 
 
16:20 - 16:45 T. VARGIOLU, Università di Padova 

Optimal Portfolio for HARA utility functions in a pure jump multidimensional 
incomplete market 

 
16:50 - 17:15 P. LESCOT, Université de Picardie 

Isovectors for the Black-Scholes equations 
 
17:20 - 17:45 C. CECI, Università « G. d’Annunzio », Pescara 

Optimal investment problems with marked point stock dynamics 
 
17:50 - 18:15 G. TRUTNAU, Universität Bielefeld 
 Pathwise uniqueness of the squared Bessel process and CIR process, with skew 

reflection on a deterministic time dependent curve 
 
 
 
19:30  Dinner 



 7

 
Tuesday, May 20, 2008 

 
 
 
  7:30 - 8:30 Breakfast 
 
 
 
  8:40 - 9:25 R. SIRCAR, Princeton University 

Analysis and application of multiscale volatility models 
  
  9:30 - 9:55 R. BRUMMELHUIS, University of London 
 Serial dependence in financial time series 
 
9:55 - 10:20 L. VOSTRIKOVA, Université d’Angers 

On the stability of call/put option prices in incomplete models under statistical 
estimations 

 
 
 
10:20 - 10:40 Coffee break 
 
 
 
10:40 - 11:25 J. WÖRNER, Universität Göttingen 

Inference for stochastic volatility models: fine structure market microstructure and 
jumps 

 
11:30 - 11:55 J.-M. CORCUERA, Universitat de Barcelona 

Statistics and Malliavin Calculus 
 
11:55 - 12:20 E. ALOS, Universitat Pompeu Fabra, Barcelona 

An extension of the Hull and White formula 
 
 
 
12:30 - 14:00 Lunch 
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Tuesday, May 20, 2008 (continued) 

 
 
 
 
 
 
 
14:10 - 14:55 A. KYPRIANOU, University of Bath 
 De Finetti’s control problem and spectrally negative Lévy processes 
 
15:00 - 15:25 E. VALKEILA, Helsinki University of Technology 

An extension of the Lévy characterization to fractional Brownian motion 
 
15:25 - 15:50 S. DAYANIK, Princeton University 

Multisource Bayesian sequential change detection 
 
 
 
15:50 - 16:20 Coffee break 
 
 
 
16:20 - 16:45 G. TESSITORE, Università di Milano-Bicocca 
 Ergodic BSDEs and optimal ergodic control in Banach spaces with unbounded 

generator 
 
16:50 - 17:15 R. BUCKDAHN, Université de Bretagne Occidentale 

Stochastic differential games: a backward SDE approach 
 
17:20 - 17:45 M.-O. HONGLER, Ecole Polytechnique Fédérale de Lausanne 
 Connections between an exactly solvable stochastic optimal control problem and a 

non-linear reaction-diffusion equation 
 
17:50 - 18:15 V. BALLY, Université Paris Est-Marne-la-Vallée 

Integration by parts formula for locally smooth laws and applications to equations 
with jumps 

 
18:20 - 18h45 F. UTZET, Universitat Autonoma de Barcelona 

Multiple Stratonovich integrals and the Hu-Meyer formula for Lévy processes 
 
 
 
19:30  Dinner 
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Wednesday, May 21, 2008 

 
 
 
7:30 - 8:30 Breakfast 
 
 
 
  8:40 - 9:25 Y. XIAO, Michigan State University 

Properties of strong local nondeterminism and local times of stable random fields 
 
  9:30 - 9:55 A. MALYARENKO, Mälardalen University 

A family of series representations of the multiparameter fractional Brownian 
motion  

 
9:55 - 10:20 S. TINDEL, Université Henri Poincaré Nancy 1 

On fractional differential systems 
 
 
 
10:20 - 10:40 Coffee break 
 
 
 
10:40 - 11:25 S. ALBEVERIO, Universität Bonn 

 Some new developments in infinite-dimensional integration and asymptotics 
 

11:30 - 11:55 K.-T. STURM, Universität Bonn 
Optimal transportation, gradient flows and Wasserstein diffusion 

 
11:55 - 12:20 W. STANNAT, Technische Universität Darmstadt 

The logarithmic Sobolev inequality for the Wasserstein diffusion 
 
 
 
12:30 - 14:00 Lunch 
 
 
 
14:10 - 14:35 O. BARNDORFF-NIELSEN, University of Aarhus 

Turbulence stochastics 
 
14:40 - 15:05 A. MILLET, Université Paris 1 Panthéon-Sorbonne 

On large deviations for stochastic 2D hydrodynamical systems 
 
 
 
15:05 – 15:15 Break 
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Wednesday, May 21, 2008 (continued) 

 
 
 

Public lectures 
 
 
 
 
15:15 - 15:20 Opening 
 
15:20 - 16:05 P. IMKELLER, Humboldt-Universität zu Berlin 
  Managing climate and energy risk: a mathematical approach: Meta-stability in 

some S(P)DEs related to simple climate models 
 
 
 
16:05 - 16:45 Coffee Break 
 
 
 
16:45 - 17:05 Communication by On. Marco BORRADORI, President of the Ticino State 
Council 
 
17:05 -  17:50 A. ROMER, Università della Svizzera Italiana 

Energie, effet de serre et les implications au niveau planétaire sur la base des 
modèles du GIEC (Groupe d’experts intergouvernemental sur l’évolution du 
climat)  

 
17:55 - 18:40 R. CARMONA, Princeton University 
  The European Union emissions trading scheme : a mathematician’s perspective 
 
 
 
18:45 - 19:45 Aperitive 
 
19:45  Dinner 
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Thursday, May 22, 2008 

 
 
 
  7:30 - 8:30 Breakfast 
 
 
 
  8:40 - 9:25 J.C. MATTINGLY, Duke University 
 The spread of randomness in infinite dimensions and ergodicity for SPDEs 
 
  9:30 - 9:55 M. ROMITO, Università di Firenze 
 The martingale problem for the Navier-Stokes equation  
 
9:55 - 10:20 A.B. CRUZEIRO, IST Lisbon 

Hydrodynamics, probability and the geometry of the diffeomorphisms group 
 
 
 
10:20 - 10:40 Coffee break 
 
 
 
10:40 - 11:25 A. STUART, University of Warwick 

Mathematical foundations of data assimilation problems arising in fluid mechanics 
 
11:30 - 11:55 M. ZÄHLE, Universität Jena 

Stochastic partial differential equations with fractal noise 
 
11:55 - 12:20 I. NOURDIN, Universität Jena 

Stein’s method and weak convergence on Wiener space 
 
 
 
12:30 - 14:00 Lunch 
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Thursday, May 22, 2008 (continued) 

 
 
 
 
 
 
 
14:10 - 14:55 E. PERKINS, University of British Columbia, Vancouver 
 Pathwise uniqueness for stochastic heat equations with Hölder continuous 

coefficients: the white noise case 
 
15:00 - 15:25 S. CERRAI, Università di Firenze 

Normal deviations from the averaged motion for some reaction-diffusion equatins 
with fast oscillating perturbation 

 
15:25 - 15:50 B. RÜDIGER, Universität Koblenz-Landau 

Mild solutions of infinite dimensional stochastic differential equations with Lévy 
noise 

 
 
 
15:50 - 16:20 Coffee break 
 
 
 
16:20 - 16:45 B. ROYNETTE, Université Henri Poincaré Nancy 1 
 A global view of  Brownian penalisations 
 
16:50 - 17:15 P. VALLOIS, Université Henri Poincaré Nancy 1 

Penalisations of Brownian motion with its maximum and minimum processes as a 
weak form of Skorokhod embedding 

 
17:20 - 17:45 J. LORINCZI, University of Loughborough 

Exponential integrability of rough functionals and weak limits  
 
17:50 - 18:15 E. MAYER-WOLF, Technion – Israël Institute of Technology 

Banach-valued Wiener functionals and their divergence 
 
 
 
19:30  Dinner 
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Friday, May 23, 2008 

 
 
 
  7:30 - 8:30 Breakfast 
 
 
 
  8:40 - 9:25 B. MASLOWSKI, Academy of Sciences of the Czech Republic 
 Ergodic control in infinite dimensions 
 
  9:30 - 9:55 C. MUELLER, University of Rochester 
 Negative moments of a linear SPDE 
 
9:55 - 10:20 M. SANZ-SOLE, Universitat de Barcelona 

Some properties of the density of a 3-d stochastic wave equation 
 
 
 
10:20 - 10:40 Coffee break 
 
 
 
10:40 - 11:25 G. DA PRATO, Scuola Normale Superiore di Pisa 

Fokker-Planck equations for stochastic PDE’s 
 
11:30 - 11:55 A. JAKUBOWSKI, Nicolaus Copernicus University, Torun 

On decomposability of stochastic processes of class D 
 
11:55 - 12:20 J.-D. DEUSCHEL, Technische Universität zu Berlin 

Uniqueness of gradient component for non-convex gradient models 
 
 
 
12:30 - 14:00 Lunch 
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Friday, May 23, 2008 (continued) 

 
 
 
 
 
 
 
14:10 - 14:55 M. CRANSTON, University of California, Irvine 
 Some results on homopolymers  
 
15:00 - 15:25 P. BLANCHARD, Universität Bielefeld 

Spectral analysis of complex networks  
 
15:25 - 15:50 N. EISENBAUM, Université de Paris VI 

A Cox process involved in the Bose-Einstein condensation 
 
 
15:50 - 16:20 Coffee break 
 
 
 
16:20 - 16:45 H.-J. ENGELBERT, Friederich-Schiller-Univ. Jena 
 On the structure equation: the Markov case  
 
16:50 - 17:15 H. ALLOUBA, Kent State University 

From BTP and Kuramoto-Sivashinsky PDEs to BTP SIE and KS SPDEs 
 
17:20 - 17:45 J.-Cl. ZAMBRINI, Universidade de Lisboa 

Extrema with constraints in stochastic deformation of variational calculus 
 
17:50 - 18:15 A. GNEDIN, Utrecht University 
 On the asymptotics of exchangeable coalescents 
 
 
 
18:15  End of Meeting 
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Sergio Albeverio (Universität Bonn)

Some new developments in infinite-dimensional integration and asymp-
totics

Hassan Allouba (Kent State University)

From BTP and Kuramoto-Sivashinsky PDEs to BTP SIE and KS
SPDEs

Recently we have introduced a new large class of processes that we call
Brownian-time processes (BTPs), and we connected them to new fourth order
PDEs. The BTP-PDE connection is interesting in several respects. Proba-
bilistically, it settled the open problem of linking Burdzy’s IBM—a special case
of BTPs—to PDEs. Also, BTP-PDEs manifest the memory preserving (non-
Markovian) nature of the underlying BTP by including the Laplacian of the
initial solution u0 in the PDE itself. Analytically, the BTP-PDEs have smooth
solutions for all times and all spatial dimensions d ≥ 1 despite the presence of
the “nasty” positive bi-Laplacian. On the other hand, by modifying the BTPs
and adapting the methods connecting them to PDEs, we were able to solve a
linearized version of the famous Kuramoto-Sivashinsky (KS) PDE in all spatial
dimensions d ≥ 1 using what we call the imaginary BT with Brownian angle
process (IBTBAP). By the use of a Duhamel type principle, we can then treat
nonlinear versions of KS and Swift-Hohenberg (SH) PDEs.

After reviewing some of these results, I will introduce and talk about BTP
stochastic integral equations (SIEs):

U(t, x) =
∫

Rd
KBTBM

t (x, y)u0(y)dy +
∫

Rd

∫ t

0

KBTBM

t−s (x, y)a(U(s, y))W(ds× dy)

where the kernel KBTBM
t (x, y) is the density of a Brownian-time Brownian motion

(BTBM) and W is space-time white noise. It turns out that—under mild condi-
tions on the diffusion coefficient a—there exists γ-Hölder-continuous solutions
to the above BTP SIE, and that the Hölder exponent γ is dimension-dependent
and γ ∈ (0, 4−d

8

)
for 1 ≤ d ≤ 3. This is in sharp contrast to second order

reaction diffusion SPDEs, whose kernel formulation may be obtained from the
BTP SIE above by replacing KBTBM

t (x, y) with the density of a BM. In that case
real-valued solutions are confined to d = 1. The method of the proof consists
of introducing Brownian-time random walks (BTRWs) on lattices and rewrit-
ing the spatially-discretized version of the BTP SIE (BTRW SIE) in terms of
the density of the BTRW. We then obtain estimates on the BTRW density
that we use to prove existence and regularity for the BTRW SIE as well as
to prove the convergence of these discretized BTRW SIE to our BTP SIE. In
conclusion, if we replace KBTBM

t (x, y) in the BTP SIE by the kernel associated
with our IBTBAP we obtain the kernel formulation of the linearized KS SPDE
driven by space-time white noise. Adapting our BTP approach we get similar
existence and dimension-dependent regularity for the KS and SH SPDEs in spa-
tial dimensions 1 ≤ d ≤ 3. Time permitting, I’ll discuss some related ongoing
research.
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Elisa Alòs (Universitat Pompeu Fabra)

An extension of the Hull and White formula and applications

By means of Malliavin Calculus we see that the classical Hull and White
formula for option pricing can be extended to the case where the volatility and
the noise driving the stock prices are correlated and where we have jumps in
the asset price dynamic model. This extension will allow us to describe the
effect of correlation on option prices and to derive approximate option pricing
formulas. Moreover, it provides a natural approach to deal with the short-
date behavior of the implied volatility for jump-diffusion models with stochastic
volatility. This theory does not require the volatility to be a diffusion or a
Markov process. Moreover, with these techniques the short-time behavior of
the implied volatility can be analyzed for known and new volatility models; in
particular, models that reproduce short-date skews of order O(T − t)δ, for δ
> 1/2.

Vlad Bally (Université Paris Est, Marne-la-Vallée)

Integration by parts formula for localy smooth laws and applications
to equations with jumps

We establish the analogues of the integration by parts formula from Malliavin
calculus in an abstract framework and we use it in order to study the regularity
of the law of the solution of stochastic differential equations with jumps. The
specific point is that the coefficients of these equations have a discontinuity
and so the Malliavin calculus for jump type processes developed by Bismut and
then by Bichteler, Gravereux and Jacod does not apply in this framework. The
motivation for this type for equations comes from physical models.

Ole Barndorff-Nielsen (University of Aarhus)

Turbulence stochastics

A discussion is given of the modelling, by tempo-spatial stochastic processes,
of velocities in freely turbulent fluids. The processes primarily considered are
stationary and of the ambit type, and these are structured so as to reflect the
main stylised features of free turbulence, including Kolmogorov’s phenomeno-
logical theory. The processes are not of the semimartingale type, raising the
question of how to extend some of the key techniques of semimartingale theory
to settings of the present kind.

