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Solution 1. We first compute D(z) as follows∑
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where (∗) follows again by taking m = |k|
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. Consequently,
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Hence, the whitening filter will be
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Solution 2.

(a) For the given example, we have that

D(z) = α + β(z + z−1)

or, in the frequency domain,

D(f) = α + β(ej2πf + e−j2πf ) = α + 2β cos 2πf.

The zero-forcing filter is simply 1
D(f)

. Hence, the power spectral density of the equivalent

noise Ṽ [n] (see Equation (4.13) of the lecture notes) is

SṼ (f) =
1

|D(f)|2
N0

2
D(f) =

N0

2

1

D(f)
.

As we have done several times in class, we know that the variance of this noise can be
calculated by observing

E[Ṽ 2[n]] = RṼ [0] =

∫ 1/2

−1/2
SṼ (f)df.

Using the hints in the problem statement, we can actually evaluate this integral:
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(b) We first prove the following:
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where, in (1), we can apply the orthogonality principle to conclude that the second
part of the expression is zero. But then, we also trivially observe that

E
[
(I[n])2

]
= E .

So, the only difficulty is the term E
[
ÎLMMSE[n]I[n]

]
. To tackle this term, let us first

write out:
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∞∑
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=
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But then,
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+
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Now, clearly, the last term is zero since the signal and the noise are uncorrelated (in
fact, independent) and of mean zero. Moreover, because we assume that I[n] is i.i.d.
we have that E [I[n− k − `]I[n]] = Eδ[k + `]. Hence,

E
[
ÎLMMSE[n]I[n]

]
= E

∞∑
k=−∞

∞∑
`=−∞

aLMMSE[k]d[`]δ[k + `]

= E
∞∑

k=−∞

aLMMSE[k]d[−k].

Now, how do we calculate this sum? One way is to observe that it is simply the
convolution of aLMMSE[k] with d[k], evaluated at zero. In general, let us define the new
signal b[n] = (aLMMSE ∗ d)[k], and hence, in terms of the signal b[n], we have that

E
[
ÎLMMSE[n]I[n]

]
= Eb[0].

All that’s left to do is to find b[0]. Let us study the Fourier transform of the signal b[k].
From the convolution property, we have

B(f) = ALMMSE(f)D(f) =
ED(f)

ED(f) + N0

2

,

where we have used the formula for ALMMSE(f) as derived in class for the special case
when the signal I[n] is i.i.d. Now, trivially from the inverse Fourier transform formula,
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we know that

b[0] =

∫ 1/2

−1/2
B(f)df

=

∫ 1/2

−1/2

ED(f)

ED(f) + N0

2

df

=

∫ 1/2

−1/2

(
1−

N0

2

ED(f) + N0

2

)
df

= 1−
∫ 1/2

−1/2

N0

2

ED(f) + N0

2

df.

We have already found that D(f) = α + 2β cos 2πf. Hence,

b[0] = 1−
∫ 1/2

−1/2

N0

2

E(α + 2β cos 2πf) + N0

2

df.

Finally, using the hint given in the problem statement, we find

b[0] = 1−
N0

2E√
(N0

2E + α)2 − 4β2

Combining our expressions, we conclude that

E[(ÎLMMSE[n]− I[n])2] = E(1− b[0]) =
N0

2

1√
(N0

2E + α)2 − 4β2

. (2)

(c) The Z-transform of the matched filter is D(1/z) = α + β(z−1 + z) = D(Z). Thus, in
the time domain we have that:

IMF[n] = (d ∗ d ∗ I)[n] + (d ∗ V )[n]

= I[n](α2 + 2β2) + 2αβ(I[n− 1] + I[n+ 1]) + β2(I[n− 2] + I[n+ 2])

+ αV [n] + β(V [n− 1] + V [n+ 1])

The matched filter output is thus indeed nothing more than a linear sum of the cur-
rent symbol and some interference and noise components. Then, we find the effective
noise variance by normalizing the desired symbol I[n] and finding the variance of the
undesired components:

1

g0[n]
IMF[n] = I[n]

+
2αβ(I[n− 1] + I[n+ 1]) + β2(I[n− 2] + I[n+ 2]) + αV [n] + β(V [n− 1] + V [n+ 1])

α2 + 2β2︸ ︷︷ ︸
undesired

Because all the signal and noise terms are independent, we can calculate their power
separately and sum them up:

E[((d ∗ V )[n])2] =
1

2π

∫ π

−π
(α + 2β cosw)2

N0

2
(α + 2β cosw)dw = (α3 + 6αβ2)

N0

2
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and

PInterference = 2× 4α2β2E + 2× β4E = E(8α2β2 + 2β4)

The equivalent noise variance is thus

σ2
MF =

E(8α2β2 + 2β4) + N0

2
(α3 + 6αβ2)

(α2 + 2β2)2

(d) For this choice of parameters we have:

σ2
ZF =

N0

2
√
α2 − 4β2

=
1√
0.36

σ2
LMMSE =

N0

2

1√
(N0

2E + α)2 − 4β2

=
1√

( 1
E + 1)2 − 0.64

σ2
MF =

E(8α2β2 + 2β4) + N0

2
(α3 + 6αβ2)

(α2 + 2β2)2
=

1.3312E + 1.96

1.7424

The plot is given below:
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Solution 3. First consider estimating the signal I[n] from user 1. The orthogonality
principle implies the optimal estimator must satisfy

E
[
(Î[n]− I[n])Y ∗[n− k]

]
= 0, ∀k = −1, 0, 1.

(Note that we would like to estimate I[n] given Y [n + 1], Y [n], and Y [n − 1].) Since
Î[n] =

∑1
`=−1 a`Y [n− `], the above simplifies to

E

[
1∑

`=−1

a`Y [n− `]Y ∗[n− k]

]
= E[I[n]Y ∗[n− k]]
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or equivalently
1∑

`=−1

a`RY [k − `] = E[I[n]Y ∗[n− k]] := RIY [k], (3)

for all k = −1, 0, 1. It is easy to verify that

RY [m] = E
[
Y [n+m]Y ∗[n]

]
= 8δ[m]− δ[m+ 1]− δ[m− 1],

and (even more easily)

RIY [m] = E
[
I[n+m]Y ∗[n]

]
= δ[m]− 2δ[m+ 1].

Writing out (3) explicitly for k = −1, 0, 1 in the matrix form gives us 8 −1 0
−1 8 −1
0 −1 8

a−1a0
a1

 =

−2
1
0


Solving the above equations we get the optimal coefficients

a−1 = −0.2379, a0 = 0.0968, a1 = 0.0121

Using the same argument for user, we get the linear system 8 −1 0
−1 8 −1
0 −1 81

b−1b0
b1

 =

1
1
0


which gives the optimal coefficients

b−1 = 0.1431, b0 = 0.1452, b1 = 0.0181

Solution 4. Let us first draw the trellis (here the edges are labeled with the value of
noiseless channel output):

(−1)

(+1)

(−1)

(+1)

n = 1 n = 2 n = 3 n = 4 n = 5

2

0

−2

0

0

2

−2

0

0

2

−2

0

0

2

0

2

Next, we can label the edges with the metric |y[n]− (x[n] + x[n− 1])|2:

(−1)

(+1)

(−1)

(+1)

n = 1 n = 2 n = 3 n = 4 n = 5

y[1] = 1 y[2] = −2 y[3] = −1 y[4] = 3 y[5] = 2

1

1

0

4

4

16

1

1

1

9

25

9

9

1

4

0
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The MLSE (Viterbi) decoder will choose the following path on the trellis:

(−1)

(+1)

(−1)

(+1)

n = 1 n = 2 n = 3 n = 4 n = 5

y[1] = 1 y[2] = −2 y[3] = −1 y[4] = 3 y[5] = 2

1

1

1

1 0

4

4

16 5

1 1

1

1

9 2

2 25

9

9

1 3

11

4

0 3

and estimates the input sequence to be (−1,−1,+1,+1,+1).
For the BCJR algorithm we first relabel the edges with γn(x[n−1], x[n]) = exp{−1

2
|y[n]−

(x[n] + x[n− 1])|2} (the numbers you see on the trellis are rounded off):

(−1)

(+1)

(−1)

(+1)

n = 1 n = 2 n = 3 n = 4 n = 5

y[1] = 1 y[2] = −2 y[3] = −1 y[4] = 3 y[5] = 2

0.6

0.6

1

0.13

0.13

3× 10−4

0.6

0.6

0.6

0.01

3× 10−6

0.01

0.01

0.6

0.13

1

The forward recursion phase of the algorithm assigns to each vertex the value of

αn(x) =
∑

x′∈{±1}

αn−1(x
′)γn(x, x′)

as follows,

(−1)

(+1)

(−1)

(+1)

n = 1 n = 2 n = 3 n = 4 n = 5

y[1] = 1 y[2] = −2 y[3] = −1 y[4] = 3 y[5] = 2

1 0.6

0.6

0.6

0.6

1

0.13

0.13

3× 10−4 0.082

0.688

0.6

0.6

0.6

0.01 0.418

0.467

3× 10−6

0.01

0.01

0.6 0.259

0.004

0.13

1

while the backward recursion phase assigns to each vertex the value of

βn(x) =
∑

x′∈{±1}

γn(x, x′)βn+1(x)

as follows
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(−1)

(+1)

(−1)

(+1)

n = 1 n = 2 n = 3 n = 4 n = 5

y[1] = 1 y[2] = −2 y[3] = −1 y[4] = 3 y[5] = 2

10.6

0.6

0.051

0.377

1

0.13

0.13

3× 10−4 0.013

0.375

0.6

0.6

0.6

0.01 0.608

0.011

3× 10−6

0.01

0.01

0.6 1

0.13

0.13

1

By computing scoren(x) = αn(−x)γn(−x, x)βn+1(x) + αn(x)γn(x, x)βn+1(x) we obtain the
following result:

n 1 2 3 4 5
+1 0.0306 0.00101 0.2515 0.2555
−1 0.2262 0.25425 0.0051 0.0005
x̂[n] −1 −1 +1 +1 +1

Solution 5.

(a) (i)

E[X̂|X = x] = E[aThX+aTZ|X = x] = E[aThX|X = x]⇔ aThx = x⇔ aTh = 1

(ii) First observe that:
X̂ = aTY = x− aTZ

then:
x− x̂ = −aTZ

Therefore:

E[|X − X̂|2] = E[(aTZ)2] = aT E[ZZT ]a = aT Ia = aTa = σ2
unbiased

So we need to minimize aTa such that aTh = 1. The solution to the minimization
problem is a = (hTh)−1hT . In this case σ2

unbiased = aTa = (hTh)−1.

We can indeed verify the solution by observing that:

(aTa)(hTh) ≥ |aTh|2 = 1⇒ aTa ≥ (hTh)−1

with equality when a is chosen as proposed.

(b) Let c := aTh, thus,
X̂ = aTY = cX − aTZ

then:
X − X̂ = (1− c)X − aTZ

Therefore,

E[|X − X̂|2] = E
[[

(1− c)X − (aTZ)
]2]

= (1− c)2E + aTa = σ2
min(c)

Since (1− c)2E is fixed we just need to minimize aTa such that aTh = c. The solution
to the minimization problem is a = c(hTh)−1hT . In this case:

σ2
min(c) = (hTh)−1c2 + (c− 1)2E
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We can find the c that minimizes σ2
min(c) by finding the zero of the derivative. We

obtain:

c =
E

(hTh)−1 + E
The minimal σ2

min(c) is therefore:

σ2
min =

E
hThE + 1

(c) In the first case we have:
E

σ2
unbiased

= EhTh

In the second case:
E
σ2
min

= EhTh + 1

(d) We notice that in both cases aT = c · (hTh)−1hT with c = 1 for the first part. The
probability of making an error is:

Pr{X̂ = k|X = −k} = Pr{X̂ = 1|X = −1} = Pr{−aTh + aTZ > 0}
= Pr{aTZ > aTh} = Pr{c · (hTh)−1hTZ > c · (hTh)−1hTh} =

= Pr{(hTh)−1hTZ > 1}

which is independent of c. This means that both estimators have the same error
probability.
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