

CS-411 : Digital Education \& Learning Analytics

Chapter 12: Orchestration Graphs

Modelling rich learning scenarios

$20^{\prime} 000 \times 3 / 0.5=30^{\prime} 000$ pictures

Select top 5\% pictures

Such a pedagical scenario is a workflow

К.8ојоә.8 ио иоџ̣эпроди

$\text { әıņo!d e peotd } \cap$

Select top pictures

$-$

TIME

PLANE

TIME

PLANE

TIME

A pedagogical scenario is modelled as a graph

TIME

An orchestration graph is a weighted directed geometric graph

Peer Instruction (E. Mazur)

Peer Instruction (E. Mazur)

Stian HAKEV

http://reganmian.net/blog/2014/10/03/a-pedagogical-script-for-idea-convergence-through-tagging-etherpad-content/

ArgueGraph

Question 1	
Question:	In large city marathons, should drug testing be applied to participants that finish two hours after the winner?
Answer:	OYes, because cheating should always be punished Yes, because any runner taking drugs damages her health No, because they run for themselves, not for rankings No, because people have also the right to smoke and to drink alcohol
Enter arguments	I believe in individual freedom

Question 1 :

Question: In large city marathons, should drug testing be applied to participants that finish two hours after the winner?
Answer:
Yes, because cheating should always be punishedYes, because any runner taking drugs damages her health
H ONo, because they run for themselves, not for rankings
B \odot No, because people have also the right to smoke and to drink alcohol

Enter your We consider self-responsibilty an important quality for arguments: sportlers. Yet, it does not apply to participants getting prize or medals.

Question:
In large city marathons, should drug testing be applied to participants that finish two hours after the winner?
Possible answers: 1) Yes, because cheating should always be punished
2) Yes, because any runner taking drugs damages her health
3) No, because they run for themselves, not for rankings
4) No, because people have also the right to smoke and to drink alcohol

Solo Block Duo (Block

Question 1: In large city marathons, should drug testing be applied to participants that finish two hours after the winner?

Your answer and synthesis of known arguments:

\square

Reminder

Individual :

Your arguments:

None
Individual arguments of students:

- No one would ever make the effort to run a marathon without being on drugs. from Nils
- Someone who is two hours late this time could be the winner next time and the run before; in addition, it does not exclude drug use from Frank
- For the people that are not relevant for the result lists, it's their own responsibility if they risk damage to their health. Yet, still they are cheating the other clean runners. To require a test from every amateur (while probably almost all of them are clean) would setup a system of total control and non-trust. from Andreas

Graph
9 should always be punished but in particular when it is useless. from Pierre ven though a person runs a marathon for herself, she should be in favor of banning the use of drugs and willingly take the test from Pantelis asmedmand

- You should make sure that the winners do not use drugs. No need to test the loosers who are rather running for themselves. from Armin wew wid

1. Each student takes a multiple-choice questionnaire produced by the teacher. The questions have no correct or wrong answer; their answers reflect theories about learning. For each choice, the students enter an argument in a free-text entry zone.
2. The system produces a graph in which students are positioned according to their answers. A horizontal and vertical score is associated to each answer of the quiz and the students' position is simply the sum of these values. Students look at the graph and discuss it informally. The system or the tutor forms pairs of students by selecting peers with the largest distance on the graph (i.e., that have most different opinions).
3. Pairs answer the same questionnaire together and again provide an argument. They can read their individual previous answer.
4. For each question, the system aggregates the answers and the arguments given individually (Phase 1) and collaboratively (Phase 3). During a face-toface debriefing session, the teacher asks students to comment on their arguments. The set of arguments covers more or less the content of the course but is completely unstructured. The role of the teacher is to organize the students' arguments into theories, to relate them, to clarify definitions, in other words, to structure emergent knowledge
5. Each student writes a synthesis of arguments collected for a specific question. The synthesis has to be structured according

(Op1) After a_{1}, an operator aggregates the student answers in order to compute their horizontal and vertical position of each learner and produces the opinions map. This is an example of aggregation operator.
(Op2) Another operator uses the position of each student in order to form pairs of individuals with conflicting opinions, which is communicated to learners during a_{2}. This is a social operator
(Op3) For a_{3}, an operator aggregates -for each pair formed in a_{2} - the answers that the two peers gave individually in a_{1}. This is also an aggregation operator.
(Op4) For a_{4}, an operator counts all answers and justifications per question, for each individual and each team. This aggregation operator produces several pie charts and tables that the teacher uses during the debriefing lecture.
(Op5) For a_{5}, an operator produces a list of all data collected per question, which the student will use to write their summary.