Sara Biagini (Università di Pisa)

The relaxed investor and the relaxed utility maximization problem

For utility functions U finite only on the positive real line, Kramkov and
Schachermayer showed that under a condition on U , the well- known Reason-
able Asymptotic Elasticity, the associated utility maximization problem has
a (unique) optimal solution, independently of the probabilistic model. What
about the “relaxed” investor, whose utility does not satisfy RAE? This has
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been also addressed by Kramkov and Schachermayer, but the optimal solution
is characterized only for sufficiently small initial endowments. Under a suffi-
cient (and basically necessary) joint condition on the probabilistic model and
the utility, we show by relaxation and duality techniques that the maximization
problem admits solution for any initial endowment. However, a singular part
may pop up, that is the optimal investment may have a component which is
concentrated on a set of probability zero. This singular part may fail to be
unique.

Philippe Blanchard (Universität Bielefeld)

Spectral analysis of complex networks

It is shown that random walks and spectral properties of the graph Laplacian
are natural procedure to analyse and classify complex empirical networks. We
explain how each graph of order N can be embedded in a Riemannian manifold
of dimension N − 1. Applications of this approach to Petersen regular graphs
and to urban networks (Manhattan, Venezia) will be briefly discussed. Bird
flocking is a striking example of collective animal behaviour. We will describe
models of coupled dynamical systems. The networks topology is encoded in the
Laplacian. Synchronization will emerge from the interplay between the spectral
properties of the Laplacian and the Lyapunov spectrum of the dynamics.

Raymond Brummelhuis (University of London)

Serial dependence in financial time series

As with dependence in the static case, serial dependence in time-series can-
not always be reliably quantified by linear (auto-) correlation, in particular for
non-linear time-series like GARCH. For the latter, model auto-correlations of
e.g. the squared series (a traditional way of exhibiting serial dependence in
ARCH-models) can easily fail to exist, and sample auto-correlations, though
often computed in practice, may fail to convey useful information for failing to
converge to a number in the large sample limit (as shown by work of Davis,
Mikosch and others). In this situation it is natural to use other risk-measures
to quantify serial dependence, in particular copula-based ones which do not
require moment-conditions for their existence. In this talk we will study se-
rial dependence in ARCH-models using lower tail dependence coefficients and
certain generalizations there-off. The lower tail dependence coefficient of two
random variables X and Y is defined by

λX|Y = lim
α→0

P (X < qX(α) |Y < qY (α)) ,

(where qX denotes the quantile-function of X and where we assume existence
of the limit) and the generalized lower tail dependence coefficient by

λψX|Y = lim
α→0

P (X < qX(ψ(α)) |Y < qY (α)) ,

where ψ = ψ(α) will typically be required to tend to 0 at a rate not faster than
α: α = O(ψ(α)) as α→ 0.
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Our results will for example show that if (Xn)n is a (genuine) station-
ary ARCH(1), then λXn+p|Xn 6= 0 for all p ≥ 0, while it can be 0 for non-
stationary ARCH(1). Furthermore, for ψ(α) tending to 0 sufficiently slowly
(e.g. ψ(α) = α1−ε with ε ∈ (0, 1)), we will have, for both stationary and non-
stationary (Xn)n, that λψXn+p|Xn 6= 0, with a numerical value which is in fact
equal to the (unconditional) probability that Xn < 0, and therefore in particu-
lar independent of p.

Dependence measures like λX|Y and λψX|Y are relevant for financial risk-
management, where quantiles are interpreted as value-at-risk. Indeed, in a
financial setting where Xn is a daily price or a return,

P
(
Xn+p < qXn+p(ψ(α))|Xn < qXn(α)

)
is the conditional probability of two value-at-risk violations (at different confi-
dence - levels if ψ(α) 6= α) which are p days apart. We will report on numerical
MC studies showing that the limit, λψXn+p|Xn well-approximates these probabili-
ties at small but non-zero values of α like the α = 0.01 used in risk management.
We will also report on empirical estimates of these probabilities for actual fi-
nancial time-series.

Rainer Buckdahn (Université de Bretagne Occidentale)

Stochastic differential games: a backward SDE approach

In this talk that is based on joint work with Li Juan (Shandong University,
branch of Weihai, P.R.China), we study zero-sum two-player stochastic differ-
ential games with the help of the theory of Backward Stochastic Differential
Equations (BSDEs). More precisely, we generalize the results of the pioneering
work of Fleming and Souganidis (1989) by considering cost functionals defined
by controlled BSDEs and by allowing the admissible control processes to depend
on events occurring before the beginning of the game. This extension of the class
of admissible control processes has the consequence that the cost functionals be-
come random variables. However, by making use of a Girsanov transformation
argument (combined with Kulik’s transformation in the case of jumps), which,
to our best knowledge, is new in this context, we prove that the upper and the
lower value functions of the game remain deterministic. Apart from the fact
that this extension of the class of admissible control processes is quite natural
and reflects the behavior of the players who always use the maximum of avail-
able information, its combination with BSDE methods, in particular that of the
notion of stochastic “backward semigroups” introduced by Peng (1997), allows
then to prove a dynamic programming principle for both the upper and the
lower value functions of the game in a straight-forward way. The upper and the
lower value functions are then shown to be the unique viscosity solutions of the
upper and the lower Hamilton-Jacobi-Bellman-Isaacs equations, respectively.
For this Peng’s BSDE method (1992; 1997) is extended from the framework of
stochastic control theory into that of stochastic differential games.
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René Carmona (Princeton University)

An infinite-dimensional stochastic analysis approach to local volatility
dynamic models

The difficult problem of the characterization of arbitrage free dynamic stochas-
tic models for equity markets was recently given a new life by the introduction
of market models based on the dynamics of the local volatility surface. Typi-
cally, market models are based on Itô stochastic differential equations modeling
the dynamics of a set of basic instruments including, but not limited to, the
option underliers. These market models are usually recast in the framework of
the HJM philosophy originally articulated for Treasury bond markets. In this
talk, we present recent results on the local volatility dynamics by employing an
infinite-dimensional stochastic analysis approach.

This presentation is based on a joint work with S. Nadotchiy.

René Carmona (Princeton University)

The European union emissions trading scheme: a mathematician’s
perspective

Some environmental economists claim that market forces can resolve exter-
nalities such as pollution and global warming. In order to weight on this debate
in a scientific manner, we introduce a mathematical model for a cap-and-trade
economy which captures most of the features of the European Union Emissions
Trading Scheme. We complement our theoretical analysis with numerical simu-
lation tools designed for regulators and policy makers. Choosing the example of
the electricity market in Texas, we illustrate numerically the qualitative prop-
erties observed during the implementation of the first phase of the European
Union cap-and-trade CO2 emissions scheme, comparing the results of cap-and-
trade schemes to the Business As Usual benchmark. In particular, we confirm
the presence of windfall profits criticized by the opponents of these markets. We
also demonstrate the shortcomings of tax and subsidy alternatives. Finally we
introduce a relative allocation scheme which despite of its ease of implementa-
tion, leads to smaller windfall profits than the standard scheme.

Claudia Ceci (Università di Chieti-Pescara)

Optimal investment problems with marked point stock dynamics

Optimal investment problems in an incomplete financial market with pure
jump stock dynamics are studied. An investor with Constant Relative Risk
Aversion (CRRA) preferences, including the logarithmic utility, wants to max-
imize her/his expected utility of terminal wealth by investing in a bond and
in a risky asset. The risky asset price is modeled as a geometric marked point
process, whose dynamics is driven by two independent doubly stochastic Pois-
son processes, describing upwards and downwards jumps. A stochastic control
approach allows to provide optimal investment strategies and closed formulas
for the value functions associated to the utility optimization problems. More-
over, the solution to the dual problems associated to the utility maximization
problems are derived. The case when intermediate consumption is allowed is
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also discussed.

Sandra Cerrai (Università di Firenze)

Normal deviations from the averaged motion for some reaction-diffusion
equations with fast oscillating perturbation

I will first present some results on averaging for a wide class of stochastic
PDEs of reaction-diffusion type and then I will concentrate my attention on
Gaussian fluctuations from the averaged motion for some simpler models.

Alexandra Chronopoulou (Purdue University)

Hurst-index estimation and reproduction property for non-Gaussian
Hermite processes

We study the behavior of Hermite processes of order q with self-similarity
index H ∈ (1/2, 1). Since these processes are self-similar, have stationary in-
crements and exhibit long-range dependence, it is of great importance to esti-
mate the parameter H that describes their behavior. Using Wiener-Itô multiple
stochastic integrals and Malliavin calculus we prove that the variations of a
general Hermite process converge in L2(Ω) to a Rosenblatt random variable,
which is an element of the second Wiener chaos. Moreover, from a theoretical
point of view, we study the reproduction property of Hermite processes: the
terms in the Wiener chaos decomposition of the Hermite process’s quadratic
variation converge, after appropriate normalization, to other Hermite processes
of different orders and self-similarity parameters.

This presentation is based on a joint work with Ciprian Tudor (Paris-Sorbonne)
and Frederi Viens (Purdue).

Daniel Conus (Ecole Polytechnique Fédérale de Lausanne)

The non-linear stochastic wave equation in high dimensions

We propose an extension of Walsh’s classical martingale measure stochastic
integral that makes it possible to integrate a general class of Schwartz distri-
butions, which contains the fundamental solution of the wave equation, even in
dimensions greater than 3. This leads to a square-integrable random-field solu-
tion to the non-linear stochastic wave equation in any dimension, in the case of
a driving noise that is white in time and correlated in space. In the particular
case of an affine multiplicative noise, we obtain estimates on p-th moments of
the solution (p ≥ 1), and we show that the solution is Hölder continuous. The
Hölder exponent we obtain is optimal.

José Manuel Corcuera (Universitat de Barcelona)

Statistics and Malliavin calculus

When we do statistics in a Wiener space, for instance when observations
come from a solution of stochastic differential equation driven by a Brownian
motion, Malliavin Calculus can be used to obtain expressions for the score func-
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tion as a conditional expectation. These expressions can be useful to study the
asymptotic behavior of the model and estimators. For instance we can derive
the local asymptotic normality property. We proceed from very simple exam-
ples to more complex ones where processes under observation can have a jump
component.

Michael Cranston (University of California, Irvine)

Some results on homopolymers

This talk will focus on properties of the Gibbs measure

dPβ,t
dP

=
expβ

∫ t
0
δ0(x− s)ds
Zβ,t

,

where P is the measure on continuous time simple symmetric random walk on
Zd and Zβ,t is the partition function. We examine the free energy, explain phase
transitions and study the behavior of typical Pβ,t paths as t → ∞ at or near
the critical parameter of β for the phase transition. We also will discuss similar
models in an attempt to establish universality and scaling properties of these
polymer models. The talk is a review of joint work of the speaker with Hryniv,
Koralov, Molchanov and Vainberg.

Ana Bela Cruzeiro (Instituto Superior Técnico, Lisbon)

Hydrodynamics, probability and the geometry of the diffeomorphisms
group

We generalize Arnold’s Lagrangean picture for the Euler equation on the
torus to the Navier-Stokes equation by using a Brownian motion on the corre-
sponding space of diffeomorphisms.

Giuseppe Da Prato (Scuola Normale Superiore, Pisa)

Fokker-Planck equations for stochastic PDE’s

We consider a class of stochastic PDE’s in a Hilbert space H. We prove,
under suitable assumptions, existence and uniqueness of measure-valued solu-
tions of these equations in a finite interval [0, T ]. Then we prove existence and
uniqueness of measure-valued solutions in the whole real line. Applications are
given to reaction-diffusion equations.

Savas Dayanik (Princeton University)

Multisource Bayesian sequential change detection

Suppose that local characteristics of several independent compound Poisson
and Wiener processes change suddenly and simultaneously at some unobserv-
able disorder time. The problem is to detect the disorder time as quickly as
possible after it happens and minimize the rate of false alarms at the same
time. These problems arise, for example, from managing product quality in
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manufacturing systems and preventing the spread of infectious diseases. The
promptness and accuracy of detection rules improve greatly if multiple inde-
pendent information sources are available. Earlier work on sequential change
detection in continuous time does not provide optimal rules for situations in
which several marked count data and continuously changing signals are simul-
taneously observable. In this talk, optimal Bayesian sequential detection rules
will be described for such problems when the marked count data is in the form
of independent compound Poisson processes, and the continuously changing
signals form a multi-dimensional Wiener process.

This presentation is based on a joint work with Vincent Poor and Semih
Sezer.

Jean-Dominique Deuschel (Technische Universität Berlin)

Uniqueness of gradient component for non-convex gradient models

We consider a gradient interface model with interaction potential which is
a non-convex perturbation of a convex potential. Using a technique for decou-
pling of the nearest neighboring vertices into even and odd vertices, we show
at high temperature the uniqueness for the ∇φ Gibbs measures, the strict con-
vexity of the surface tension, scaling limits and decay of covariances. This is an
extension of Funaki and Spohn’s result, where the strict convexity of potential
was crucial in their proof. The result could be applied for the derivation of the
hydrodynamical limit for the Landau-Ginsburg model.

This presentation is based on a joint work with Codina Cotar.

Ernst Eberlein (Universität Freiburg, Germany)

Advanced credit portfolio modeling and CDO pricing

Modeling dependence is a key issue when one derives the loss distribution
of a portfolio of credit instruments. We extend the factor model approach of
Vasiček by using more sophisticated distributions for the factors. Completely
different distributions from the class of generalized hyperbolic distributions and
their limits can be chosen for the systematic and the idiosyncratic factor in this
approach.

As a result an almost perfect fit to market quotes of DJ iTraxx Europe
standard tranches is achieved. The correlation structure remains flat over all
CDO tranches and maturities. No base correlation framework is needed.
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This presentation is based on a joint work with R. Frey and E. A. von Ham-
merstein.

Nathalie Eisenbaum (Université de Paris VI)

A Cox process involved in the Bose-Einstein condensation

The point process corresponding to the configurations of bosons in standard
conditions is a Cox process driven by the square norm of a centered Gaussian
process. This point process is infinitely divisible. We point out the fact that
this property is preserved by the Bose-Einstein condensation phenomenon and
show that the obtained point process after such a condensation occurred, is still
a Cox process but driven by the square norm of a shifted Gaussian process, the
shift depending on the density of the particles.

Hans-Jürgen Engelbert (Friedrich Schiller-University)

On the structure equation: The Markov case

A (locally square integrable, local) martingale X is called normal if the as-
sociated increasing process 〈X〉 is given by 〈X〉t = t, t ≥ 0. For its square
variation process [X] we then have that M with Mt = [X]t− t, t ≥ 0, is a mar-
tingale. If, moreover, X satisfies the previsible representation property (PRP)
(with respect to its natural filtration) then there exists a previsible process H
such that

Mt =
∫ t

0

Hu dXu, t ≥ 0 .

