INTRODUCTION (1) 1

e Some criticisms may be addressed to the
standard SETAR model:

— Although there are situations where an abrupt
change 1n regime takes place, nature usually
does not produce discontinuties.

— It may seem a bit limited that the change in
regime be linked to only one lagged sample.

e This has triggered the development of variants to

the SETAR which incorporate one (or both)
remarks.
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THE STAR MODEL (1) 2

e A smoother transition between regimes can be
obtained by replacing the indicator function by

a continuous function ¢(.) changing gradually
from O to 1.

® One gets a Smooth Transition AR (STAR)
model [1]. With z, the transition variable, a
popular choice for ¢(.) 1s the logistic function:

o 1
P T  explatz, -1
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THE STAR MODEL (2) 3

e A 2-regime model can be described by:

X, =(ayg +ay X, +-+a, x,, I=@(x,;7:7))
+(ay0 + a1 X, +F Ay Xy JP(X,5757) + 6,

with ¢ 1s an 1.1.d. sequence.

e The parameter y determines the steepness of
the logistic function. The larger it 1s, the
closer ¢(.) 1s to as step function. When y= 0,
¢@(.) 1s a constant.
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THE STAR MODEL (3) 4

e Since the STAR model 1s based on a
continuous function, least squares estimation
1s a maximum likelthood one 1f the residuals
are supposed to be Gaussian.

e Estimation of the sub-models coefficients i1s

easy 1f yand r are fixed , but full estimation
requires either the use of an optimization
algorithm or an exhaustive grid search.
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PIECEWISE LINEAR MODELS (1) 5

e The 1dea 1s quite simple: 1t consists 1n
defining a partition of the state space itself
instead of a partition of the real line for a

single threshold variable as for the SETAR:

K

Xn = Z{akO T Xy T °+akpkxn—pk TOké, }] (xn—l = Ak)
k=1

withx, | =[x, 1, ..., X,,|", p usually taken
smaller than or equal to max[p,].
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PIECEWISE LINEAR MODELS (2) 6

e The easiest way to define the partition {4,} 1s
through a set of centers {c,} and the use of the
Euclidian distance, that 1s:

X, €4, <X, —¢ KX, —¢, |, m#k

e This corresponds to segmenting the state
space by hyperplanes. Of course the main
question 1s how to define the centers {c,}.
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PIECEWISE LINEAR MODELS (3) 7

e Three main avenues:

— The centers are selected to represent the
spatial distribution of the {x, ,}, with an
algorithm such as the Lloyd-Max one.

— A sequential segmentation of the state
space.

— A heuristic selection (by a genetic
algorithm for instance) of the centers
among the {x }.
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PIECEWISE LINEAR MODELS (4) 8

e Once the centers are selected, least squares
estimation of the AR coefficients for each
sub-model 1s simple.

e Here again, a modified MDL selection
criterion can be employed. Quantization of
the center coordinates (as for the RBF
networks) must be incorporated to prevent
selection of a limited number of centers only.
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PIECEWISE LINEAR MODELS (5)

e Concerning stability, the sufficient condition
of drift back to the center 1s satistied 1f all

AR sub-models used when ||x, || becomes

large are stable. For instance:

O O
O 4+ origin
unstable S
O
QO
® stable

. Signal Processing Institute
~ 1= Swiss Federal Institute of Technology, Lausanne

e —————]
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



PIECEWISE LINEAR MODELS (6) 10

e A very interesting alternative has been
proposed 1n [2] under the name competitive
local linear modeling.

® The opposite course of action 1s taken: first,
the AR sub-models are estimated and second.,
the partition 1s performed.

¢ In this way, it may be that more complex
partitions than center-based ones are

obtained.
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PIECEWISE LINEAR MODELS (7) 11

Sub-model estimation

1) First, a set of AR sub-models a; = [a,, ..., ;|7
1s 1nitialized randomly.
x, | 1s chosen at

2) Avectorx, ,=[l,x, ..., hp
random 1n the set of available data.

3) The AR model a; giving minimum prediction
error e, with:
€, =X, -a;'X,
1s found.
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PIECEWISE LINEAR MODELS (8) 12

4) This model 1s updated using normalized LMS
(NLMS): .
a; <—a; +ﬂ enxn—l/ (xn—lxn—l)
5) Back to 2) until the error variance stabilizes or
becomes smaller than some threshold.

Partitioning

Some classifier (MLP, k-nearest neighbors) 1s
trained to establish the correspondence
between each x, , and the appropriate model.
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EXPONENTIAL AR MODEL (1) 13

e The exponential AR (EXPAR) model has been
introduced 1n [3]. It 1s described by:

2

n—1

)]xn—i T &

n

p
x, =) [a; + b, exp(—ax
i=1

e The motivation was to define a continuous
NAR model able to produce limit cycles such
as observed 1n the Lynx data.
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EXPONENTIAL AR MODEL (2) 14

e [tis shown in [3] that sufficient conditions for the
existence of a limit cycle (no excitation) are:

1. All the poles of the AR model defined by the

coetficients a,, ... , a,, 1.€. for x, , very large, should be

inside the unit circle.

2. Some of the poles of the AR model defined by the
coetficients a,+b,, ... , a,tb,, 1.€. for x, ;= 0, should be
outside the unit circle.

3. One of the two conditions below should hold:
(1-Za))/2b,>1 or (1-Xa)/Zbh.<0
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EXPONENTIAL AR MODEL (3)

e Note that condition 1) is a stability condition of drift
back to the center.

o Example: x, =[1.95+0.23exp(-x-_)]X,_,

—[0.96 + 0.24exp(-x"_)]x, _,

W O & N OO N Ok ®m D
1T 1 1T 1
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EXPONENTIAL AR MODEL (4) 16

e [ cast squares estimation of the coefficients

{a,b.}, once the scale parameter « 1s fixed, 1s
quite easy.

e Concerning «, an optimization procedure can
be used. Otherwise, an exhaustive grid search in
a suitable range of values can be performed.

Typically, exp(- ax,_,?) should be 1n the interval
[0.25 0.75] for all values of x__,, which gives

bounds on c.
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STATE DEPENDENT MODEL 17

e As a matter of fact the EXPAR model can be
seen as a special (simple) case of the state

dependent AR model introduced by Priestley
[4]. This model 1s described by:

Xp = aO(xn—l) T4 (X, )xn—l L ap (X )xn—p +&,

which expresses nonlinearity as a dependence
of the AR coefficents on the state vector

X, = X oo X"
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RBF-AR MODEL (1) 18

e But one can observe that the state
dependence 1n the EXPAR model can be seen
as a very simple, mono-dimensional RBF
network with only one center at 0.

e Also, 1f there 1s indeed a direct dependence of
the AR coefficients on the state, then 1t could
be well approximated by an RBF network,
since 1t possesses the property of universal

approximation.
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RBF-AR MODEL (2) 19

e These remarks lead to the definition of the
RBF-AR model, in which the state
dependence of the AR coefficients 1s
expressed by:

K 4 2\

X,_1-C
al-(xn_l) = W;o + > Wik exp NXn—1=C|
k=1 2 37
- \ J

e Note that, although 1t 1s not mandatory, one
uses generally the same centers for all the
coefficient expansions.
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RBF-AR MODEL (3) 20

e The centers and width parameter £ can be
determined using heuristics as such as the ones
presented for the RBF networks (it 1s also
possible to have multiple width parameters).

e Once this 1s done, estimation of the coefticients
{w,.} becomes a classical linear least squares
problem.

e The MDL approach beased on center
quantization can also be employed.
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RBF-AR MODEL (4)

21

e But the terms 1n the RBF-AR model can also be

regrouped differently:

K

X, =Wy + ZWOk¢k(xn—1) +
k=1

Tt O+Z pk?(Xp—1)

k=1

p K
= Woo * ZWiOxn—i T Z¢k (X,_1)
i=1 k=1
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k=l

xn—p

Wor + Zwikxn—i
B i=1
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RBF-AR MODEL (5) 22

1.e., the RBF-AR model 1s the sum of a linear
AR model plus a sum weighted by RBF of
linear AR models.

linear AR model

linear AR model

d(x,.)

4

¢ K(xn—l) linear AR model
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RBF-AR MODEL (6) 23

e The RBF-AR model 1s thus a soft-transition
version of the piecewise AR model. A
particular sub-model will have more

influence 1f 1s closer to the corresponding
center.

e Due to the exponential decrease of the RBF

with the norm of x, _,, stability of the RBF-

AR model depends only on the “background”
sub-model (with weight 1).
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