Library of Graph Operators

Aggregation	Distribution	Social	BackOffice
(A) Listing	(D) Broadcasting	(S) Group formation	(B) Grading
(A) Classifying	(D) User selection	(S) Class Split	(B) Feedback
(A) Sorting	(D) Sampling	(S) Role assignment	(B) Anti-plagiarism
(A) Synthesizing	(D) Splitting	(S) Role rotation	(B) Rendering
(A) Visualizing	(D) Conflicting	(S) Group rotation	(B) Translating
	(D) Adapting	(S) Drop out management	(B) Summarizing
		(S) Anonymisation	(B) Converting
			(B) Updating

$$
G=(V, E) \text { where } E=V X V
$$

$$
V=\left\{a_{i}\right\} \mid a_{i}: t^{s}, t^{e}, \pi, \text { object, product, }\{c\}, \text { traces, }\{\text { metadata }\}
$$

$$
\mathrm{E}=\left\{\mathrm{e}_{\mathrm{ij}}\right\} \mid \mathrm{e}_{\mathrm{ij}}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}},\{\text { operators }\},\{\text { controls }\}, \text { label, weight, elasticity }\right)
$$

Workflow

Aggregation	Distribution	Social	Backoffice
(A) Listing	(D) Broadcasting	(S) Group	${ }^{(B)}$ Grading
(A) Classitying	(D) User selection	(S) Class Split	Feed
(A) Sorting	(D) Sampling	(S) Role assignment	(B) Anti-plagiarism
(A) Synthesizing	(D) Splititing	(S) Role rotation	(B) Rendering
(A) Visualizing	(D) Conflicting	(S) Group rotation	(B) Translating
	(D) Adapting	(S) Drop out management	(B) Summarizing
		(S) Anonymisation	(B) Converting
			(B) Updating

Pedagogical idea

Preparation	Set	Translation	Generalization
(P) Pre-requisite	(S+) Aggregation	(T) Proceduralisation	(G+) Induction
(P) ZPD	(S+) Expansion	(T) Elicitation	(G+) Deduction
(P) Adv. organizer	(S-) Decomposition	(T) Alternate	(G+) Extraction
(P) Motivation	(S-) Selection	(T) Re-Frame	(G+) Synthesis
(P) Anticipation	(S=) Juxtaposition	(T) Reverse	(G=) Analogy
(P) Logistics	(S=) Contrast	(T) Repair	(G=) Transfer
(P) Data	(S=) ${ }^{\text {c }}$ (dentity	(T) Teach	(G-) Restriction
Collection			

Stochastic model

Library of Edge Labels

Why is a_{i} a condition for a_{j} ?

Class

Figure 9.1. Edge labels in a "German as foreign language" graph. The graph includes a group debate on a topic, e.g. drugs. This generates some frustration among learners due to their lack of vocabulary. This frustration hypothetically creates motivation to learn some vocabulary. This activity is a pre-requisite for the debate that will follow.

Individual

Figure 10.1. After an introduction, the teacher splits the class into two sub-classes, those who have already studied how to form questions and negative sentences in English and those who did not. The novices do individual exercises on each skill, first questions and then negative sentences and finally these two skills are aggregated during pair dialogue exercises that include negative questions. The more experienced sub-class starts directly with the pair dialogue exercises, but the students who encounter difficulties are then redirected towards individual exercises on each skill.

Figure 11.1. After an introductory video, the participants to this MOOC"introduction to statistics" are split into 2 sub-classes for individual activities. In the first subclass, students acquires procedural knowledge; how to compute manually the standard deviation for a set of 20 data points. In the second sub-class, students acquire declarative knowledge: the concepts of dispersion, heterogeneity and variance, illustrated graphical representations. Then, every student from a subclass is paired with a student from the other sub-class and they have to collaborative do first a quiz that measures declarative knowledge and then a task that requires procedural knowledge. To be able to collaborate with their peer, those who acquired declarative knowledge individually have to proceduralize it with the help of their peer and those who acquired procedural knowledge individually have to elicit it (next edge label).

Library of Edge Labels

Preparation	Set	Translation	Generalization
(P) Pre-requisite	(S+) Aggregation	(T) Proceduralisation	(G+) Induction
(P) ZPD	(S+) Expansion	(T) Elicitation	(G+) Deduction
(P) Adv. organizer	(S-) Decomposition	(T) Alternate	(G+) Extraction
(P) Motivation	(S-) Selection	(T) Re-Frame	(G+) Synthesis
(P) Anticipation	(S=) Juxtaposition	(T) Reverse	(G=) Analogy
(P) Logistics	(S=) Contrast	(T) Repair	(G=) Transfer
(P) Data Collection	(S=) Identity	(T) Teach	(G-) Restriction
	$\stackrel{s+}{\longrightarrow} s$ Declarative \square 		

Knowledge Mesh

Orchestration Graph

$$
\begin{aligned}
& \mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { where } \mathrm{E}=\mathrm{V} \text { XV } \\
& \mathrm{V}=\left\{\mathrm{a}_{\mathrm{i}}\right\} \mid \mathrm{a}_{\mathrm{i}}: \mathrm{t}^{\mathrm{s}}, \mathrm{t}^{\mathrm{e}}, \pi, \text { object, product, }\{\mathrm{c}\}, \text { traces, }\{\text { metadata }\} \\
& \mathrm{E}=\left\{\mathrm{e}_{\mathrm{ij}}\right\} \mid \mathrm{e}_{\mathrm{ij}}:\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}},\{\text { operators }\},\{\text { controls }\}, \text { label, weight, elasticity }\right)
\end{aligned}
$$

$$
\mathrm{x}_{\mathrm{i}}(\mathrm{~s}) \in \mathrm{X}_{\mathrm{i}}(\mathrm{~S})=\{\text { fine, active, lost, drop }\}
$$

State "fine": the learner is performing well
State "active": the learner is working but does not seem to succeed well
State "lost": the learner does not understand at all or did not complete the activities
State "drop": the learned has dropped out (e.g. no login since N days)

		Plane of Activity		
		π_{1}	π_{2}	π_{3}
Plane of Modeling		$\mathrm{X}_{\mathrm{i}}(\mathrm{s})$	$\mathrm{X}_{\mathrm{i}}\left(\mathrm{s}_{1}\right)$	$\mathrm{X}_{\mathrm{i}}\left(\mathrm{s}_{1}\right)$
		Active / Passive	Socialloafing	With-me
		On-Leave / DropOut / Late-Comer	Free-rider	Central
		Disoriented	Leader	Isolated
		Linear rigidity	On/Off Role	Bridge
		Impasse		
		Trapped		
		Over/Under generalization		
		Deep/surface		
		Gaming		
			$\mathrm{X}_{\mathrm{i}}(\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \ldots)$	$\mathrm{X}_{\mathrm{i}}(\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \ldots$.
			Under/Over Sized	Cluster
	\sum_{0}°		Cognitive/Emotional Conflict	
	亏ِ		Misunderstanding	
			Groupthink	
			Distributed	
				$\mathrm{X}_{\mathrm{i}}(\mathbf{S})$
	$\frac{0}{0}$			Good/Bad Spirit
				Slow
	華			Split

The weight of edges

State Transition Matrix

$\mathbf{M}^{\mathrm{ij}}(\mathbf{S})$	$\mathbf{X}_{\mathbf{2}}(\mathbf{s})$				
$\mathbf{X}_{1}(\mathbf{s})$	Lost	Active	Fine	Drop	Total
Lost	39%	24%	10%	27%	100%
Active	14%	39%	30%	17%	100%
Fine	20%	35%	40%	5%	100%
Drop	0%	0%	0%	100%	100%

State Transition Matriy Entropy

| M1 | Lost | Active | Fine | \mathbf{H} | | M2 | Lost | Active | Fine | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lost | 0.98 | 0.01 | 0.01 | 0.16 | | Lost | 0.01 | 0.01 | 0.98 | 0.16 |
| Active | 0.01 | 0.98 | 0.01 | 0.16 | | Active | 0.01 | 0.01 | 0.98 | 0.16 |

State Transition Matriy Utopy

| M6 | Lost | Active | Fine | H | H 0 | M 7 | Lost | Active | Fine | H | HO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lost | 0.01 | 0.24 | 0.75 | 0.87 | 0.55 | Lost | 0.75 | 0.24 | 0.01 | 0.87 | 0.55 |
| Active | 0.01 | 0.24 | 0.75 | 0.87 | 0.55 | Active | 0.75 | 0.24 | 0.01 | 0.87 | 0.55 |
| Fine | 0.01 | 0.24 | 0.75 | 0.87 | 0.55 | Fine | 0.75 | 0.24 | 0.01 | 0.87 | 0.55 |
| | | | | $\omega(\mathrm{M} 5)$ | 0.45 | | | | | $\omega(\mathrm{M} 6)$ | 0.45 |

State Transition Matriy Utopy

M8	0.2	0.2	0.2	0.2
	0.2	0.2	0.2	0.2
	0.2	0.2	0.2	0.2
	0.2	0.2	0.2	0.2
	0.2	0.2	0.2	0.2
		0.2		
				$U(M)$

M11	1	0	0	0	0
	1	0	0	0	0
	1	0	0	0	0
	1	0	0	0	0
	1	0	0	0	0
			$U(M)$	$\mathbf{- 1}$	

M9	1	0	0	0	0
	0	1	0	0	0
	0	0	1	0	0
	0	0	0	1	0
	0	0	0	0	1
			$U(M)$	$\mathbf{0}$	

$$
\begin{array}{crrrrr}
\text { M12 } & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
& 0.1 & 0.1 & 0.2 & 0.3 & 0.3 \\
& 0 & 0 & 0.2 & 0.3 & 0.5 \\
& 0 & 0.1 & 0.2 & 0.2 & 0.4 \\
& 0 & 0 & 0 & 0.2 & 0.8 \\
& & & & U(M) & \mathbf{0 . 4 7}
\end{array}
$$

$\begin{array}{rrrrrrrrrrrr}\text { M10 } & 0 & 0 & 0 & 0 & 1 & \text { M13 } & 0.5 & 0.1 & 0.2 & 0.1 & 0.1 \\ & 0 & 0 & 0 & 0 & 1 & & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ & 0 & 0 & 0 & 0 & 1 & & 0.7 & 0.2 & 0.1 & 0 & 0 \\ & 0 & 0 & 0 & 0 & 1 & & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ & 0 & 0 & 0 & 0 & 1 & & 0.8 & 0.2 & 0 & 0 & 0 \\ & & & U(M) & \mathbf{1} & & & & & U(M) & \mathbf{- 0 . 4 2}\end{array}$

The elastucuy of edges

How to build transition matrices?

Association. If the learner associates frequently items x and y , such as "nitrate" and ${ }^{~} \mathrm{NO}_{3}{ }^{-4}$ during a_{i}, this increases the probability that, when presented with x during a_{j}, the learner will be able to cite y .

Reinforcement. This is a special case of association. If the learner behavior $\mathrm{b}_{\mathrm{i}}(\mathrm{s})$ is triggered by stimuli x and then followed systematically and immediately by a positive feedback during a_{i}, the probability increases that, if the stimuli x is presented during a_{j}, the learner will produce behavior $b_{i}(\mathrm{~s})$.
Compilation. If the learner applies a procedural skill c many times during a_{i}, and if a_{i} and a_{j} are very similar to eac 0 learner will probably apply c faster and with a lower cognitive load during a_{j}.

Chunking. If the learner applies c_{1} and c_{2} sequentially during a_{i}, the c , ds , rat arower cognitive load during a_{j} than the sum of the cognitive load triggered by c_{1} and c_{2}.
 during a_{i} will inhibit the elicitation of x during a_{i}.

Argumentation. If two, learners argue x ring a \quad ry is an element used in the argument $y \rightarrow x$, the probability increases that these learners ma

Explanation. If, dur ba. learner elaborates a new explanation with a chain of elements $[x \rightarrow y \rightarrow z]$, and a_{i} and a_{j} are very similar to each other, then the probability increases that the learner will be able to use $\mathrm{x} \boldsymbol{\rightarrow}$ y or $\mathrm{y} \boldsymbol{\rightarrow} \mathrm{z}$ while performing a_{j}.

Induction. If, during a_{i}, a learner compares positive $\{\mathrm{e}+\}$ and negative $\{\mathrm{e}-\}$ instances of a concept K and if $\{\mathrm{f}\}$ is the set of features that are common to $\{\mathrm{e}+\}$ and simultaneously absent from $\{\mathrm{e}-\}$, then the probability increases that the learner includes $\{\mathrm{f}\}$ in the definition of K after a_{j}.

Mutual regulation. If a student is able to regulate the problem solving process of his teammate during a_{i}, and if a_{i} and a_{j} require similar problem solving strategies, the probability increases that he will be able to regulate his own problem solving process during a_{j}.

Internalization If, during a_{i}, a student s_{1} participates into a meaningful dialogue with a more advanced student s_{2} within the zone of proximal development of s_{1}, the probability increases that s_{1} replays this dialogue during individual reasoning for a_{j}, i.e. as monologue.

How to build transition matrices ?

Leamining Annalytics

Diagnosis Entropy

$\mathrm{X}_{\mathrm{i}}(\mathrm{S})=\{$ lost, active, fine, brilliant $\}$

The diagnosis power of an activity a_{i} is the measure by which it reduces entropy:
$\mathrm{H}\left(\mathrm{X}_{\mathrm{i}}(\mathrm{s})\right)-\mathrm{H}\left(\mathrm{X}_{\mathrm{i}-1}(\mathrm{~s})\right)$.

$$
\begin{aligned}
& X_{0}(s) \longrightarrow X_{1}(s) \longrightarrow X_{2}(s) \longrightarrow X_{3}(s) \\
& B_{1}(s) \\
& \mathrm{B}_{2}(\mathrm{~s}) \\
& B_{3}(s)
\end{aligned}
$$

The learning analytics cube

Orchestration

$\mathrm{p}($ modification $(\mathrm{G}))=\underline{\text { necessity }(\text { modification }(\mathrm{G}))}$ * benefit (modification $(\mathrm{G}))$
cost (modification (G)))

So what ?

1. «Design for analytics»
2. Pedagogy inside technology
3. A model is a simplication
4. Not only of learning technologies