This implies the stochastic equation

[X]t = t+
∫ t

0

Hu dXu, t ≥ 0, X0 = x0 ∈ R , (1)

which is called Structure Equation (SE) for the (unknown) martingale X. (By
definition of a solution, X and

∫ t
0
Hu dXu should be martingales.) Note that

every solution X of the structure equation is a normal martingale. The study
of normal martingales was motivated by the fact that some of them (Brownian
motion, compensated Poisson process, ...) satisfy the so-called chaotic repre-
sentation property (CRP). Both Brownian motion and compensated Poisson
process satisfy the structure equation (1) (for H ≡ 0 and for H ≡ 1) and it
was the hope to find more examples of martingales X satisfying CRP (or only
PRP) as solutions of the structure equation (1). An important special case of
the structure equation is the so-called Markov case: For a given Borel function
f : R 7→ R, we look for a martingale X such that

[X]t = t+
∫ t

0

f(Xu−) dXu, t ≥ 0, X0 = x0 ∈ R . (2)
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If f(x) = βx, x ∈ R, there is a unique solution X of (2) and it is well-known
that X satisfies PRP and, for −2 ≤ β ≤ 0, CRP (cf. M. Emery [1]). (The
solutions are called Azéma martingales.) A result of P.A. Meyer [2] states that
the Markov structure equation (2) always has a solution if f is continuous.

In the present talk, we will give a different approach to the study of the
structure equation in the Markov case. We shall construct solutions in two
steps by solving a stochastic equation driven by a compensated Poisson process
Π followed by an appropriate time change. The first step is very closely related to
the problem of solving the autonomous deterministic equation dZt = −f(Zt) dt.
Besides existence of solutions, we shall also discuss uniqueness in law and PRP
of solutions.
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Damir Filipovic (Vienna Institute of Finance)

Dynamic CDO term structure modelling

A collateralized debt obligation (CDO) is a security backed by a pool of
defaultable reference entities such as bonds, loans or credit default swaps. The
reference entities form the asset side of the CDO. Traded products are notes
on so-called tranches of the CDO. They have different seniorities and build the
liability side of the CDO.

Quite recently there emerged several new attempts on modelling CDO losses
based on the idea instead of modeling all single defaults in the asset pool (the
bottom-up approach) to model the aggregated loss function on this pool directly
(top-down approach). Schönbucher [3] uses a loss process which lives on a
discrete grid and arrives at a multivariate forward rate setting. Bennani [1]
and Sidenius et al. [4] work with a continuous loss distribution. The aim of
this paper is to give a unified general approach that encompasses the above
mentioned.

We fix a filtered probability space (Ω,F , (Ft),Q), where we assume that Q
is a risk-neutral pricing measure. Let rt denote the continuous adapted short
rate process.

Consider a CDO with an overall nominal normalized to 1, and let I ⊂ [0, 1]
denote the set of all attainable loss fractions, i.e. x ∈ I represents the state
where 100x% of the overall nominal has defaulted. Throughout, we assume
that either I is finite with 0, 1 ∈ I, or I = [0, 1], endowed with the respective
topologies.

We denote by Lt the I-valued adapted càdlàg increasing loss process with
L0 = 0. We assume that, for all x ∈ I, there exists some predictable process
λ(t, x) such that

1{Lt≤x} +
∫ t

0

1{Ls≤x}λ(s, x)ds
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is a martingale.
The basic instrument is a (T, x)-bond which pays 1{LT≤x} at maturity T , for

x ∈ I and T ≥ 0. Its price at time t ≤ T is given by risk-neutral expectation

P (t, T, x) = E
[
e−

R T
t
rsds1{LT≤x} | Ft

]
. (1)

Obviously, P (t, T, x) is increasing in x and decreasing in T .
Since Lt ≤ 1, the risk free T -bond price P (t, T ) at time t ≤ T satisfies

P (t, T ) = P (t, T, 1) = E
[
e−

R T
t
rsds | Ft

]
.

The (T, x)-bonds are the fundamental components for the pricing of Euro-
pean style options. Indeed, consider any continent claim with payoff

F (LT ) = F (1)−
∫
I
F ′(y)1{LT≤y} dy

at maturity T , for some bounded measurable derivative F ′. Its price at time
t ≤ T is then given as linear combination of (T, x)-bonds

E
[
e−

R T
t
rsdsF (LT ) | Ft

]
= F (1)P (t, T )−

∫
I
F ′(y)P (t, T, y) dy.

Example 1. The basic components of a credit default swap are put options with
payoff (K − LT )+ =

∫K
0

1{LT≤y} dy.

The ultimate goal is to provide a term structure model of Heath-Jarrow-
Morton [2] type for P (t, T, x). That is, we give necessary and sufficient condi-
tions such that

P (t, T, x) = 1{Lt≤x} exp

(
−
∫ T

t

(f(t, u) + φ(t, u, x))du

)
(2)

for some Itô processes

f(t, T ) = f(0, T ) +
∫ t

0

a(s, T )ds+
∫ t

0

b(s, T )> · dWs (3)

φ(t, T, x) = φ(0, T, x) +
∫ t

0

α(s, T, x)ds+
∫ t

0

β(s, T, x)> · dWs. (4)

HereW denotes some (multi-dimensional) Brownian motion, and a(t, T ), b(t, T ),
α(t, T, x), β(t, T, x) satisfy the appropriate regularity conditions such that the
following formal manipulations and statements are meaningful. In particular,
φ(t, T, x) is decreasing in x ∈ I with φ(t, T, 1) = 0.

Theorem 2. If P (t, T, x) can be represented of the form (2) then necessarily,

rt = f(t, t), (5)

a(t, T ) = b(t, T )> ·
∫ T

t

b(t, u)du, (6)
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and on {Lt ≤ x}

λ(t, x) = φ(t, t, x), (7)

α(t, T, x) = b(t, T )> ·
∫ T

t

β(t, u, x)du+ β(t, T, x)> ·
∫ T

t

(b(t, u) + β(t, u, x))du.

(8)

The more interesting part for applications is the converse of Theorem 2.

Theorem 3. Suppose that Ω = Ω1 × Ω2, F = G ⊗ H, Ft = Gt ⊗ Ht, and
Q(dω1, dω2) = Q1(dω1)Q2(ω1, dω2), where

(i) (Ω1,G, (Gt),Q1) is a filtered probability space,

(ii) (Ω2,H) is the canonical space of càdlàg paths from R+ to I, and

(iii) Q2 is a probability kernel from Ω1 to H to be determined by λ(t, x).

Then any exogenous specification of b(t, T ) and β(t, T, x) induces some loss pro-
cess Lt such that the bonds defined via (2)–(8) are arbitrage-free, that is, satisfy
relation (1).

Finally, we provide an affine specification of the above generic model, which
allows for efficient computation of CDO derivatives such as credit default swaps.
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This presentation is based on a joint work with Ludger Overbeck (Universität
Giessen) and Thorsten Schmidt (Universität Leipzig).

Alexander V. Gnedin (Utrecht University)

On the asymptotics of exchangeable coalescents

A Λ-coalescent is a process of random coagulation in which the particles
merge by collision, and the collision rates within a finite collection of particles
only depend on the number of particles to collide. The rates are representable
as moments of a probability measure Λ. Under certain assumptions on Λ, we
discuss limit theorems for the total number of collisions in the process which
starts with a given number of particles and terminates as all particles merge.
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Paolo Guasoni (Boston University)

Portfolios and risk premia for the long run

This paper develops a method to derive optimal portfolios and risk-premia
explicitly in a general diffusion model, for an investor with power utility and in
the limit of a long horizon. The market has several risky assets and is potentially
incomplete. Investment opportunities are driven by, and partially correlated
with, state variables which follow an autonomous diffusion. The framework nests
models of stochastic interest rates, return predictability, stochastic volatility and
correlation risk.

In models with several assets and a single state variable, long-run portfolios
and risk-premia admit explicit formulas up the solution of an ordinary differen-
tial equation, which characterizes the principal eigenvalue of a elliptic operator.
Multiple state variables lead to a partial differential equation, which is solvable
for most models of interest.

For each value of the relative risk aversion parameter, the paper derives
the long-run portfolio, its implied risk-premia and pricing measure, and their
performance on a finite horizon.

Erika Hausenblas (University of Salzburg)

Maximal regularity for stochastic convolutions driven by Lévy noise

We are interested in the maximal regularity of the Ornstein-Uhlenbeck driven
by purely discontinuous noise. In particular, let (S,S) be a measurable space,
E be a Banach space of martingale type p, 1 < p ≤ 2, and A be an infinitesimal
generator of an analytic semigroup (e−tA)0≤t<∞ in E. We consider the following
SPDE written in the Itô-form{

du(t) = Au(t−) dt+
∫
S
ξ(t;x)η̃(dx; dt),

u(0) = 0, (1)

where η̃ is a S valued compensated Poisson random measure defined over a
filtered probability space (Ω;F ; (Ft)0≤t<∞; P) with Lévy measure ν on S, spec-
ified later, and ξ : Ω × S → E is a progressively measurable process satisfying
certain integrability conditions also specified later. The mild solution to (1) is
called Ornstein-Uhlenbeck process and it is given by the following formula

u(t) :=
∫ t

0

∫
S

e−A(t−r)ξ(r, x) η̃(dx; dr), t > 0.

Suppose 1 ≤ q ≤ p. Our main result is the following inequality

E
∫ T

0

|u(t)|p
DA(θ+ 1

p ,q)
dt ≤ CE

∫ T

0

∫
S

|ξ(t, z)|pDA(θ,q) dt, (2)

where DA(θ, p), θ ∈ (0, 1), denotes the real interpolation space of order θ be-
tween E and D(A).

This presentation is based on a joint work with Brzeźniak (IST Lisbon).
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Max-Olivier Hongler (Ecole Polytechnique Fédérale de Lausanne)

Connection between an exactly solvable stochastic optimal control
problem and a nonlinear reaction-diffusion equation

An exactly soluble optimal stochastic control problem involving a diffusive
two-state random evolution process will be presented. By using the technique
of logarithmic transformations, our class of models is directly connected to a
nonlinear reaction-diffusion type equation. The work generalizes the recently
established connection between the non-linear Boltzmann-like equations intro-
duced by Ruijgrok and Wu and the optimal control of a two-state random evolu-
tion process. In the sense of this generalization, the nonlinear reaction-diffusion
equation is identified as the natural diffusive generalization of the Ruijgrok-Wu
and Boltzmann model.

This presentation is based on a joint work with R. Filliger and L. Streit.

Peter Imkeller (Humboldt-Universität zu Berlin)

Meta-stability in some S(P)DEs related to simple climate models

Simple models of the earth’s energy balance are able to interpret some qual-
itative aspects of the dynamics of paleo-climatic data. In the 1980s this led
to the investigation of periodically forced dynamical systems of the reaction-
diffusion type with small Gaussian noise, and a rough explanation of glacial
cycles by Gaussian meta-stability. A spectral analysis of Greenland ice time
series performed at the end of the 1990s representing average temperatures dur-
ing the last ice age suggest an α−stable noise component with an α ∼ 1.75.
Based on this observation, papers in the physics literature attempted an in-
terpretation featuring dynamical systems perturbed by small Lévy noise. We
study exit and transitions between meta-stable states for solutions of stochastic
differential equations and stochastic reaction-diffusion equations derived from
this prototype. Due to the heavy-tail nature of the α-stable component of the
noise, the results for Lévy noise differ strongly from the well known case of
purely Gaussian perturbations. It has, however, been suggested that the exit
and transition characteristics of dynamical systems perturbed by small Lévy
noise approach Gaussian behavior as the heavy tails of their jump laws become
exponentially light of order γ, i.e. if for x → ∞ they are given by exp(−cxγ),
and as γ → 2. We show that this is surprisingly false, by exhibiting a phase
transition at γ = 1.

Interpreting paleo-climatic time series by simple dynamical systems with
noise leads to statistical model selection problems. For instance, one needs
an efficient testing method for the best fitting α-stable noise component. We
develop a statistical testing method based on the p-variation of the solution tra-
jectories of SDE with Lévy noise, for example by showing asymptotic normality
or asymptotic β-stability of their approximations along finite interval partitions.

This presentation is based on a joint work with C. Hein, M. Högele, I.
Pavlyukevich, and T. Wetzel.
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Adam Jakubowski (Nicolaus Copernicus University)

On decomposability of stochastic processes of class D

Both the Doob-Meyer and the Graversen-Rao decomposition theorems can
be proved following an approach based on predictable compensators of dis-
cretizations and weak-L1 technique, which was developed by K.M. Rao. It is
shown that any decomposition obtained by Rao’s method gives predictability
of compensators without additional assumptions (like submartingality in the
original Doob-Meyer theorem or finite energy in the Graversen-Rao theorem).

A bounded stochastic process is constructed, which does not admit any
decomposition of the Doob-Meyer type.

Agnessa Kovaleva (Mechanical Engineering Res. Institute, Russia)

Control of large deviations in Lagrangian systems with noise-inde-
pendent residence time

We demonstrate the existence of a (non-optimal) dissipative control, gener-
ating a predetermined noise-independent residence time in a system subjected
to potential forces and weak additive noise. We take a Hamiltonian system with
weak noise as a basic uncontrolled model. The controlled system becomes dissi-
pative with an attracting fixed point. The solution employs the large deviation
principle. As in [1, 2], we construct a HJB equation for the logarithmic asymp-
totics of the residence time (in the small noise limit). We derive an explicit
solution of the HJB equation in the form of a transformation of the Hamilto-
nian of the system. The closed-form solution allows choosing a control law so
as to obtain the residence time independent of the noise intensity.
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Andreas Kyprianou (University of Bath)

De Finetti’s control problem and spectrally negative Lévy processes

Suppose that X is a general spectrally negative Lévy process with probabil-
ities {Px : x ∈ R}. Consider the age-old (actuarial) control problem commonly
attributed to de Finetti (1957) of finding the pair (v, L∗) such that

v(x) = sup
L∈Π

Ex

(∫ σL

0

e−qtdLt

)
= Ex

(∫ σL
∗

0

e−qtdL∗t

)
(1)

where q > 0, Π is a suitable class of dividend strategies, L∗ ∈ Π and for each
L ∈ Π, σL = inf{t > 0 : Xt−Lt < 0} is the ‘ruin time’ of the controlled process.
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Within the threshold strategies, there are two types of strategies which are
known to lead to optimal solutions depending on the underlying structure of
the Lévy process and the class Π of permissible dividend strategies. The first
type of strategy corresponds to reflecting X at a barrier of level b > 0. In that
case L∗t = b ∨ Xt − b where Xt = sups≤tXs. See for example the discussion
in Bühlmann (1970) where one finds reference to the work of de Finetti who
proposed this problem and solution in a discrete time setting. The second type
of strategy, introduced in a variant of the original problem by Jeanblanc and
Shiryaev (1995) and Asmussen and Taksar (1995), corresponds to refracting X
at a barrier of level b > 0. In short this means subtracting a linear drift off from
X with an appropriate rate δ > 0 whenever the aggregate process increases
above the level b. Hence the aggregate process is descri bed by the stochastic
differential equation

Ut = Xt − δ
∫ t

0

1{Us>b}ds. (2)

Within the class of Lévy processes, the aforementioned strategies have been
explored in the case that X is either a linear Brownian motion or a compound
Poisson process with drift and exponentially distributed negative jumps.

