Types et fonctions des grilles

⇒ Types

Selon l'écartement entre les barreaux:

✓ Grilles fines: 5 à 50 mm

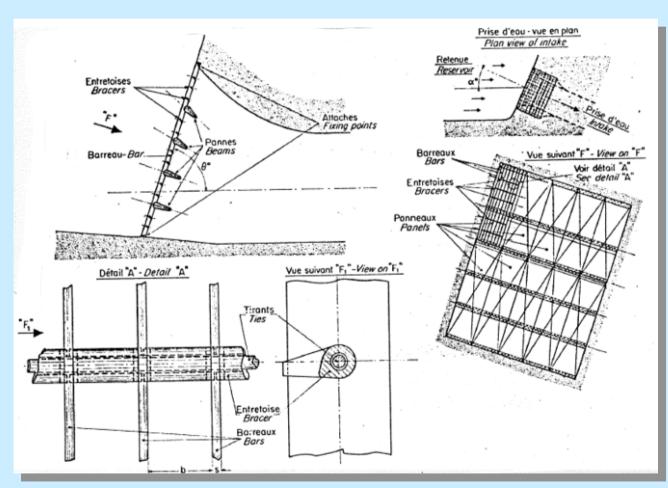
✓ Grilles grossières : 100 à 300 mm.

Ecartements maximums

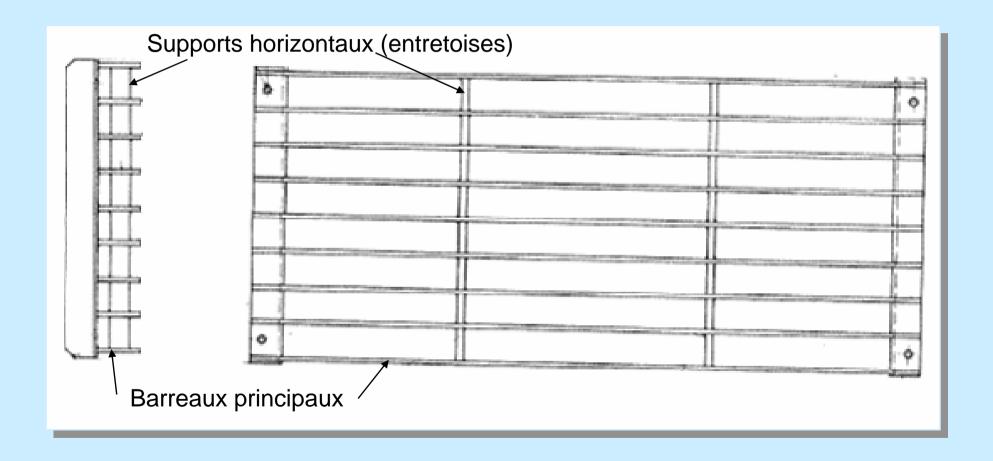
✓ Turbines Pelton: 20 - 30 mm.

✓ Turbines Francis: 40 - 50 mm.

✓ Turbines Kaplan, à bulbe: 80 - 100 mm.

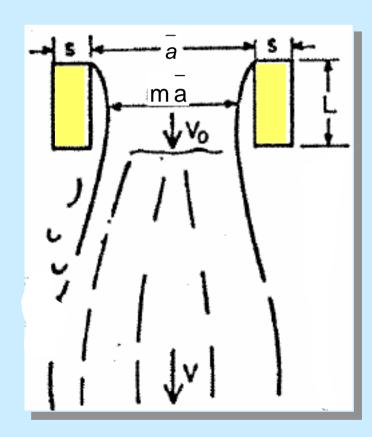

⇒ Fonctions, objectifs

- Arrêter les corps flottants.
- Empêcher les poissons d'entrer dans la prise d'eau.
- Eviter le passage des cailloux par la prise d'eau.


Construction des grilles

- ⇒ Une grille est composée de barreaux principaux disposés verticalement et portant dans la direction de l'écoulement
- ⇒ Les barreaux
 principaux sont
 soutenus latéralement
 par des supports
 horizontaux
 (entretoises)

Construction des grilles

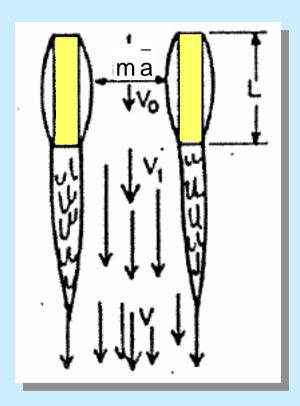

Mécanisme de l'écoulement entre barreaux de grille

⇒ Barreaux courts

- La veine détachée à partir de de l'arête vive ne recolle pas aux barreaux
- La perte de charge est de type Borda-Carnot

$$\Delta H = \frac{(V_o - V)^2}{2g}$$

- L: largeur des barreaux
- s: epaisseur des barreaux
- a: écartement des barreaux
- m: coefficient de contraction = f(s/a)

