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1INTRODUCTION (1)

• Some criticisms may be addressed to the 
standard SETAR model:

– Although there are situations where an abrupt 
change in regime takes place, nature usually 
does not produce discontinuties.

– It may seem a bit limited that the change in 
regime be linked to only one lagged sample.

• This has triggered the development of variants to 
the SETAR which incorporate one (or both) 
remarks.
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2THE STAR MODEL (1)

• A smoother transition between regimes can be 
obtained by replacing the indicator function by 
a continuous function φ(.) changing gradually 
from 0 to 1.

• One gets a Smooth Transition AR (STAR) 
model [1]. With zn the transition variable, a 
popular choice for φ(.) is the logistic function:
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3THE STAR MODEL (2)

• A 2-regime model can be described by:

with εn is an i.i.d. sequence.
• The parameter γ determines the steepness of 

the logistic function. The larger it is, the 
closer φ(.) is to as step function. When γ = 0, 
φ(.) is a constant.
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4THE STAR MODEL (3)

• Since the STAR model is based on a 
continuous function, least squares estimation 
is a maximum likelihood one if the residuals 
are supposed to be Gaussian.

• Estimation of the sub-models coefficients is 
easy if γ and r are fixed , but full estimation 
requires either the use of an optimization 
algorithm or an exhaustive grid search.
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5PIECEWISE LINEAR MODELS (1)

• The idea is quite simple: it consists in 
defining a partition of the state space itself 
instead of a partition of the real line for a 
single threshold variable as for the SETAR:

with xn-1 = [xn-1, …, xn-p]T, p usually taken 
smaller than or equal to max[pk].
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6PIECEWISE LINEAR MODELS (2)

• The easiest way to define the partition {Ak} is 
through a set of centers {ck} and the use of the 
Euclidian distance, that is:

• This corresponds to segmenting the state 
space by hyperplanes. Of course the main 
question is how to define the centers {ck}.
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7PIECEWISE LINEAR MODELS (3)

• Three main avenues:
– The centers are selected to represent the 

spatial distribution of the {xn-1}, with an 
algorithm such as the Lloyd-Max one.

– A sequential segmentation of the state 
space.

– A heuristic selection (by a genetic 
algorithm for instance) of the centers 
among the {xn-1}.



Signal Processing Institute
Swiss Federal Institute of Technology, Lausanne

8PIECEWISE LINEAR MODELS (4)

• Once the centers are selected, least squares 
estimation of the AR coefficients for each 
sub-model is simple.

• Here again, a modified MDL selection 
criterion can be employed. Quantization of 
the center coordinates (as for the RBF 
networks) must be incorporated to prevent 
selection of a limited number of centers only.
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9PIECEWISE LINEAR MODELS (5)

• Concerning stability, the sufficient condition 
of drift back to the center is satisfied if all 
AR sub-models used when ||xn|| becomes 
large are stable. For instance:

origin
unstable

stable



Signal Processing Institute
Swiss Federal Institute of Technology, Lausanne

10PIECEWISE LINEAR MODELS (6)

• A very interesting alternative has been 
proposed in [2] under the name competitive 
local linear modeling.

• The opposite course of action is taken: first, 
the AR sub-models are estimated and second, 
the partition is performed.

• In this way, it may be that more complex 
partitions than center-based ones are 
obtained.
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11PIECEWISE LINEAR MODELS (7)

Sub-model estimation
1) First, a set of AR sub-models ak = [ak0, …, akp]T

is initialized randomly.
2) A vector xn-1 = [1, xn-1, …, xn-p]T is chosen at 

random in the set of available data.
3) The AR model ai giving minimum prediction 

error en with:
en = xn - ai

Txn-1
is found.
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12PIECEWISE LINEAR MODELS (8)

4) This model is updated using normalized LMS 
(NLMS):

5) Back to 2) until the error variance stabilizes or 
becomes smaller than some threshold.

Partitioning 
Some classifier (MLP, k-nearest neighbors) is 

trained to establish the correspondence 
between each xn-1 and the appropriate model.
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13EXPONENTIAL AR MODEL (1)

• The exponential AR (EXPAR) model has been 
introduced in [3]. It is described by:

• The motivation was to define a continuous 
NAR model able to produce limit cycles such 
as observed in the Lynx data.
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14EXPONENTIAL AR MODEL (2)

• It is shown in [3] that sufficient conditions for the 
existence of a limit cycle (no excitation) are:

1. All the poles of the AR model defined by the 
coefficients a1, … , ap, i.e. for xn-1 very large, should be 
inside the unit circle.

2. Some of the poles of the AR model defined by the 
coefficients a1+b1, … , ap+bp, i.e. for xn-1= 0, should be 
outside the unit circle.

3. One of the two conditions below should hold:
(1-Σai)/Σbi > 1  or (1-Σai)/Σbi < 0
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15EXPONENTIAL AR MODEL (3)

• Note that condition 1) is a stability condition of drift 
back to the center.

• Example: 
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16EXPONENTIAL AR MODEL (4)

• Least squares estimation of the coefficients 
{ai,bi}, once the scale parameter α is fixed, is 
quite easy.

• Concerning α, an optimization procedure can 
be used. Otherwise, an exhaustive grid search in 
a suitable range of values can be performed. 
Typically, exp(- αxn-1

2) should be in the interval 
[0.25 0.75] for all values of xn-1, which gives 
bounds on α.
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17STATE DEPENDENT MODEL

• As a matter of fact the EXPAR model can be 
seen as a special (simple) case of the state 
dependent AR model introduced by Priestley 
[4]. This model is described by:

which expresses nonlinearity as a dependence 
of the AR coefficents on the state vector     
xn-1 = [xn-1, …, xn-p]T.
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18RBF-AR MODEL (1)

• But one can observe that the state 
dependence in the EXPAR model can be seen 
as a very simple, mono-dimensional RBF 
network with only one center at 0.

• Also, if there is indeed a direct dependence of 
the AR coefficients on the state, then it could 
be well approximated by an RBF network, 
since it possesses the property of universal 
approximation.
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19RBF-AR MODEL (2)

• These remarks lead to the definition of the 
RBF-AR model, in which the state 
dependence of the AR coefficients is 
expressed by:

• Note that, although it is not mandatory, one 
uses generally the same centers for all the 
coefficient expansions.
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20RBF-AR MODEL (3)

• The centers and width parameter β can be 
determined using heuristics as such as the ones 
presented for the RBF networks (it is also 
possible to have multiple width parameters).

• Once this is done, estimation of the coefficients 
{wki} becomes a classical linear least squares 
problem.

• The MDL approach beased on center 
quantization can also be employed.
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21RBF-AR MODEL (4)

• But the terms in the RBF-AR model can also be 
regrouped differently:
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22RBF-AR MODEL (5)

i.e., the RBF-AR model is the sum of a linear 
AR model plus a sum weighted by RBF of 
linear AR models.

linear AR model

linear AR model

linear AR model

xn-1

1

φ1(xn-1)

φΚ(xn-1)

Σ
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23RBF-AR MODEL (6)

• The RBF-AR model is thus a soft-transition 
version of the piecewise AR model. A 
particular sub-model will have more 
influence if is closer to the corresponding 
center.

• Due to the exponential decrease of the RBF 
with the norm of xn-1, stability of the RBF-
AR model depends only on the “background” 
sub-model (with weight 1).
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