When dealing with (1) in the general setting of a spectrally negative Lévy
process, even when the jump structure is that of a compound Poisson process
with a general (negatively supported) jump distribution, there are many compli-
cations which enter the analysis. Indeed, it is known that a threshold strategy
of the type described above is not necessarily optimal. None the less, thanks
to recent developments in the general theory of Lévy processes, re-examining
this problem has become possible and the last two years has seen a sequence of
(as of yet mostly unpublished) results pertaining to existence and characteriza-
tion of the solution to (1) in a considerably more general setting. Key to the
analysis is the theory of so-called scale functions for spectrally negative Lévy
processes, which itself has attracted some attention and development in the last
few years. Another problem arising is the existence and uniqueness of solutions
to (2). Despite its remarkably simple form, it fits in to the class of degenerate
SDEs driven by Lévy processes when there is no Gaussian component present
for which there seems to be limited results available.

The purpose of this talk is to give a review of the very recent family of
research papers written in this direction (authored by Avram, Pistorius, Pal-
mowski, Loeffen, Hubalek, Rivero, Song and K.). Specifically we shall be con-
cerned with the important role of scale functions for spectrally negative Lévy
processes in:

(a) establishing existence and uniqueness of strong solutions to (2),

(b) establishing analytical expressions for the value of the two types of thresh-
old strategies given above,

(c) establishing optimality criteria.

Since many of the calculations will involve scale functions and the latter are
only determined up to knowing their Laplace transform, the presented material
suffers the criticism of ‘expressing one unknown in terms of another unknown’.
Also in this talk we shall aim to address this criticism by exposing a method
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for generating numerous explicit examples of scale functions, where previously
scarcely a handlful examples have been available.
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Paul Lescot (Université de Picardie)

Isovectors for the Black-Scholes equations

We compute the isovectors for the Black-Scholes equations by a method
broadly similar to the one used for the heat equation (resp. the heat equation
with potential term) in joint papers with J.-C. Zambrini (see the Proceedings
of the previous two Ascona conferences : Progress in Probability vols 58 and
59). It turns out that this computation leads naturally to Black and Scholes’
original solution method for their equation ; in particular, the quantities r− σ2

2

and r + σ2

2 appear naturally. In addition, a relation to the so-called call-put
parity relation is established.

Wei Liu (Universität Bielefeld)

Large deviations for evolution equations with small multiplicative
noise

The Freidlin-Wentzell large deviation principle is established for the distri-
butions of stochastic evolution equations with general monotone drift and small
multiplicative noise. Roughly speaking, besides the standard assumptions for
existence and uniqueness of strong solutions, one only needs to assume some
additional assumptions on diffusion coefficient in order to establish large de-
viation principle. As applications we can apply the main result to different
type examples of SPDEs (e.g. stochastic reaction-diffusion equation, stochastic
porous media and fast diffusion equations, stochastic p-Laplacian equation) in
Hilbert space. The weak convergence approach is employed to verify the Laplace
principle, which is equivalent to large deviation principle in our framework.
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József Lorinczi (University of Loughborough)

Exponential integrability of rough functional and weak limits

Motivated by applications in mathematical physics I will address the problem
of how to construct Gibbs measures on Brownian paths subjected to interactions
dependent on double stochastic integrals. Even the definition of such measures
for bounded intervals of the real line is problematic as a pathwise control with
respect to boundary conditions is necessary. I will explain how to cope with
this by introducing the framework of Brownian currents, and will address the
problem of existence, uniqueness and properties of limiting Gibbs measures by
a combination of rough paths analysis and cluster expansion methods.

Anatoliy Malyarenko (Mälardalen University)

A family of series representations of the multiparameter fractional
Brownian motion

We derive a family of series representations of the multiparameter fractional
Brownian motion in the centred ball of radius R in the N -dimensional space RN .
Some known examples of series representations are shown to be the members of
the family under consideration.

For complete version, please see http://arxiv.org/PS_cache/arxiv/pdf/
0804/0804.4076v1.pdf

Bohdan Maslowski (Academy of Sciences of the Czech Republic)

Ergodic control in infinite dimensions

We study the ergodic control problem for a class of stochastic evolution
equations of semilinear type. The basic example we have in mind is the following
reaction-diffusion equation

∂X
∂t (t, ζ) = ∂2X

∂ζ2 (t, ζ) + g(X(t, ζ))− ut + ∂2W
∂t∂ζ (t, ζ),

X(t, 0) = X(t, 1) = 0,
X(0, ζ) = x(ζ), 0 ≤ ζ ≤ 1, t ≥ 0,

(1)

with the Dirichlet boundary conditions. The process W is a space-time white
noise and g : R→ R is a Lipschitz mapping.

We show existence and uniqueness of solutions to the corresponding Hamilton-
Jacobi equation (2) and thereby obtain the unique optimal control given in the
feedback form. We dealt with a similar problem in the paper [5], where however
partly different technical tools have been used, which required ”sufficient dissi-
pativity” of the system (or dually, a technical restriction on the size of controls).
Here we use a different approach based on a uniform V-ergodicity result that was
obtained recently (cf. Goldys and Maslowski, [6]). We also solve the respective
adaptive control problem for the system with an unknown parameter in the drift.

The equation (1) is reformulated and generalized to a stochastic evolution
equation in a separable Hilbert space X . The Dynamic Programming Principle
combined with the recent results on transition semigroups of infinite dimensional
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diffusions is used to show that there exists a unique (up to an additive constant)
smooth solution (v, λ) to the associated Hamilton-Jacobi equation

1
2

tr
(
D2v(x)

)
+ 〈Ax+ F (x), Dv(x)〉+ f(x)−H(Dv(x))− λ = 0, (2)

where H denotes the Hamiltonian of the problem and D stands for the Fréchet
derivative. Then λ gives the optimal cost of the ergodic control problem and
DH(Dv(·)) is the unique optimal feedback control. For the adaptive control
problem, the mapping F is allowed to depend on a parameter α ∈ A ⊂ Rn.

In the finite dimensional case methods of solving (2) are relatively well de-
veloped. Usually equation (2) is approximated by a sequence of the stationary
Hamilton-Jacobi equations (for discounted cost problems) on bounded domains.
Then by the use of appropriate Sobolev-type estimates and compact imbeddings
our solution is found as a suitable limit of renormalized solutions to this sequence
of equations (see e.g. the monographs by Bensoussan [1] and Borkar [3]). Un-
fortunately, results of this type are not available in infinite dimensions. For the
infinite-dimensional results, beside the aforementioned paper [5], we would like
to mention the forthcoming paper by Fuhrman, Hu and Tessitore [4] where the
ergodic control problem for similar systems has been solved by means of ergodic
BDSEs under different set of assumptions.

We consider a controlled process (Xt) defined by an equation{
dXt = (AXt + F (α,Xt)− ut) dt+ dWt,
X0 = x ∈ X, t ≥ 0, (3)

in a separable Hilbert space (X , 〈·, ·〉, | · |), where A : dom (A) → X generates
a strongly continuous semigroup S(·) on X and (Wt) is a cylindrical Wiener
process on X defined on a probability space (Ω,F , (Ft) , P ). The control u is
said to be admissible if u is an X -valued, adapted process and u(t) ∈ BR a.s.
for each t ≥ 0, where BR = {x ∈X ; |x| ≤ R} and R > 0 is arbitrary and fixed.
The set of all admissible controls will be denoted by U . The cost functional to
be minimized is

V (x, u) = lim inf
T→∞

Ex,u

(
1
T

∫ T

0

(f (Xt) + h (u(t))) dt

)
,

where f : X → R and h : BR → R+.

Hypothesis 1. There exist ω > 0 and γ > 0 such that

‖S(t)‖ ≤ e−ωt, t ≥ 0, (4)

and for a certain T > 0 ∫ T

0

t−γ ‖S(t)‖2HS dt <∞, (5)

where ‖·‖HS denotes the Hilbert-Schmidt norm of an operator.

Hypothesis 2. For each α ∈ A the function F (α, ·) : X → X is Lipschitz
continuous and there exist positive constants C, k1, k2, k3 and θ such that

〈Ax+ F (α, x+ y), x〉 ≤ −k1|x|2 + k2|y|θ + k3, x ∈ dom(A), y ∈X , (6)

and
|F (α, x)| ≤ C(1 + |x|), x ∈X . (7)
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Hypothesis 3. For each x ∈X the mapping F (·, x) : A →X is continuous.

The following conditons are imposed on the cost functional V .

Hypothesis 4. The function h : X → R+ is convex, lower semicontinuous and
bounded on bounded sets. The Hamiltonian H : X → R given by the formula

H(x) = sup
|y|≤R

(〈y, x〉 − h(y))

is continuously Fréchet differentiable.

Hypothesis 5. f : X → R and there exists m0 ≥ 0 such that the mapping

x→ |f(x)|
1 + |x|m0

is bounded and uniformly continuous on X .

As usual, we denote by BUCkm(X ) the space of functions on X that are
k−times Frechet differentiable and all respective derivatives, if divided by the
polynomial weight ρm(x) = 1 + ‖x‖m, are bounded and uniformly continuous.
By the solution to the ergodic HJB equation (2) we understand a pair (v, λ) ∈
BUC1

m(X )× R for a suitable m, satisfying

Lmv+ < F,Dv > −H(Dv) + f − λ = 0,

where Lm denotes the generator of the OU semigroup in the space BUC1
m(X ).

Our main results on ergodic control are summarized here:

Theorem 6. For a fixed value of the parameter α, there exists a unique solu-
tion (v, λ) to equation (2) in the space BUC1

m0+1(X )× R satisfying v(0) = 0.
Furthermore, let (w, λ) be an arbitrary solution to the HJB equation (2). Then
the following holds: (a) For any admissible control u ∈ U and x ∈X we have

V (x, u) ≥ λ. (8)

(b) Let ũ ∈ U be an admissible control such that

lim
t→∞ (ũ(t)− ū(t)) = 0 in Px,ũ, (9)

where ū(t) = DH (DV (Xt)). Then

V (x, ũ) = λ. (10)

Corollary 7. Let the assumptions of Theorem 6 be satisfied and let û(t) =
DH (Dv (Xt)), i.e. (Xt) is a solution of the closed loop equation (u = û). Then
û(t) = ũ(t) trivially satisfies (9) (since ũ = ū), hence V (x, û) = λ. Thus, by (8)
û is an optimal control and ρ is the optimal cost of the ergodic control problem.

For the adaptive control problem, given a strongly consistent family of
estimators (αt), the control defined by the closed loop equation with ut =
DH(Dv(αt)(Xt)), where (vα, λ(α)) is the solution to the ergodic HJB equation
with the parameter α, may be shown to be the optimal one. To prove this, a
continuous dependence of solutions to HJB equations on the parameter must
be shown. Then Theorem 6 (b) may be used.
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This presentation is based on a joint work with B. Goldys (School of Math-
ematics, University of New South Wales).

Jonathan C. Mattingly (Duke University)

The spread of randomness in infinite dimensions and ergodicity for
SPDEs

Eddy Mayer-Wolf (Technion - Israel Institute of Technology)

Banach-valued Wiener functionals and their divergence

The domain of definition of the divergence operator on an abstract Wiener
space (W,H, µ) is extended to include appropriate W - (and W ⊗W -) valued
”integrands”. Under appropriate conditions, these vector fields may generate
quasiinvariant flows. However, in some sense the only new (not H-valued) ”in-
tegrands” have zero divergence, and the flows they generate leave µ invariant.

This presentation is based on a joint work with Moshe Zakai.

Annie Millet (Université de Paris I)

On large deviation for stochastic 2d hydrodynamical systems

Let uε be the solution to a non-linear stochastic evolution equation, such
as the Navier Stokes equation coupled with other equations describing the dy-
namics of a heat parameter and a magnetic field. This global equation describes
convection systems appearing or examples in phenomena of weather and climate
dynamics, or the interaction between the velocity and the magnetic field in a
plasma. It extends both the stochastic Boussinesq equation and the stochastic
MHD one, and the perturbation is driven by a Hilbert-valued Wiener process.

Let V ⊂ H denote Hilbert spaces, such as H1 ⊂ L2 for the Bénard prob-
lem. Under weak hypotheses on the diffusion coefficient, we at first prove exis-
tence, uniqueness and establish apriori bounds in a space X = C([0, T ], H) ∩
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L2([0, T ], V ) for controlled SPDEs, that is when in the previous model one shifts
the Wiener process by a random element of its RKHS.

Under more restrictive assumptions on the diffusion coefficient, we prove a
large deviation principle in X for the family uε. The proof is based on the weak
convergence for solutions of the above stochastic controlled equations. These
results have been proved in joint works with J. Duan and I. Chueshov.

Carl Mueller (University of Rochester)

Negative moments for a linear SPDE

When using Malliavin Calculus to study the smoothness of solutions to
stochastic equations, we often differentiate the original equation to obtain a
linear equation for the derivative. Next, among other things, we study the mo-
ments of the derivative, of both positive and negative orders. Following this
motivation, we study the negative moments of solutions to a linear SPDE, and
show that the moments are finite in some cases.

This presentation is based on a joint work with David Nualart.

Ivan Nourdin (Université de Paris VI)

Stein’s method and weak convergence on Wiener chaos

We will show that one can combine Malliavin calculus with Stein’s method,
in order to derive explicit bounds in the Gaussian and Gamma approximations
of arbitrary regular functionals of a given Gaussian field (here, the notion of
regularity is in the sense of Malliavin derivability). When applied to random
variables belonging to a fixed Wiener chaos, our approach generalizes, refines
and unifies the central and non-central limit theorems for multiple Wiener-Itô
integrals recently proved (in several papers, from 2005 to 2007) by Nualart,
Ortiz-Latorre, Peccati, Tudor and myself. We shall discuss some connections
with the classical method of moments and cumulants. As an application, we
deduce explicit Berry-Esséen bounds in the Breuer-Major central limit theorem
for subordinated functionals of a fractional Brownian motion.

This presentation is based on a joint work with Giovanni Peccati (Université
de Paris VI).

Jan Obloj (Imperial College London)

Model-free pricing and hedging of double barrier options via new
solutions to the Skorokhod embedding problem

We investigate bounds on the joint law of maximum and minimum of a
uniformly integrable martingale with fixed terminal distribution. We obtain
explicit bounds and constructions which achieve them - this corresponds to
designing new optimal solutions to the Skorokhod embedding problem.

We apply these ideas to model-free pricing of digital options, which pay
out depending on whether the underlying asset has crossed upper and lower
levels. We make only weak assumptions about the underlying process (typically
continuity), but assume that the initial prices of call options with the same
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maturity and all strikes are known. Treating this market data as input, our
probabilistic results induce upper and lower bounds on the arbitrage-free prices
of the relevant options, and show that these bounds are tight. Additionally,
martingale inequalities are derived, which provide the trading strategies with
which we are able to realize any potential arbitrages.

This presentation is based on a joint work with Alexander Cox (University
of Bath).

Edwin Perkins (University of British Columbia, Vancouver)

Pathwise uniqueness for stochastic heat equations with Hölder con-
tinuous coefficients: the white noise case

We prove pathwise uniqueness for solutions of parabolic stochastic pde’s
with multiplicative white noise if the coefficient is Hölder continuous of index
γ > 3/4. The method of proof is an infinite-dimensional version of the Yamada-
Watanabe argument for ordinary stochastic differential equations.

This presentation is based on a joint work with Leonid Mytnik.

Hûzen Pham (Université de Paris VI and VII)

Pricing and hedging with execution delay

We consider impulse control problems in finite horizon for diffusions with
decision lag and execution delay. The new feature is that our general frame-
work deals with the important case when several consecutive orders may be
decided before the effective execution of the first one. This is motivated by
financial applications in the trading of illiquid assets such as shares of hedge
funds, where selling orders are executed with one to three months of delay, in-
ducing an important risk for the investor. We show that the value functions for
such control problems satisfy a suitable version of dynamic programming prin-
ciple in finite dimension, which takes into account the past dependence of state
process through the pending orders. The corresponding Bellman partial differ-
ential equations (PDE) system is derived, and exhibit some peculiarities on the
coupled equations, domains and boundary conditions. We prove a unique char-
acterization of the value functions to this nonstandard PDE system by means
of viscosity solutions. We then provide an algorithm to find the value functions
and the optimal control. This implementable algorithm involves backward and
forward iterations on the domains and the value functions, which appear in turn
as original arguments in the proofs for the boundary conditions and uniqueness
results. Finally, we give several numerical experiments illustrating the impact
of execution delay on trading strategies and on option pricing.

Eckhard Platen (University of Technology, Sydney)

Conditions for martingales, with applications in finance

In order to apply risk-neutral pricing, one must first check that the chosen
density process for an equivalent change of probability measure is in fact a
martingale. If not, risk-neutral pricing may not be possible, and the market
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model may contain ”bond bubbles”. Even if the density process is a martingale,
however, it is still possible that a discounted asset price process could be a strict
local martingale under the risk-neutral probability measure. In this case, the
market model may contain ”asset bubbles”. Applying the benchmark approach
we identify examples of these phenomena, and examine their consequences. On
the mathematical side this paper considers the problem when a non-negative
local martingale is a martingale or a universally integrable martingale. In the
case of time-homogeneous diffusions in natural scale, necessary and sufficient
conditions are derived for answering both questions. These results are widely
applicable to problems in stochastic finance and other areas.

References

[1] Platen, E. and D. Heath, A Benchmark Approach to Quantitative Finance.
Springer Finance, 2006.

This presentation is based on a joint work with Hardy Hulley.

Arturo Romer (Università della Svizzera Italiana)

Energie, effet serre et les implications à niveau planétaire sur la base
des modèles du GIEC ∗

Le conférencier présentera la consommation énergétique actuelle et future
au niveau planétaire. Il en illustrera les implications respectives de nature
économique, écologique et sociale. Une importance particulière sera consacrée à
l’effet de serre et aux modèles physico-mathématiques respectifs. Le conférencier
discutera les stratégies de gestion environnementale et énergétique qui pourront
contenir les dégâts à long-moyen terme. Grande importance sera jouée par le
concept de développement durable.

Marco Romito (Università di Firenze)

The martingale problem for the Navier-Stokes equations

A short review on the martingale problem for the Navier-Stokes equations:
existence of a Markov process which is a solution to the equations, long time
behavior and a connection with the critical regularity in the hierarchy of Sobolev
spaces.

Bernard Roynette (Nancy-Université)

A global view of Brownian penalisations

With the help of Feynman-Kac type penalisation results related to Wiener
measures, we construct a positive and σ-finite measure W on the canonical space(
Ω = C (R+,R), (Xt)t≥0, (Ft)t≥0

)
. Then we explicit relationships between

W and the family of probability measures (on the canonical space) which are
obtained by penalisations of the Wiener measure. Finally, we present the main
properties of W .

∗GIEC = Groupe d’experts intergouvernemental sur l’évolution du climat.
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Barbara Rüdiger(Universität Koblenz Landau)

Mild solutions of infinite dimensional stochastic differential equations
with Lévy noise

In an article joint with S. Albeverio, V. Mandrekar [1] we analyzed some
Hilbert valued SPDE with Lévy noise, in very much generality. It turned out
that for some particular Hilbert spaces and involving further requirements on the
drift term, these Hilbert valued SPDEs describe the time evolution of forward
interest rates in the Heath -Jarrow -Morton model studied in [2], [3], [4]. In [1]
we analyze existence and uniqueness of the solution under Lipschitz conditions
of noise and drift coefficient (where also dependence of the coefficients on the
past paths are allowed), continuous dependence of the solution on drift and
noise coefficient, and differential dependence of the solution on the initial data.
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Marta Sanz-Solé (Universitat de Barcelona)

Some properties of the density for a 3-d stochastic wave equation

We consider a stochastic wave equation in space dimension three driven by
a noise white in time and with an absolutely continuous correlation measure
given by the product of a smooth function and a Riesz kernel. Let pt,x(y)
be the density of the law of the solution u(t, x) of such an equation at points
(t, x) ∈]0, T ] × R3. We prove that the mapping (t, x) 7→ pt,x(y) owns the same
regularity as the sample paths of the process u(t, x), (t, x) ∈]0, T ]× R3. The
proof relies on the integration by parts formula of Watanabe and estimates
derived form it.

Walter Schachermayer (Vienna University of Technology)

Hiding the drift

In this article we consider a Brownian motion with drift, denoted by S =
(St)t≥0, of the form

dSt = µtdt+ dBt for t ≥ 0,

with a specific non-trivial drift predictable with respect to FB , the natural filtra-
tion of the Brownian motion B = (Bt)t≥0. We construct a process H = (Ht)t≥0
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also predictable with respect to FB such that ((H ·S)t)t≥0 is a Brownian motion
in its own filtration. Furthermore, for any δ > 0, we refine this construction
such that the drift (µt)t≥0 only takes values in ]µ− δ, µ+ δ[ for fixed µ > 0.

This presentation is based on a joint work with Miklós Rásony and Richard
Warnung.

Juergen Schmiegel (Aarhus University)

Stochastic modeling of the turbulent velocity field

We discuss a stochastic modelling framework for the timewise dynamics of
the main component vt of the turbulent velocity field at a fixed position x and
at time t. The model is given by an ambit process [1] of the form [2]

vt =
∫ t

−∞
g(t− s)

√
Js(x)dBs + β

∫ t

−∞
g(t− s)Js(x)ds (1)

where g is a deterministic kernel, β is a constant and B denotes Brownian
motion. The stochastic process J is called the intermittency process. We model
the process J by a stochastic intermittency field [3] that represents a continuous
cascade process [4]

Jt(x) = exp

{∫ t

t−T

∫ x+r(s−t+T )

x−r(s−t+T )

L(ds× dσ)

}
(2)

where r is a deterministic window function and L is a Lévy basis (an infinitely
divisible and independently scattered random measure).
Within our modelling framework we are able to reproduce the observed heavy
tailed distributions for turbulent velocity increments and the scaling properties
of structure functions. Moreover, the model also captures the scaling behaviour
of energy dissipation correlators and the scaling behaviour of the coarse grained
energy dissipation process. Finally we show that the proposed model also reveals
the conditional independence of the distribution of the Kolmogorov variable

Vt =
vt − v0

(tεt)1/3
, (3)

conditioned on the integrated energy dissipation tεt over a horizon of length t.
We also discuss possible generalizations of the modelling framework (1) to a
model for the turbulent velocity field in space and time.
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Ronnie Sircar (Princeton University)

Analysis and application of multiscale stochastic volatility models

We discuss empirical motivations for long and short time scales in models
of stochastic volatility based on diffusion processes. These have applications for
pricing equity derivatives, interest rate products and credit derivatives, and cal-
ibrating implied volatilities, yield curves and credit spreads. They are analyzed
by combined regular and singular asymptotic approximations. We illustrate
performance on market options data.

Wilhelm Stannat (Technische Universität Darmstadt)

The logarithmic Sobolev inequality for the Wasserstein diffusion

We prove that the Dirichlet form associated with the Wasserstein diffusion
on the set of all probability measures on the unit interval, recently introduced
by M.K. von Renesse and K.T. Sturm, satisfies a logarithmic Sobolev inequality.
This implies hypercontractivity of the associated transition semigroup. We also
study functional inequalities for related diffusion processes.

Andrew Stuart (University of Warwick)

Mathematical foundations of data assimilation problems arising in
fluid mechanics

The explosion of data gathering over the last few decades has been, and
will continue to be, phenomenal [14]. There has also been a massive change
in the scale of computational power which is now routinely available. These
technology-driven changes are leading to both the need for inference on massive
and highly heterogeneous data sets, and for the possibility of modelling ever
more complex structures and systems. Making sense of data, in the context
of the modelling of complex systems, is a very challenging task. The field of
statistics provides a rational basis for the analysis of data. On the other hand,
in many application areas, there is an enormous amount of information in the
form of sophisticated mathematical models, often developed over decades or cen-
turies. As a consequence of these advances in technology, applied mathematics
and statistics are required to work in concert in order to significantly progress
understanding. Blending these two view points – statistics, which is data driven,
and mathematical modelling which provides systematic predictive tools – leads
to the field of data assimilation. The aim of this talk is to describe a mathe-
matical framework for the analysis of a range of problems of this type which
arise in fluid mechanics. We are particularly motivated by problems arising in
weather forecasting [4, 7, 10, 15, 19] and oceanography [2, 3, 13, 16, 20] in which
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Eulerian or Lagrangian measurements of a velocity field must be incorporated
into a mathematical model in order to optimally blend information.

Despite the increasing importance of data assimilation in many applications
of fluid mechanics, there has been no attempt to develop the rigorous mathe-
matical underpinnings of the subject. The problem is inherently one of Bayesian
statistics [17] in a function space. Developing the underpinnings of the subject
is important for a number of reasons. For example, in order to be able to evalu-
ate various approximations made in practice, such as variational methods [10],
which amount to approximating the posterior measure by a Dirac, and more
refined Gaussian approximations [19], it is necessary to have a well-defined pos-
terior measure. Furthermore, it is advantageous in the construction of Markov
chain-Monte Carlo (MCMC) methods to be able to define algorithms on function
space, as it is approximation of these algorithms which leads to well behaved
finite (but high) dimensional sampling algorithms [1, 5].

We establish a mathematical framework for a range of data assimilation
problems arising in fluid mechanics. We study problems in which either Eule-
rian or Lagrangian observations are made, and the objective is to make inference
about the underlying velocity field. We study problems without model error,
in which case the inference is on the initial condition, and problems with mean
zero Gaussian model error, in which case the inference is on the initial condition
and on the driving noise process or, equivalently, on the entire time-dependent
velocity field. Having given firm mathematical foundations for the Bayesian
viewpoint, we then study MCMC methods to sample the posterior measure.
The common mathematical structure which we will exploit is that the posterior
measure has density with respect to a Gaussian reference measure on a Hilbert
space. The MCMC methods we introduce are defined on function space, and
consequently they behave well under refinement of any finite dimensional ap-
proximation.

In order to undertake a clean mathematical analysis we consider the two-
dimensional Navier-Stokes equations on a torus. The case of Eulerian obser-
vations – direct observations of the velocity field itself – is then close to the
situation in weather forecasting. The case of Lagrangian observations – obser-
vations of passive tracers adverted by the flow – is then close to the situation
arising in oceanography. The methodology which we describe herein may be
applied to many other problems in which it is of interest to sample, given obser-
vations, an infinite-dimensional object such as, in this case, the initial condition
of a dynamical system in infinite dimensions. A similar approach might be
adopted, for example, to determine a field arising as a constitutive model in a
PDE.

We start the talk by describing various mathematical preliminaries that will
be useful throughout. We then introduce various data assimilation problems.
We show these these give rise to well-defined sampling problems on function
space by developing a theory in which conditions are given on the prior reference
measure sufficient to ensure that the posterior measure makes sense. Further-
more we develop properties of the posterior measure which will be useful for the
definition and analysis of MCMC methods. We conclude by studying MCMC
for these function space sampling problems and show how, with appropriate
choice of proposal distributions, effectively sampling be achieved.
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This presentation is based on a joint work with Simon Cotter, Masoumeh
Dashti and James Robinson.

Karl-Theodor Sturm (Universität Bonn)

Optimal transportation, gradient flows and Wasserstein diffusion

We present a brief introduction to recent progress in optimal transporta-
tion on manifolds and metric spaces. We recall the characterization of the heat
equation on Riemannian manifolds M as the gradient flow for the relative en-
tropy on the L2-Wasserstein space of probability measures P(M), regarded as
an infinite dimensional Riemannian manifold. Of particular interest are recent
extensions to the (nonlinear!) heat flow on Finsler spaces.

Convexity properties of the relative entropy Ent(.|m) also play an important
role in a powerful concept of generalized Ricci curvature bounds for metric
measure spaces (M,d,m).

Moreover, we indicate how to construct a canonical reversible process (µt)t≥0

on the Wasserstein space P(R). This process has an invariant measure Pβ
which may be characterized as the ’uniform distribution’ on P(R) with weight
function 1

Z exp(−β · Ent(.|m)) where m denotes a given finite measure on R.
One of the key results is the quasi-invariance of this measure Pβ under push
forwards µ 7→ h∗µ by means of smooth diffeomorphisms h of R.

46



Gianmario Tessitore (Università di Milano Bicocca)

Ergodic BSDEs and optimal ergodic control in Banach spaces with
unbounded generator

We introduce a new kind of Backward Stochastic Differential Equation,
called ergodic BSDEs, which arise naturally in the study of optimal ergodic
control. We study the existence, uniqueness and regularity of solutions to er-
godic BSDEs. Then we apply these results to the optimal ergodic control of a
Banach valued stochastic state equation. We also establish the link between the
ergodic BSDEs and the associated Hamilton-Jacobi-Bellman equation.

Using new techniques and results concerning BSDEs in infinite horizon with
unbounded generator the results are then extended to the case of non-bounded
cost functionals.

Applications are given to ergodic control of stochastic partial differential
equations.

Samy Tindel (Nancy-Université)

On fractional differential systems

In this talk, we will describe some recent results concerning stochastic dif-
ferential systems driven by a multidimensional fractional Brownian motion with
Hurst parameter 1/3 < H < 1/2. Indeed, most of the results of the rough paths
theory concern fractional diffusion processes. However, using a slight modifica-
tion of this theory, we have been able to extend the method to other kind of
situations. We shall try to give an overview of three of them: delay and Volterra
equations, as well as PDEs.

Gerald Trutnau (Universität Bielefeld)

Pathwise uniqueness of the squared Bessel process and CIR process,
with skew reflection a deterministic time-dependent curve

Let σ, δ > 0, b ≥ 0. Let λ2 : R+ → R+, be continuous, not necessarily
absolutely continuous, and locally of bounded variation. We develop a general
analytic criterion for pathwise uniqueness of

Rt = R0 +
∫ t

0

σ
√
|Rs|dWs +

∫ t

0

σ2

4
(δ − bRs)ds+ (2p− 1)`0t (R− λ2),

where p ∈ (0, 1), and where `0t (R − λ2) is the symmetric semimartingale lo-
cal time of R − λ2. The criterion is related to the existence of certain sub-
superharmonic functions for the associated parabolic generator, which is a more
complex object than its time homogeneous counterpart. As an application, we
show that pathwise uniqueness holds, if

pdλ2(s) ≤ pσ
2

4

{
δ −

(
1− p

2

)
bλ2(s)

}
ds.

where p := sgn(2p − 1), and sgn is the point-symmetric sign function. The
inequalities are to be understood in the sense of signed measures on R+. For
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instance, if 2p − 1 > 0, σ = 2, this means that the increasing part of λ2 is
Lipschitz continuous with Bessel dimension δ as Lipschitz constant, and that
the decreasing part is arbitrary. Or, if 2p− 1 < 0, and e.g. λ2 ≡ const = c, this
means that c ≥ δ

b .
Weak existence of R is established in various cases. In particular, there is no
solution if |p| > 1.

Frederic Utzet (Universitat Autònoma de Barcelona)

Multiple Stratonovich integral and Hu–Meyer formula for Lévy pro-
cesses

Combining the ideas of Hu and Meyer [1] and Rota and Wallstrom [3], we
will present an Itô multiple integral and a Stratonovich multiple integral with
respect to a Lévy process with finite moments up to a convenient order. The
Stratonovich multiple integral is an integral with respect to a product measure
whereas the Itô multiple integral is the integral with respect to a measure that
gives zero mass to the diagonal sets, like {(s1, . . . , sn) ∈ Rn+, s1 = s2}. The main
tool in our construction is the powerful combinatorial machinery introduced
by Rota and Wallstrom [3] for random measures, where the diagonal sets of
Rn+ are identified with the partitions of the set {1, . . . , n}. The key point is
to understand how the product of stochastic measures works on the diagonal
sets, and that leads to the diagonal measures defined by Rota and Wallstrom
[3]. For a Lévy process those measures are related to the powers of the jumps
of the process, and hence with a family of martingales introduced by Nualart
and Schoutens [2], called Teugels martingales, which enjoy very nice properties.
With all these ingredients we prove a general Hu–Meyer formula. As particular
cases, we deduce the classical Hu–Meyer formulas for the Brownian motion and
for the Poisson process.
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This presentation is based on a joint work with Mercè Farré and Maria Jolis.

Esko Valkeila (Helsinki University of Technology)

An extension of the Lévy characterization to fractional Brownian mo-
tion

The well known Lévy characterization of classical Brownian motion says that
a continuous centered square integrable process X is Brownian motion if and
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only if it is a martingale and the process X2(t)−t is a martingale. In the talk we
discuss two related extansions of this theorem to fractional Brownian motion.

Pierre Vallois (Nancy-Université)

Penalizations of Brownian motion with its maximum and minimum
processes as weak forms of Skorokhod embedding

Let
(
Ω = C (R+,R), (Xt)t≥0, (Ft)t≥0

)
be the canonical space, where (Xt)t≥0

denotes the coordinate maps : Xt(ω) = ω(t), for any t ≥ 0. Let (Px)x∈R be the
family of Wiener probability measures on Ω : under Px, (Xt)t≥0 is a standard
one-dimensional Brownian motion started at x.
Next, we consider a stochastic process (Ft)t≥0 which takes its values in [0,∞[
and satisfies : 0 < E0(Ft) <∞, for all t ≥ 0. Assume that :

E0[Ft|Fs]
E0(Ft)

a.s.−→
t→∞M

F
s , and E0(MF

s ) = 1 (∀s ≥ 0). (1)

Then, (MF
s ; s ≥ 0) is a non-negative P0-martingale and for any s ≥ 0 and

Λs ∈ Fs :

lim
t→∞

E0[1Λs Ft]
E0[Ft]

= QF0 (Λs)

(i.e. a penalization procedure, associated with the weight process (Ft) holds).
We develop a Brownian penalization procedure related to weight processes (Ft)
of the type : Ft := f(It, St) where f is a bounded function with compact support
and St (resp. It) is the one-sided maximum (resp. minimum) of the Brownian
motion up to time t. Two main cases are treated : either Ft is the indicator
function of {It ≥ α, St ≤ β} or Ft is null when {St − It > c} for some c > 0.
We have been able to explicit the martingales MF which come from (1) and to
describe the law of the canonical process under the new probability measure QF0 .
Then we apply these results to some kind of asymptotic Skorokhod embedding
problem.

Tiziano Vargiolu (Università di Padova)

Optimal portfolio for HARA utility functions in a pure jump multi-
dimensional incomplete market

In this paper we analyse a pure jump incomplete market where the risky
assets can jump upwards or downwards. In this market we show that, when an
investor wants to maximize a HARA utility function of his/her terminal wealth,
his/her optimal strategy consists in keeping constant proportions of wealth in
the risky assets, thus extending the classical Merton result to this market. We
finally compare our results with the classical ones in the diffusion case in terms
of scalar dependence of portfolio proportions on the risk-aversion coefficient.

This presentation is based on a joint work with Giorgia Callegaro (Scuola
normale Superiore, Pisa).
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Lioudmila Vostrikova (Université d’Angers)

On the stability of call/put option’s prices in incomplete models under
statistical estimations

We consider a semimartingale model for a risky asset S = (St)t≥0 of the
type

St = S0 exp(Xt)

where X = (Xt)t≥0 is a semimartingale with the law depending on an unknown
parameter θ, θ ∈ Θ. The value process of the bond is supposed to be given by
Bt = exp(rt) where r is a positive constant.

The classical procedure of pricing of call/put option of maturity T consists
to choose the type of option, given by a continuous in the space D([0, T [) func-
tional and, then, one equivalent martingale measure Q belonging to the class of
equivalent martingale measures, supposed non-empty, and put

CT (θ) = EQ[exp(−rt)g(S)]

Since the price depends on an unknown parameter we replace θ in the above
expression by its estimator θ̂ which gives a new price CT (θ̂).

We prove inequalities for L1-distance between CT (θ) and CT (θ̂) and we find
conditions for the stability of prices under statistical estimation. We give also
results for important particular case of Lévy processes. To illustrate the results,
we apply them in the case of GVG and CGMY models.

Jeannette H.C. Wörner (Universität Göttingen)

Inference for stochastic volatility models: fine structure, market mi-
crostructure and jumps

In the recent years starting from the Black-Scholes model many different
models either based on semimartingales, purely continuous, pure jump and a
mixture of both, or fractional Brownian motion have been proposed in an at-
tempt to capture the empirical findings of financial data.

Important issues in this area are the question of model selection, which of
these classes of models is appropriate in a specific situation, especially if there is
a jump component, how the fine structure and correlation structure of the data
look like and how the volatility may be calculated for the different models. We
will see that extensions of the well-known concept of quadratic variation may
lead to answers to all of these questions.

In the following we will consider different classes of stochastic volatility mod-
els for the log-prices

Xt = Yt +
∫ t

0

σsdBs, (1)

Xt = Yt +
∫ t

0

σsdLs, (2)

Xt = Yt +
∫ t

0

σsdB
H
s , (3)

Xt = Yt +
∫ t

0

σsdGs, (4)
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where Y denotes some mean process, possibly including a jump component,
σ denotes a volatility process, B a Brownian motion, L a pure jump Lévy
process, BH a fractional Brownian motion with Hurst parameter H ∈ (0, 1)
and G a Gaussian process with stationary increments whose variance function
of the increments locally around zero behaves like a fractional Brownian mo-
tion. Hence (2)-(4) may be viewed as generalizations of the classical Brownian
motion based stochastic volatility model (1). (1) and (2) lie in the class of semi-
martingales whereas (3) and (4) in general do not, hence for these two models
we will use pathwise Riemann-Stieltjes integrals instead of Itô integrals. With
models (3) and (4) we may model long range dependence if H ∈ (0.5, 1) or a
chaotic behavior if H ∈ (0, 0.5). For a long time fractional Brownian motion
has been considered not to be appropriate for financial modelling since it allows
for arbitrage. However, recently Guasoni et.al. (2007) have shown that when
transaction costs are included also fractional Brownian motion might be con-
sidered to be a suitable model. Of course models of the form (1)-(4) may also
be applied to other areas, especially climate and temperature modelling.

First of all we will give an overview how we can estimate the squared
integrated volatility

∫ t
0
σ2
sds or more generally the p-th integrated volatility∫ t

0
σpsds in all four stochastic volatility models (cf. Barndorff-Nielsen and Shep-

hard (2003), Barndorff-Nielsen et.al (2007, 2008), Corcuera et.al (2006), Wo-
erner (2006a, 2007a)). We will use the concept of normed power variation
f(n, p)

∑[nt]
i=1 |X i

n
− X i−1

n
|p, where f is a suitable norming function which re-

flects the fine structure of the underlying process, and multipower variation
where neighbouring increments are summed up. These are straight forward ex-
tensions of the concept of quadratic variation allowing to derive estimates which
are more robust to additive components, especially jump components.

In a second part we will show how we can make use of the behaviour of the
norming function f to infer the fine structure of stochastic volatility models,
i.e. analyze the presents of a jump component and the Hölder continuity of
a continuous component (cf. Woerner (2006b)). We will apply our theoretical
results to high frequency financial data and see that on some days we can detect
jumps, whereas on others the underlying process seems to be continuous.

Finally we briefly discuss problems occurring when looking at real high fre-
quency data. The developed statistical theory implies that the estimates get
better if the sampling frequency gets higher, i.e. the distance between the con-
sidered prices gets smaller. However, empirical studies have shown that when
using tick-by-tick data or very high frequency data the realized volatility does
not settle down to some limit, which should be the integrated volatility

∫ t
0
σ2
sds,

but increases.
One possibility to explain this finding is to introduce the concept of market

microstructure or market friction, which means that due to effects of bid-ask
bounces, discreteness of prices, liquidity problems and asymmetric information
the observations of high frequency data possess an addition noise component
which dominates the behaviour of the realized volatility. This leads to a modi-
fication of the model (1)

Xt =
∫ t

0

σsdBs + εt,

where ε denotes iid noise with mean zero (cf. Ait-Sahalia et.al (2005)). Another
possibility is to use fractional Brownian motion based models (3) with Hurst
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parameter H ∈ (0, 0.5). The idea behind explaining the empirical findings with
this type of model is that by looking at non-normed power variation, we obtain
as n→∞

[nt]∑
i=1

|
∫ i

n

i−1
n

σsdB
H
s |p p→


0 : p > 1/H

µ1/H

∫ t
0
σ

1/H
s ds : p = 1/H
∞ : p < 1/H

.

This implies that the behaviour of the empirical data may also be explained by
a fractional Brownian motion based model with H < 0.5. In a first step we
will look at the behaviour of power variation with p = 2 and p = 4 for various
tick-by-tick data sets of Daimler Chrysler and Infinieon (cf. Woerner (2007b)).
Indeed with increasing sampling frequency the quadratic variation increases
but not as fast as predicted by the model with market microstructure, whereas
for p = 4 the power variation even decreases which contradicts the behaviour of
additional market microstructure, but may be explained by fractional Brownian
motion based models.

Furthermore, we will construct a test statistic based on a combination of
power and bipower variation with which we can test simultaneously for Brownian
motion based models, Brownian motion based models with iid noise component
and fractional Brownian motion based models. Looking at tick-by-tick data
of Daimler Chrysler and Infineon we will see that this analysis gives evidence
for fractional Brownian motion based model with H < 0.5 on this very fine
time-scale.
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Advances in Applied Probability, 39, 531-549.

[10] Woerner, J .H.C. (2007b) Volatility estimates for high frequency data: mar-
ket microstucture noise versus fractional Brownian motion models. Preprint.

Yimin Xiao (Michigan State University)

Properties of strong local nondeterminism and local times of stable
random fields

This talk is concerned with sample path properties of stable random fields.
Under some general conditions, we establish results on uniform modulus of
continuity, fractal dimensions and local times of stable random fields.

Uniform modulus of continuity The celebrated continuity theorems of
Kolmorogov and Garsia (1972) provide uniform modulus of continuity for rather
general stochastic processes and random fields. For Gaussian processes, a power-
ful chaining argument leads to much deeper results; see Talagrand (2006), Adler
and Taylor (2007). Some of the results have been extended to non-Gaussian pro-
cesses as long as the tail probabilities of the increments of the process decay fast
enough [see Csáki and Csörgő (1992), Kwapień and Rosiński (2004)]. However,
for general stable random fields, the aforementioned methods fail. The common
way of getting a uniform modulus of continuity for stable random fields is based
on the LePage representation and conditioning; see Marcus and Pisier (1984),
Kôno and Maejima (1991a, 1991b), Biermé and Lacaux (2007).

We provide a general result on uniform modulus of continuity for random
fields, which is a refinement of Kolmorogov’s continuity theorem. Since our
result does not assume exponential-type tail probabilities nor high moments,
it is applicable to random fields with heavy-tailed distributions including the
stable ones.

For every n ≥ 1, let Dn ⊂ [0, 1]N be the set of “dyadic points” of order n.
Moreover, for every τn ∈ Dn, let On−1(τn) denote the set of points in Dn−1

that are neighbors of τn

Theorem 1. Let X = {X(t), t ∈ [0, 1]N} be a real-valued random field. Suppose
σ : R+ → R+ is a nondecreasing continuous function such that σ(2h) ≤ Kσ(h)
for some constant K > 0. If there exist constants γ ∈ (0, 1] and η > 0 such that
limh→0 σ(h)

(
log 1/h

)(1+η)/γ = 0 and

∞∑
p=n

E
(

max
τp∈Dp

max
τ ′p−1∈Op−1(τp)

∣∣X(τp)−X(τ ′p−1)
∣∣γ) ≤ σ(2−n)γ . (1)

Then X has a.s. continuous sample functions and for all ε > 0,

lim
h→0+

supt∈[0,1]N supd(s,t)≤h
∣∣X(t)−X(s)

∣∣
σ(h)

(
log 1/h

)1/γ( log log 1/h
)(1+ε)/γ

= 0, a.s. (2)

Let {ξk, k ≥ 1} be a sequence of random variables such that, for some
constants γ > 0 and K > 0, E

(|ξk|γ) = K for all k ≥ 1. Let Mn(γ) =
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E
(

max1≤k≤n |ξk|γ
)
. Then the maximal γ-moment (upper) index of {ξk, k ≥ 1}

is defined by

θγ = lim sup
n→∞

logMn(γ)
log n

. (3)

Corollary 2. Let X = {X(t), t ∈ [0, 1]N} be as in Theorem 1. We assume
there exist constants γ ∈ (0, 1] and H > 0 such that for all s, t ∈ [0, 1]N

E
(|X(s)−X(t)|γ) ≤ K |s− t|Hγ . (4)

Consider the normalized random variables

X(τp)−X(τ ′p)[
E(|X(τp)−X(τ ′p)|γ)

]1/γ , ∀τp ∈ Dp, τ
′
p ∈ Op−1(τp) and all p ≥ 1, (5)

and number them according to the order D1, D2\D1, . . . and denote the sequence
by {ξk, k ≥ 1}. If {ξk, k ≥ 1} has a maximal γ-moment index θ := θγ and
Hγ > θ, then for every ε > 0,

lim sup
h→0+

supt∈[0,1]N sup|s−t|≤h
∣∣X(t)−X(s)

∣∣
hH−

θ
γ−ε

= 0, a.s. (6)

Namely, X(t) is uniformly Hölder continuous on [0, 1]N of all orders < H − θ
γ .

We present some results on maximal moment index of stable random vari-
ables and apply them to derive uniform modulus of continuity of stable random
fields.

Fractal results for stable random fields Let X = {X(t), t ∈ RN} be an
(N, d, α)-stable random field defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, t ∈ RN , (7)

where X1, . . . , Xd are independent copies of a real-valued stable random field
X0.

Many sample path properties of X can be determined by σ(s, t) =
∥∥X0(s)−

X0(t)
∥∥
α

(s, t ∈ RN ), the scalar parameter of the increment X0(s)−X0(t).
Let T ⊆ RN be an interval. We assume X0 satisfies the following general

conditions:

(S1). There exist positive constants c2,1 and c2,2 such that

c2,1 ≤ ρ(s, t) ≤ σ(s, t) ≤ c2,2 ρ(s, t) for all s, t ∈ T. (8)

Here ρ is the metric on RN defined by ρ(s, t) =
∑N
j=1 |sj−tj |Hj ∀s, t ∈ RN .

(S2). There exists a constant c2,3 > 0 such that for all integers n ≥ 2 and all
t1, . . . , tn ∈ T ,

∥∥X0(tn)
∣∣X0(t1), . . . , X0(tn−1)

∥∥
α
≥ c2,3

N∑
j=1

min
0≤k≤n−1

∣∣tnj − tkj ∣∣Hj ,
where t0j = 0 for every j = 1, . . . , N . That is, X0 satisfies the (two-sided)
sectorial local nondeterminism [see Xiao (2008)].
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First we consider the fractal dimensions of the range X([0, 1]N ) and graph
GrX([0, 1]N ) = {(t,X(t)) : t ∈ [0, 1]N}. Without loss of generality, we assume
from now on that

0 < H1 ≤ H2 ≤ · · · ≤ HN < 1. (9)

The following extends some results in Ayache, Roueff and Xiao (2007b) for
linear fractional stable sheets.

Theorem 3. Let X = {X(t), t ∈ RN} be an (N, d, α)-stable random field sat-
isfying Condition (S1) on T = [0, 1]N and having bounded sample functions.
Then, with probability 1,

dimHX
(
[0, 1]N

)
= dimPX

(
[0, 1]N

)
= min

{
d;

N∑
j=1

1
Hj

}
(10)

and

dimHGrX
(
[0, 1]N

)
= dimPGrX

(
[0, 1]N

)
= min

{ k∑
j=1

Hk

Hj
+N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑
j=1

1
Hj

}

=

{ ∑N
j=1

1
Hj
, if

∑N
j=1

1
Hj
≤ d,∑k

j=1
Hk
Hj

+N − k + (1−Hk)d, if
∑k−1
j=1

1
Hj
≤ d <∑k

j=1
1
Hj
.

(11)

We will also discuss hitting probabilities and fractal dimension of the level
sets.

Local times and their joint continuity Let X(t) be a Borel vector field on
RN with values in Rd. For any Borel set T ⊆ RN , the occupation measure of
X on T is defined as µ

T
(•) = λN

{
t ∈ T : X(t) ∈ •}, which is a Borel measure

on Rd. If µ
T

is absolutely continuous with respect to the Lebesgue measure λd,
then X(t) is said to have a local time on T . The local time, L(•, T ), is defined
as the Radon–Nikodým derivative of µ

T
with respect to λd, i.e.,

L(x, T ) =
dµ

T

dλd
(x), ∀x ∈ Rd.

In the above, x is called space variable, and T is the time variable. Usually,
L(x, [0, t]) is written as L(x, t).

We seek to answer the following questions: Given an (N, d, α)-stable random
field X,

• when do local times exist?

• when is L(x, t) continuous in (x, t) ∈ Rd × RN?

These questions are answered under Conditions (S1) and (S2). The following
theorem extends the results in Nolan (1989), Ayache, Roueff and Xiao (2007a),
as well as those in Xiao and Zhang (2002), Ayache, Wu and Xiao (2006) and
Xiao (2007) for Gaussian random fields.
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Theorem 4. Let X = {X(t), t ∈ RN} be an (N, d, α)-stable random field de-
fined by (7) and suppose X0 satisfies Condition (S1) on T . Then X has a local
time L(x, T ) ∈ L2(P× λd) if and only if d <

∑N
j=1 1/Hj.

If, in addition, X0 satisfies Condition and (S2) on T , 1 < α < 1, and
d <

∑N
j=1 1/Hj. Then X has a jointly continuous local time on T .

An important technical tool for studying stable random fields is the various
properties of strong local nondeterminism; see Xiao (2008).
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Martina Zähle (Universität Jena)

Stochastic partial differential equations with fractal noise

SPDEs on Rn+1 are considered, where the noise is the formal time derivative
of the spatial gradient of a random time-space vector field in Rk. For the time
derivatives we use fractional calculus in Banach spaces applied to the transition
semigroups of the associated PDE.

The (stochastic) gradient is determined by means of Fourier analytic tools or
stochastic forward-type integrals in the sense of Russo and Vallois. In this way
we obtain pathwise solutions in fractional Sobolev spaces or certain stochastic
variants. In particular, the above vector field may be an anisotropic fractional
Brownian sheet with exponents greater than 1/2 or a Brownian field, respec-
tively.

This presentation is based on a joint work with M. Hinz.

Jean-Claude Zambrini (Universidade de Lisboa)

Extrema with constraints in stochastic deformation of variational cal-
culus

We shall consider a hierarchy of admissible constraints in the framework of a
stochastic deformation of the classical calculus of variations. These constraints
will take the form of expectations of functions or functionals of the process
solving the original variational principle (i.e., a critical point of the conditional
expectation of a functional of processes). Like in their classical counterparts,
those problems are solved by the introduction of Lagrange multipliers. Various
examples will illustrate our results. The proofs will involve the tools of stochastic
analysis and various entropy principles.

57





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIST OF PARTICIPANTS 
 
 
 
 
 
 
 
 
 
 
 
 

59





Mohammed
Ibrahim Ali

Ageel

Dep. of Mathematics, College of Science

King Khalid University

P.O.Box 9013

Abha
Saudi Arabia

miaqeel@kku.edu.sa

Sergio Albeverio

Inst. Ang. Mathematik

Universität Bonn

Wegelstrasse 6

Bonn
Germany
D-63115

albeverio@uni-bonn.de

Hassan Allouba

Department of Mathematical Sciences

Kent State University

Kent OH 44242
U.S.A.

allouba@math.kent.edu

Elisa Alos

Dpt. d'Economia i Empresa

Universitat Pompeu Fabra

c/ Ramon Trias Fargas, 25-27

Barcelona
Spain
08005

elisa.alos@upf.edu

Vlad Bally

Laboratoire de Probabilités 

Univ. Paris Est - Marne la Vallée

Marne la Vallée
France
F-77454

Vlad.Bally@univ-mlv.fr

Olé E. Barndorff-Nielsen

Department of Mathematical Sciences

University of Aarhus

Ny Munkegade

Aarhus
Denmark
DK-8000

oebn@imf.au.dk

Nadia Belaribi

Institut Galilée,  Mathématiques

Université Paris 13

99, avenue JB Clément

Villetaneuse
France
F-93430

belaribi@math.univ-paris13.fr

Mohammed Ben Alaya

Institut Galilée, Mathématiques

Université Paris 13

99 avenue JB Clément

Villetaneuse
France
F-99430

mba@math.univ-paris13.fr

Anouar Ben Mabrouk

Computational Mathematics Laboratory

Université de Monastir

Monastir
Tunisia
5000

anouar.benmabrouk@issatso.rnu.tn

Sara Biagini

Dept. of Statistics and Appl. Mathematics

University of Pisa

Via C. Ridolfi *10

Pisa
Italy
I-56124

sara.biagini@ec.unipi.it

Philippe Blanchard

Fakultät für Physik

Universität Bielefeld

Universitätsstr. 25

Bielefeld
Germany
D-33615 

blanchard@physik.uni-bielefeld.de

Raymond Brummelhuis

School of Economics, Birbeck College

University of London

Malet Street

London WC1E 7HX
United Kingdom

r.brummelhuis@statistics.bbk.ac.uk

Rainer Buckdahn

Lab. de Math. CNRS-UMR 6205

Univ. de Bretagne Occidentale

6, Av. Victor Le Gorgeu, CS 93837

Brest Cédex 3
France
F-29238

rainer.buckdahn@univ-brest.fr

René Carmona

Bendheim Center for Finance

Princeton University 

Paul M. Wythes '55

Princeton  NJ 08544
U.S.A.

rcarmona@princeton.edu

Matteo Casserini

Dept. of Mathematics, HG F 27.8

ETH-Zürich

Rämistrasse 101

Zürich
Suisse
8092

matteo.casserini@math.ethz.ch

Claudia Ceci

Dip. di Scienze

Università  "G. d'Annunzio", Pescara

Viale Pindaro 42

Pescara
Italy
65127

claudia.ceci@uniroma1.it

Sandra Cerrai

DIMADEFAS

Università di Firenze

Via C. Lombroso, 6/17

Firenze
Italy
I-50134

sandra.cerrai@dmd.unifi.it

Le Chen

Institut de Mathématiques

EPF- Lausanne

Station 8

Lausanne
Switzerland
1015

le.chen@epfl.ch

61



Alexandra Chronopoulou

Purdue University

213 N 11th

Lafayette IN 47901
U.S.A.

achronop@purdue.edu

Fulvia Confortola

Dip. di Matematica 

Politecnico di Milano

Milano
Italy

fulvia.confortola@polimi.it

Daniel Conus

Institut de mathématiques

EPF-Lausanne

Station 8

Lausanne
Switzerland
1015

daniel.conus@epfl.ch

José-Manuel Corcuera

Facultat de Matematiques

Universitat de Barcelona

Gran Via de les Corts Catalanes 585

Barcelona
Spain
08007

jmcorcuera@ub.edu

Michael Cranston

Department of Mathematics

Univ. of California, Irvine

28 Frost

Irvine CA
U.S.A.
92617

mcransto@math.uci.edu

Ana Bela Cruzeiro

GFM and Dep. Mathematics

IST Lisbon

Av. Rovisco Pais

Lisboa codex
Portugal
P-1049-003

abcruz@math.ist.utl.pt

Giuseppe Da Prato

Scuola Normale Sup. di Pisa 

P. dei Cavalieri 7

Pisa 
Italy
I-56126

daprato@sns.it

Hassan Dadashi

Fakultät für Mathematik

Universität Bielefeld

Universitätstrasse

Bielefeld
Germany
D-33615

dadashi@math.uni-bielefeld.de

Robert C. Dalang

Institut de Mathématiques

EPF-Lausanne

Station 8

Lausanne
Switzerland
1015

robert.dalang@epfl.ch

Savas Dayanik

ORFE Department

Princeton University

E-Quad

Princeton NJ 08544
U.S.A

sdayanik@princeton.edu

Jean-Dominique Deuschel

FB-3-Mathematik MA 7-5

Technische Universität Berlin

Strasse des 17. Juni 136

Berlin
Germany
10623

deuschel@math.tu-berlin.de

Cristina Di Girolami

Institut Galilée, Mathématiques

Université Paris 13 & Luiss Rome

99, av. JB Clément

Villetaneuse
France
F-93430

cdigirolami@luiss.it

Marco Dozzi

Département de Mathématiques

Nancy Université

B.P. 239

Vandoeuvre-les-Nancy
France
F-54506

marco.dozzi@iecn.u-nancy.fr

Ernst Eberlein

Institut für Mathematische Stochastik

Universität Freiburg

Eckerstr. 1

Freiburg
Germany
D-79104

eberlein@stochastik.uni-freiburg.de

Nathalie Eisenbaum

Lab. Probabilités & Modèles Aléatoires

Université Paris VI et VII

Site Chevaleret, Case 7012

Paris Cedex 13 Cedex 05
France
F-75205

nae@ccr.jussieu.fr

Hans-Jürgen Engelbert

Fakultät für Mathematik und Informatik

Friederich-Schiller-Univ. Jena

Ernst-Abbe-Platz 1-4

Jena
Germany
D-07743

engelbert@minet.uni-jena.de

Damir Filipovic

Vienna Institute of Finance

Heiligenstaedter Strasse 46-48

Wien
Austria
A-1190

damir.filipovic@vif.ac.at

Alexander Gnedin

Utrecht University

The Netherlands

a.v.gnedin@math.uu.nl

62



Stéphane Goutte

Institut Galilée  Mathématiques

Université Paris 13 & Luiss Rome

99, av. JB Clément

Villetaneuse
France
F-93430 

goutte@math.univ-paris13.fr

Paolo Guasoni

Department of Maths. and Stats.