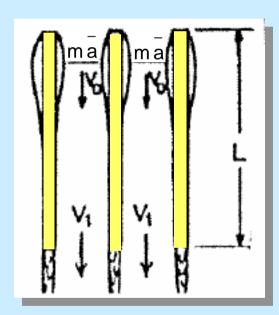

Mécanisme de l'écoulement entre barreaux de grille

⇒ Barreaux de longueur optimale

- La veine détachée à partir de de l'arête vive recolle aux barreaux à l'aval
- La perte de charge est de type Borda-Carnot

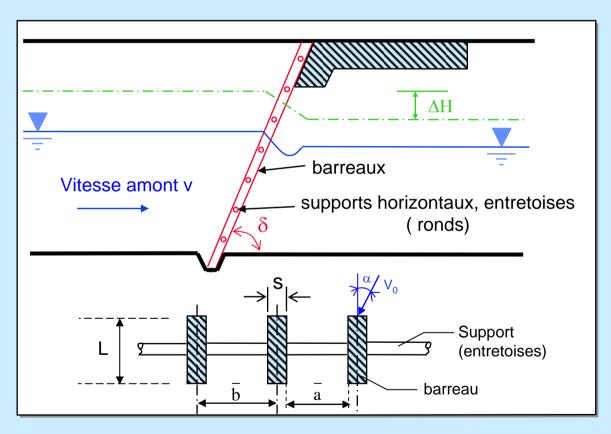
$$\Delta H = K_1 \frac{(V_o - V_1)^2}{2g} + K_2 \frac{(V_1 - V)^2}{2g}$$

- L: largeur des barreaux
- s: epaisseur des barreaux
- a: écartement des barreaux
- m: coefficient de contraction = f(s/a)


Mécanisme de l'écoulement entre barreaux de grille

⇒ Barreaux longs

- La veine détachée à partir de de l'arête vive recolle aux barreaux à l'aval
- La perte de charge est de type Borda-Carnot en tenant compte du frottement entre les barreaux


$$\Delta H = K_{1}^{'} \frac{(V_{o} - V_{1})^{2}}{2g} + K_{3} \frac{L g V_{1}^{2}}{b g g} + K_{2}^{'} \frac{(V_{1} - V)^{2}}{2g}$$

- L: largeur des barreaux
- s: epaisseur des barreaux
- a:écartement des barreaux
- m: coefficient de contraction = f(s/a)

Pertes de charge à la grille

s: paisseur des barreaux

a : ouverture, cartement

b : espacement

 δ : inclinaison de la grille

 α : angle de l' coulement d'approche

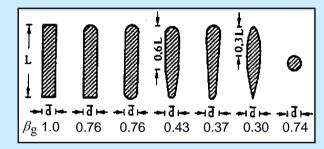
Pertes de charge à la grille

$$\Delta H = \zeta_{g} \cdot \frac{v_{0}^{2}}{2g}$$
avec
$$\zeta_{g} = \beta_{g} \cdot \xi \cdot c \cdot (\sin \delta) \cdot \kappa$$

ξ: facteur de perte de charge

$$\xi = fct \left(\frac{L}{s}, \frac{A_g}{A_0} \right)$$

• Pour $\frac{L}{s} \approx 5$ et $\frac{\overline{a}}{\overline{b}} > 0.5$

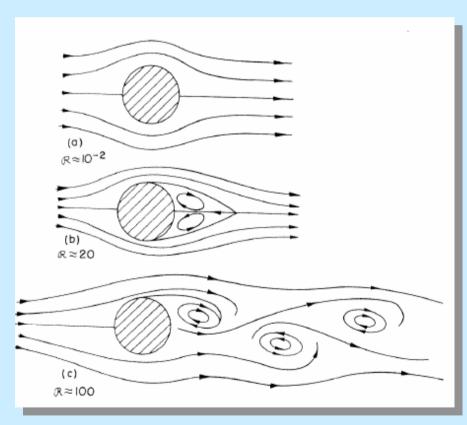

s : épaisseur des barreaux \overline{b} : espacement

L : longueur en coupe des barreaux

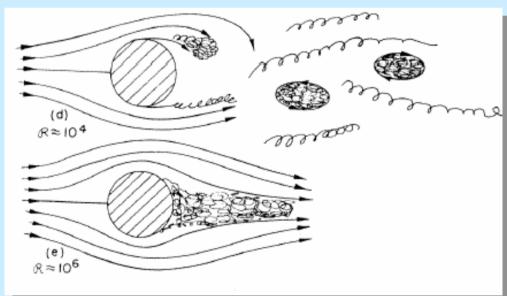
L : longueur en coupe \overline{a} : ouverture, écartement