Boston University

111 Cummington St.

Boston MA 02215
U.S.A.

guasoni@bu.edu

Giuseppina Guatteri

Dipartimento di Matematica

Politecnico Milano

Milano
Italy

giuseppina.guatteri@polimi.it

Erika Hausenblas

Dept. of Mathematics

Salzburg University

Hellbrunnerstr. 34

Salzburg
Austria
A-5020

Erika.Hausenblas@sbg.ac.at

Max-Olivier Hongler

STI

EPF-Lausanne

Station 17

Lausanne
Switzerland
CH-1015

max.hongler@epfl.ch

Peter Imkeller

Institut für Mathematik

Humboldt-Universität zu Berlin

Unter den Linden 6

Berlin
Germany
D-10099

imkeller@mathematik.hu-berlin.de

Adam Jakubowski

Dep. Prob. Theory and Stoch. Analysis 

Nicolaus Copernicus University

ul. Chopina 12/18

Torun
Poland
87-100

adjakubo@mat.uni.torun.pl

Ahmed Kebaier

Institut Gallilée, Mathématiques

Université Paris 13

99, av. J.-B. Clément

Villetaneuse
France
93430

kebaier@math.univ-paris13.fr

Agnessa Kovaleva

RAS

Space Research Institute Moscow

Profsoyuznaya ul. 84/32

Moscow
Russia
117997 

a.kovaleva@ru.net

Andreas Kyprianou

Dept. Mathematical Sciences

University of Bath

Claverton Down

Bath
United Kingdom
BA1 2UU

a.kyprianou@bath.ac.uk

Paul Lescot

INSSET

Université de Picardie

48, rue Raspail

Saint-Quentin
France
F-02100

palescot@hotmail.com

Wei Liu

Department of Mathematics

University of Bielefeld

Bielefeld
Germany
D-33615

wei.liu@uni-bielefeld.de

Jozsef Lorinczi

School of Mathematics

University of Loughborough

United Kingdom

j.lorinczi@lboro.ac.uk

Anatoliy Malyarenko

Div. of Applied Mathematics

Mälardalen University

Högskoleplan, Box 883

Västeras
Sweden
721 23

anatoliy.malyarenko@mdh.se

Federica Masiero

Dip. di Matematica e Applicazioni

Università  di Milano Bicocca

Via Cozzi 53

Milano
Italy
20125 

federica.masiero@unimib.it

Bohdan Maslowski

Institue of Mathematics

Acad. Sci. Czech Republic

Zitna 25

Prague
Czech Republic
11567

maslow@math.cas.cz

Jonathan C. Mattingly

Mathematics Department

Duke University

Box 90320

Durham NC 27701
U.S.A.

Jonm@math.duke.edu

Eddy Mayer-Wolf

Department of Mathematics

Technion-Israël Institute of Technology

Haifa
Israel
32000

emw@techunix.technion.ac.il

63



Mirko Stefano Mega

Dip. di Scienze Economiche e Aziendali

Università Luiss and Paris 13

Viale Romania, 32

Roma
Italy
00197

mmega@luiss.it

Annie Millet

SAMOS Centre Pierre Mendès France

Université Paris 1
Panthéon-Sorbonne90, rue de Tolbiac

Paris Cedex 13
France
F-75634

amillet@univ-paris1.fr

Franco Moriconi

Dip. di Economia, Finanza e Statistica

Università di Perugia

Via Pascoli 1

Perugia
Italy
I-06100

moriconi@unipg.it

Carl Mueller

Department of Mathematics

University of Rochester

Rochester NY 14627
U.S.A.

cmlr+new@math.rochester.edu

Ivan Nourdin

LPMA

Université Paris VI

4, Place Jussieu,  BP 188

Paris Cedex 05
France
F-75252

inourdin@gmail.com

Marcel Nutz

Dept. of Mathematics, HG G 49.1

ETH-Zürich

Rämistrasse 101

Zürich
Switzerland
CH-8092

marcel.nutz@math.ethz.ch

Jan Obloj

Department of Mathematics

Imperial College London

London SW7 2AZ

United Kingdom

j.obloj@imperial.ac.uk

Pierre Patie

IMSV

Universität Bern

Alpeneggstrasse 22

Bern
Switzerland
CH-3012

pierre.patie@stat.unibe.ch

Edwin Perkins

Department of Mathematics

University of British Columbia,
Vancouver121-1984 Mathematics Road

Vancouver B.C. V7N 2P7
Canada

perkins@math.ubc.ca

Huyên Pham

Lab. Probabilités & Modèles Aléatoires
UMR7599Université de Paris VI & VII

Site Chevaleret, Case 7012

Paris Cedex 13 Cedex 05
France
75205

pham@math.jussieu.fr

Caroline Pintoux

Université de Poitiers

5bis C rue Jean Jaurès

Poitiers
France
86000

pintoux@math.univ-poitiers.fr

Eckhard Platen

Dept. of Mathematical Sciences

University of Technology, Sydney

PO Box 123

Broadway NSW 2007
Australia

eckhard.platen@uts.edu.au

Miklos Rasonyi

Computer and Automation Institute

Hungarian Academy of Sciences

Kende utca 13-17

Budapest
Hungary
1111

rasonyi@sztaki.hu

Arturo Romer

Università della Svizzera Italiana

Vicolo del Mulino 3

Minusio
Switzerland
CH-6648

Marco Romito

Dipartimento di Matematica Applicata
Università di PisaUniversità di Firenze

viale Morgagni 67/a

Firenze
Italy
I-50134

romito@math.unifi.it

Bernard Roynette

Institut Elie Cartan

Nancy Université 

BP 239

Vandoeuvre-les-Nancy Cedex
France
F-54506

bernard.Roynette@iecn.u-nancy.fr

Barbara Rüdiger - Mastandrea

Mathematisches Institut

Univ. Koblenz-Landau

Campus Koblenz; Universitaetsstr. 1

Koblenz
Germany
D-56070

ruediger@uni-koblenz.de
ruediger@wiener.iam.uni-bonn.de

Francesco Russo

Institut Galilée, Mathématiques

Université Paris 13

99, av. JB Clément

Villetaneuse
France
F-93430

russo@math.univ-paris13.fr

64



Marta Sanz-Solé

Facultat de Matemàtiques

Universitat de Barcelona

Gran Via de les Corts Catalones 585

Barcelona
Spain
E-08007

marta.sanz@ub.edu

Walter Schachermayer

Technische Universität Wien

Wiedner Hauptstrasse 8-10/E105-1

Wien
Austria
A-1040

secr@fam.tuwien.ac.at

Jürgen Schmiegel

Department of Mathematical Sciences

Aarhus University

Ny Munkegade

Aarhus
Denmark
DK-8000

schmiegl@imf.au.dk

Martin Schweizer

Mathematik

ETH-Zürich

ETH-Zentrum, HG G51.2

Zürich
Switzerland
CH-8092

martin.schweizer@math.ethz.ch

Ronnie Sircar

ORFE Department

Princeton University

E-Quad

Princeton NJ
U.S.A
NJ 08544

sircar@princeton.edu

Wilhelm Stannat

Fachbereich Mathematik

TU Darmstadt

Schlossgartenstrasse 7

Darmstadt
Germany
D-64289

stannat@mathematik.tu-darmstadt.de

Andrew Stuart

Mathematics Institute

University of Warwick

Coventry CV4 7AL
United Kingdom

A.M.Stuart@warwick.ac.uk

Karl-Theodor Sturm

Universität Bonn

Wegelerstrasse 6

Bonn
Germany
53125

sturm@wiener.iam.uni-bonn.de

Elisa Tacconi

Dip.  Scienze Economiche e Aziendali

Université Luiss & IAC

Viale Romania, 32

Roma
Italy
00197

etacconi@luiss.it

Gianmario Tessitore

Dip. di Matematica e  Applicazioni

Università di Milano - Bicocca

via R. Cozzi, 53

Milano
Italy
20125

gianmario.tessitore@unimib.it

Samy Tindel

Institut Elie Cartan

Nancy Université 

BP 239

Vandoeuvre-les-Nancy Cedex
France
F-54506

tindel@iecn.u-nancy.fr

Gerald Trutnau

Fakultät für Mathematik

Universität Bielefeld

Postfach 100131

Bielefeld
Germany
D-33501

trutnau@math.uni-bielefeld.de

Frederic Utzet

Departament de Matématiques, Edifici C

Univ. Autonoma de Barcelona

Gran Via de les Cortes Catalones 585

Bellatera (Barcelona)
Spain
S-08193

utzet@mat.uab.cat

Esko Valkeila

Institute of Mathematics and Systems
AnalysisHelsinki Univ. of Technology

P.O. Box 1100

Helsinki
Finland
FI-02015

esko.valkeila@tkk.fi

Pierre Vallois

Institut Elie Cartan, Dept. of Math.

Nancy Université 

BP 239

Vandoeuvre-les-Nancy Cedex
France
F-54506

vallois@iecn.u-nancy.fr

Tiziano Vargiolu

Dip. di Matematica Pura e Applicata

Università di Padova

via Trieste, 63

Padova
Italy
I-35121

vargiolu@math.unipd.it

Lioudmila Vostrikova

Dép. de mathématiques, UFR  de Sciences

Université d'Angers

2, Bld Lavoisier

Angers
France
49045

lioudmila.vostrikova@univ-angers.fr

Jeannette H.
C.

Wörner

Institute for Mathematical Stochastics

Universität Göttingen

Maschmuehlenweg 8-10

Goettingen
Germany
D-37073

woerner@math.uni-goettingen.de

65



Yimin Xiao

Dept. of Statistics and Probability

Michigan State University

A-413 Wells Hall

East Lansing MI 48824
U.S.A.

xiao@stt.msu.edu

Martina Zähle

Mathematical Institut

Universität Jena

Jena
Germany
D-07737

zaehle@math.uni-jena.de

Jean-Claude Zambrini

Grupo de Fisica-Matematica - GFMUL

Universidade de Lisboa

Complexo II, Av. Prof. Gama Pinto 2

Lisboa codex
Portugal
P-1649-003

zambrini@cii.fc.ul.pt

66



M
o

n
d

ay
T

u
es

d
ay

W
ed

n
es

d
ay

T
h

u
rs

d
ay

F
ri

d
ay

A
ud

ito
ri

um
A

ud
ito

ri
um

A
ud

ito
ri

um
A

ud
ito

ri
um

A
ud

ito
ri

um
08

:3
0

-
08

:4
0

O
pe

ni
ng

08
:4

0
-

09
:2

5
S

ch
ac

he
rm

ay
er

S
ir

ca
r

08
:4

0
-

09
:2

5
X

ia
o

08
:4

0
-

09
:2

5
M

at
tin

gl
y

M
as

lo
w

sk
i

09
:3

0
-

09
:5

5
G

ua
so

ni
B

ru
m

m
el

hu
is

09
:3

0
-

09
:5

5
M

al
ya

re
nk

o
09

:3
0

-
09

:5
5

R
om

ito
M

ue
lle

r
09

:5
5

-
10

:2
0

B
ia

gi
ni

V
os

tr
ik

ov
a

09
:5

5
-

10
:2

0
T

in
de

l
09

:5
5

-
10

:2
0

C
ru

ze
ir

o
S

an
z-

S
ol

é

10
:4

0
-

11
:2

5
F

ili
po

vi
c

W
ör

ne
r

10
:4

0
-

11
:2

5
A

lb
ev

er
io

10
:4

0
-

11
:2

5
S

tu
ar

t
D

a 
P

ra
to

11
:3

0
-

11
:5

5
E

be
rl

ei
n

C
or

cu
er

a
11

:3
0

-
11

:5
5

S
tu

rm
11

:3
0

-
11

:5
5

Z
äh

le
Ja

ku
bo

w
sk

i
11

:5
5

-
12

:2
0

C
ar

m
on

a
A

lo
s

11
:5

5
-

12
:2

0
S

ta
nn

at
11

:5
5

-
12

:2
0

N
ou

rd
in

D
eu

sc
he

l

12
:3

0
-

14
:0

0
Lu

nc
h

Lu
nc

h
12

:3
0

-
14

:0
0

Lu
nc

h
12

:3
0

-
14

:0
0

Lu
nc

h
Lu

nc
h

14
:1

0
-

14
:5

5
P

la
te

n
K

yp
ri

an
ou

14
:1

0
-

14
:3

5
B

ar
nd

or
ff

-N
.

14
:1

0
-

14
:5

5
P

er
ki

ns
C

ra
ns

to
n

15
:0

0
-

15
:2

5
P

ha
m

V
al

ke
ila

14
:4

0
-

15
:0

5
M

ill
et

15
:0

0
-

15
:2

5
C

er
ra

i
B

la
nc

ha
rd

15
:2

5
-

15
:5

0
O

bl
oj

D
ay

an
ik

15
:2

5
-

15
:5

0
R

üd
ig

er
E

is
en

ba
um

15
:1

5
-

15
:2

0
O

pe
ni

ng
15

:2
0

-
16

:0
5

Im
ke

lle
r

16
:2

0
-

16
:4

5
V

ar
gi

ol
u

T
es

si
to

re
16

:2
0

-
16

:4
5

R
oy

ne
tt

e
E

ng
el

be
rt

16
:5

0
-

17
:1

5
Le

sc
ot

B
uc

kd
ah

n
16

:4
5

-
17

:0
5

O
n.

 B
or

ra
do

ri
16

:5
0

-
17

:1
5

V
al

lo
is

A
llo

ub
a

17
:2

0
-

17
:4

5
C

ec
i

H
on

gl
er

17
:0

5
-

17
:5

0
R

om
er

17
:2

0
-

17
:4

5
Lo

ri
nc

zi
Z

am
br

in
i

17
:5

0
-

18
:1

5
T

ru
tn

au
B

al
ly

17
:5

5
-

18
:4

0
C

ar
m

on
a

17
:5

0
-

18
:1

5
M

ay
er

-W
ol

f
G

ne
di

n
18

:2
0

-
18

:4
5

U
tz

et
18

:4
5

-
19

:4
5

A
pe

rit
iv

e
19

:3
0

D
in

ne
r

D
in

ne
r

19
:4

5
D

in
ne

r
19

:3
0

D
in

ne
r

S
ix

th
 S

em
in

ar
 o

n
 S

to
ch

as
ti

c 
A

n
al

ys
is

, R
an

d
o

m
 F

ie
ld

s 
an

d
 A

p
p

lic
at

io
n

s
M

ay
 1

9 
- 

23
, 2

00
8

P
ro

g
ra

m
 s

u
m

m
ar

y 

P
os

te
rs

: 
R

oo
m

 B
al

in
t 

ev
er

y 
da

y

67