« jour » entre barreaux

β_g: facteur de forme du barreau



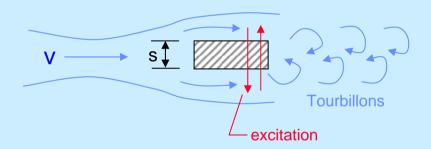
- c: coefficient de la grille
 - c = 1 grille non obstruée
 - ◆ 1.1 < c < 1.3 grille à nettoyage mécanique
 - 1.5 < c < 2 grille à nettoyage manuel
- κ: facteur de la direction de l'écoulement


$$\kappa = fct \left(\frac{s}{a}, \alpha \right)$$

		1.00	0.80	0.60	0.40	0.20
α	0°	1.00	1.00	1.00	1.00	1.00
	20°	1.14	1.18	1.24	1.31	2.24
	40°	1.43	1.55	1.75	1.00 1.31 2.10	5.70
	60°	2.25	2.62	3.26	4.40	

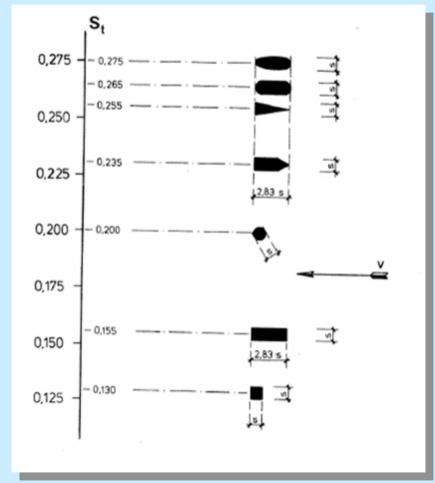
Sollicitations des grilles par le détachement des tourbillons

Tourbillons de von Karman



Nombre de Reynolds $R = \frac{v \cdot s}{v_e}$

Sollicitations des grilles par le détachement des tourbillons


Excitation par l'écoulement

→ Fréquence de détachement des tourbillons ⊠ excitation des barreaux

$$f = S_t \cdot \frac{V}{S}$$

S_t = nombre de Strouhal

Sollicitations des grilles par le détachement des tourbillons

Fréquence propre des barreaux

$$f_{E} = \frac{M}{h^{2}} \sqrt{\frac{E_{a} \cdot I}{A(\rho_{a} + \rho(a_{eff} / s))}}$$

f_F = fréquence propre des barreaux (premier mode)

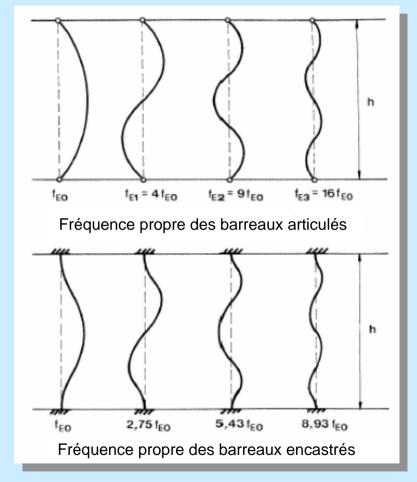
h = longueur des barreaux

M = coefficient d'appui

rotation libre M = 1.57

encastré M = 3.57

E_a = module d'élasticité de l'acier


 I = moment d'inertie du barreau dans la direction latérale

s = épaisseur du barreau

 a_{eff} = espacement effectif a_{eff} < 0.7 L < a

 ρ_{a} , ρ = densité de l'acier resp. de l'eau

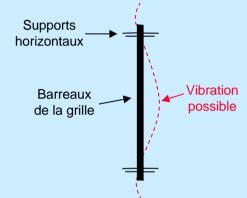
A = surface du barreau = sL

Sollicitations des grilles par le détachement des tourbillons

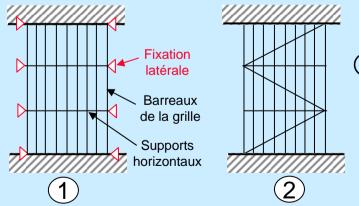
- → Fréquence de détachement des tourbillons ⊠ excitation des barreaux
- → Vibrations fortes
- → Rupture des barreaux par fatigue

Critère pour éviter des vibrations dommageables:

$$f < 0.6 - 0.65$$
 f_E


$$f = f_E \rightarrow \text{résonnance }!!$$

Sollicitations des grilles -vibrations


→ Barreaux singuliers:

Mesures pour éviter des vibrations dommageables

- agrandir l'épaisseur des barreaux.
 (pas économique)
- diminuer la distance entre les supports horizontaux.
- fixation latérale des supports horizontaux au parois/ piliers.
- 2 renforcement latéral des éléments de grilles par des barreaux de travers.

→ Elements de barreaux:

